点云处理【六】(点云分割)

news2025/1/16 3:38:43

点云分割

第一章 点云数据采集


1. 点云分割

点云数据中包含目标物体,点云分割算法即将物体分割出来。

2 分割算法

2.1 RANSAC(随机采样一致性)方法

基于随机采样一致性的分割的步骤如下:
1.从一个样本集S中,随机抽取n个样本,拟合出一个模型,n是能够初始化模型的最小样本数。
2.用1中得到的模型去测试所有的其它数据,如果某个点与模型的误差小于某个阈值,则该点适用于这个模型,认为它也是局内点。
3.如果模型内的局内点达到一定个数,那么估计的模型就足够合理。
4.用所有假设的局内点去重新执行1,2,估计模型,因为它仅仅被初始的假设局内点估计过。
5.最后,通过估计局内点与模型的错误率来评估模型。

平面分割

open3d

import open3d as o3d
import numpy as np

# 读取点云数据
pcd = o3d.io.read_point_cloud("second_radius_cloud.pcd")

# 使用RANSAC进行平面分割
plane_model, inliers = pcd.segment_plane(distance_threshold=10,
                                         ransac_n=3,
                                         num_iterations=1000)

# 获取分割出的平面的点云
inlier_cloud = pcd.select_by_index(inliers)
inlier_cloud.paint_uniform_color([1.0, 0.5, 0])  # 红色表示平面

# 获取其它点云
outlier_cloud = pcd.select_by_index(inliers, invert=True)

# 可视化
o3d.visualization.draw_geometries([inlier_cloud, outlier_cloud],
                                  zoom=0.8,
                                  front=[-0.4999, -0.1659, -0.8499],
                                  lookat=[2.1813, 2.0619, 2.0999],
                                  up=[0.1204, -0.9852, 0.1215])

请添加图片描述

PCL

#include <iostream>
#include <pcl/io/pcd_io.h>
#include <pcl/point_types.h>
#include <pcl/visualization/pcl_visualizer.h>
#include <pcl/segmentation/sac_segmentation.h>
#include <pcl/filters/extract_indices.h>

int main ()
{
    // 1. 读取点云数据
    pcl::PointCloud<pcl::PointXYZ>::Ptr cloud (new pcl::PointCloud<pcl::PointXYZ>);
    if (pcl::io::loadPCDFile<pcl::PointXYZ> ("second_radius_cloud.pcd", *cloud) == -1) 
    {
        PCL_ERROR ("Couldn't read the file second_radius_cloud.pcd \n");
        return (-1);
    }

    // 2. 创建分割对象和设置参数
    pcl::ModelCoefficients::Ptr coefficients (new pcl::ModelCoefficients ());
    pcl::PointIndices::Ptr inliers (new pcl::PointIndices ());
    pcl::SACSegmentation<pcl::PointXYZ> seg;
    seg.setOptimizeCoefficients (true);
    seg.setModelType (pcl::SACMODEL_PLANE);
    seg.setMethodType (pcl::SAC_RANSAC);
    seg.setMaxIterations (1000);
    seg.setDistanceThreshold (10);

    // 3. 进行分割
    seg.setInputCloud (cloud);
    seg.segment (*inliers, *coefficients);
    if (inliers->indices.size () == 0)
    {
        std::cerr << "Could not estimate a planar model for the given dataset." << std::endl;
        return (-1);
    }

    // 4. 提取平面
    pcl::ExtractIndices<pcl::PointXYZ> extract;
    pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_plane (new pcl::PointCloud<pcl::PointXYZ> ());
    extract.setInputCloud (cloud);
    extract.setIndices (inliers);
    extract.setNegative (false);
    extract.filter (*cloud_plane);

    // 5. 可视化
    pcl::visualization::PCLVisualizer viewer("PCL Plane Segmenter");
    viewer.setBackgroundColor(0, 0, 0);

    // 可视化原始点云
    pcl::visualization::PointCloudColorHandlerCustom<pcl::PointXYZ> cloud_color_handler(cloud, 255, 255, 255);
    viewer.addPointCloud(cloud, cloud_color_handler, "original_cloud");

    // 可视化平面
    pcl::visualization::PointCloudColorHandlerCustom<pcl::PointXYZ> plane_color_handler(cloud_plane, 0, 255, 0);
    viewer.addPointCloud(cloud_plane, plane_color_handler, "plane_cloud");
    
    viewer.setPointCloudRenderingProperties (pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 2, "original_cloud");
    viewer.setPointCloudRenderingProperties (pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 2, "plane_cloud");
    viewer.initCameraParameters();
    viewer.saveScreenshot("screenshot.png");
    viewer.spin ();

    return 0;
}

请添加图片描述

2.2 区域生长分割

随机种下曲率较小的种子后进行延申,根据种子邻域与法线之间的角度与阈值比较,从而判断是否处于哪个领域。

open3d

类RegionGrowing.py

import open3d as o3d
import numpy as np
from collections import deque


class RegionGrowing:

    # 构造函数
    def __init__(self, cloud,
                 min_pts_per_cluster=1,             # 每个聚类的最小点数
                 max_pts_per_cluster=np.inf,        # 每个聚类的最大点数
                 theta_threshold=30,                # 法向量夹角阈值
                 curvature_threshold=0.05,          # 曲率阈值
                 neighbour_number=30,               # 邻域搜索点数
                 point_neighbours=[],               # 近邻点集合
                 point_labels=[],                   # 点标签
                 num_pts_in_segment=[],             # 分类标签
                 clusters=[],                       # 聚类容器
                 number_of_segments=0):             # 聚类个数

        self.cure = None                                 # 存储每个点曲率的容器
        self.pcd = cloud                                 # 输入点云
        self.min_pts_per_cluster = min_pts_per_cluster
        self.max_pts_per_cluster = max_pts_per_cluster
        self.theta_threshold = np.deg2rad(theta_threshold)
        self.curvature_threshold = curvature_threshold
        self.neighbour_number = neighbour_number
        self.point_neighbours = point_neighbours
        self.point_labels = point_labels
        self.num_pts_in_segment = num_pts_in_segment
        self.clusters = clusters
        self.number_of_segments = number_of_segments

    # -------------------------------------参数准备--------------------------------------
    def prepare_for_segment(self):
        points = np.asarray(self.pcd.points)     # 点坐标
        normals = np.asarray(self.pcd.normals)   # 法向量
        # 判断点云是否为空
        if not points.shape[0]:
            return False
        # 判断是否有近邻点
        if self.neighbour_number == 0:
            return False
        # 点云需要包含法向量信息
        if points.shape[0] != normals.shape[0]:
            self.pcd.estimate_normals(o3d.geometry.KDTreeSearchParamKNN(self.neighbour_number))

        return True

    # ------------------------------------近邻点搜索-------------------------------------
    def find_neighbour_points(self):
        number = len(self.pcd.points)
        kdtree = o3d.geometry.KDTreeFlann(self.pcd)
        self.point_neighbours = np.zeros((number, self.neighbour_number))
        for ik in range(number):
            [_, idx, _] = kdtree.search_knn_vector_3d(self.pcd.points[ik], self.neighbour_number)  # K近邻搜索
            self.point_neighbours[ik, :] = idx

    # -----------------------------------判意点所属分类-----------------------------------
    def validate_points(self, point, nebor):
        is_seed = True
        cosine_threshold = np.cos(self.theta_threshold)  # 法向量夹角(平滑)阈值

        curr_seed_normal = self.pcd.normals[point]       # 当前种子点的法向量
        seed_nebor_normal = self.pcd.normals[nebor]      # 种子点邻域点的法向量
        dot_normal = np.fabs(np.dot(seed_nebor_normal, curr_seed_normal))
        # 如果小于平滑阈值
        if dot_normal < cosine_threshold:
            return False, is_seed
        # 如果小于曲率阈值
        if self.cure[nebor] > self.curvature_threshold:
            is_seed = False

        return True, is_seed

    # ----------------------------------对点附上分类标签----------------------------------
    def label_for_points(self, initial_seed, segment_number):
        seeds = deque([initial_seed])
        self.point_labels[initial_seed] = segment_number
        num_pts_in_segment = 1

        while len(seeds):
            curr_seed = seeds[0]
            seeds.popleft()
            i_nebor = 0
            while i_nebor < self.neighbour_number and i_nebor < len(self.point_neighbours[curr_seed]):
                index = int(self.point_neighbours[curr_seed, i_nebor])
                if self.point_labels[index] != -1:
                    i_nebor += 1
                    continue

                belongs_to_segment, is_seed = self.validate_points(curr_seed, index)
                if not belongs_to_segment:
                    i_nebor += 1
                    continue

                self.point_labels[index] = segment_number
                num_pts_in_segment += 1

                if is_seed:
                    seeds.append(index)

                i_nebor += 1

        return num_pts_in_segment

    # ------------------------------------区域生长过程------------------------------------
    def region_growing_process(self):
        num_of_pts = len(self.pcd.points)         # 点云点的个数
        self.point_labels = -np.ones(num_of_pts)  # 初始化点标签
        self.pcd.estimate_covariances(o3d.geometry.KDTreeSearchParamKNN(self.neighbour_number))
        cov_mat = self.pcd.covariances            # 获取每个点的协方差矩阵
        self.cure = np.zeros(num_of_pts)          # 初始化存储每个点曲率的容器
        # 计算每个点的曲率
        for i_n in range(num_of_pts):
            eignvalue, _ = np.linalg.eig(cov_mat[i_n])  # SVD分解求特征值
            idx = eignvalue.argsort()[::-1]
            eignvalue = eignvalue[idx]
            self.cure[i_n] = eignvalue[2] / (eignvalue[0] + eignvalue[1] + eignvalue[2])

        point_curvature_index = np.zeros((num_of_pts, 2))
        for i_cu in range(num_of_pts):
            point_curvature_index[i_cu, 0] = self.cure[i_cu]
            point_curvature_index[i_cu, 1] = i_cu

        # 按照曲率大小进行排序
        temp_cure = np.argsort(point_curvature_index[:, 0])
        point_curvature_index = point_curvature_index[temp_cure, :]

        seed_counter = 0
        seed = int(point_curvature_index[seed_counter, 1])  # 选取曲率最小值点

        segmented_pts_num = 0
        number_of_segments = 0

        while segmented_pts_num < num_of_pts:
            pts_in_segment = self.label_for_points(seed, number_of_segments)  # 根据种子点进行分类
            segmented_pts_num += pts_in_segment
            self.num_pts_in_segment.append(pts_in_segment)
            number_of_segments += 1

            # 寻找下一个种子
            for i_seed in range(seed_counter + 1, num_of_pts):
                index = int(point_curvature_index[i_seed, 1])
                if self.point_labels[index] == -1:
                    seed = index
                    seed_counter = i_seed
                    break

    # ----------------------------------根据标签进行分类-----------------------------------
    def region_growing_clusters(self):
        number_of_segments = len(self.num_pts_in_segment)
        number_of_points = np.asarray(self.pcd.points).shape[0]

        # 初始化聚类数组
        for i in range(number_of_segments):
            tmp_init = list(np.zeros(self.num_pts_in_segment[i]))
            self.clusters.append(tmp_init)

        counter = list(np.zeros(number_of_segments))
        for i_point in range(number_of_points):
            segment_index = int(self.point_labels[i_point])
            if segment_index != -1:
                point_index = int(counter[segment_index])
                self.clusters[segment_index][point_index] = i_point
                counter[segment_index] = point_index + 1

        self.number_of_segments = number_of_segments

    # ----------------------------------执行区域生长算法-----------------------------------
    def extract(self):
        if not self.prepare_for_segment():
            print("区域生长算法预处理失败!")
            return

        self.find_neighbour_points()
        self.region_growing_process()
        self.region_growing_clusters()

        # 根据设置的最大最小点数筛选符合阈值的分类
        all_cluster = []
        for i in range(len(self.clusters)):
            if self.min_pts_per_cluster <= len(self.clusters[i]) <= self.max_pts_per_cluster:
                all_cluster.append(self.clusters[i])
            else:
                self.point_labels[self.clusters[i]] = -1

        self.clusters = all_cluster
        return all_cluster


主程序

import open3d as o3d
import numpy as np
import regiongrowing as reg

# ------------------------------读取点云---------------------------------------
pcd = o3d.io.read_point_cloud("second_radius_cloud.pcd")
# ------------------------------区域生长---------------------------------------
rg = reg.RegionGrowing(pcd,
                       min_pts_per_cluster=500,     # 每个聚类的最小点数
                       max_pts_per_cluster=100000,  # 每个聚类的最大点数
                       neighbour_number=30,         # 邻域搜索点数
                       theta_threshold=30,          # 平滑阈值(角度制)
                       curvature_threshold=0.05)    # 曲率阈值
# ---------------------------聚类结果分类保存----------------------------------
indices = rg.extract()
print("聚类个数为", len(indices))
segment = []  # 存储分割结果的容器
for i in range(len(indices)):
    ind = indices[i]
    clusters_cloud = pcd.select_by_index(ind)
    r_color = np.random.uniform(0, 1, (1, 3))  # 分类点云随机赋色
    clusters_cloud.paint_uniform_color([r_color[:, 0], r_color[:, 1], r_color[:, 2]])
    segment.append(clusters_cloud)
# -----------------------------结果可视化------------------------------------
o3d.visualization.draw_geometries(segment, window_name="区域生长分割",
                                  width=1024, height=768,
                                  left=50, top=50,
                                  mesh_show_back_face=True)


请添加图片描述

PCL

#include <iostream>
#include <pcl/io/pcd_io.h>
#include <pcl/point_types.h>
#include <pcl/visualization/pcl_visualizer.h>
#include <pcl/features/normal_3d.h>
#include <pcl/search/search.h>
#include <pcl/search/kdtree.h>
#include <pcl/segmentation/region_growing.h>

int main ()
{
    // 1. Load point cloud
    pcl::PointCloud<pcl::PointXYZ>::Ptr cloud(new pcl::PointCloud<pcl::PointXYZ>);
    if (pcl::io::loadPCDFile<pcl::PointXYZ>("second_radius_cloud.pcd", *cloud) == -1)
    {
        PCL_ERROR("Couldn't read the file second_radius_cloud.pcd \n");
        return (-1);
    }

    // 2. Estimate normals
    pcl::search::Search<pcl::PointXYZ>::Ptr tree(new pcl::search::KdTree<pcl::PointXYZ>);
    pcl::PointCloud<pcl::Normal>::Ptr normals(new pcl::PointCloud<pcl::Normal>);
    pcl::NormalEstimation<pcl::PointXYZ, pcl::Normal> normal_estimator;
    normal_estimator.setSearchMethod(tree);
    normal_estimator.setInputCloud(cloud);
    normal_estimator.setKSearch(300);
    normal_estimator.compute(*normals);

    // 3. Apply region growing segmentation
    pcl::RegionGrowing<pcl::PointXYZ, pcl::Normal> reg;
    reg.setMinClusterSize(500);
    reg.setMaxClusterSize(1000000);
    reg.setSearchMethod(tree);
    reg.setNumberOfNeighbours(30);
    reg.setInputCloud(cloud);
    reg.setInputNormals(normals);
    reg.setSmoothnessThreshold(30);  // 3 degrees
    reg.setCurvatureThreshold(0.05);

    std::vector<pcl::PointIndices> clusters;
    reg.extract(clusters);

    // 4. Visualize the result
    pcl::PointCloud<pcl::PointXYZRGB>::Ptr colored_cloud = reg.getColoredCloud();
    boost::shared_ptr<pcl::visualization::PCLVisualizer> viewer(new pcl::visualization::PCLVisualizer("Region Growing Segmentation"));
    viewer->addPointCloud<pcl::PointXYZRGB>(colored_cloud, "region growing");
    viewer->setBackgroundColor(0, 0, 0);
    viewer->setPointCloudRenderingProperties(pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 1, "region growing");
    viewer->initCameraParameters();
    viewer->saveScreenshot("screenshot.png");

    viewer->spin();

    return 0;
}

请添加图片描述

2.3 欧几里得聚类分割

根据欧几里得距离的大小将点进行聚类。

open3d

import open3d as o3d
import numpy as np
import matplotlib.pyplot as plt
def main():
    pcd = o3d.io.read_point_cloud("second_radius_cloud.pcd")

    pcd.estimate_normals(search_param=o3d.geometry.KDTreeSearchParamHybrid(radius=100, max_nn=30))

    with o3d.utility.VerbosityContextManager(o3d.utility.VerbosityLevel.Debug) as cm:
        labels = np.array(pcd.cluster_dbscan(eps=20, min_points=10, print_progress=True))

    max_label = labels.max()
    print(f"point cloud has {max_label + 1} clusters")
    colors = plt.get_cmap("tab20")(labels / (max_label if max_label > 0 else 1))
    colors[labels < 0] = 0
    pcd.colors = o3d.utility.Vector3dVector(colors[:, :3])

    o3d.visualization.draw_geometries([pcd])

if __name__ == "__main__":
    main()

PCL

#include <iostream>
#include <vector>
#include <pcl/io/pcd_io.h>
#include <pcl/point_types.h>
#include <pcl/visualization/pcl_visualizer.h>
#include <pcl/segmentation/extract_clusters.h>
#include <pcl/kdtree/kdtree.h>

int main ()
{
    // 1. Load the point cloud data from file
    pcl::PointCloud<pcl::PointXYZ>::Ptr cloud(new pcl::PointCloud<pcl::PointXYZ>);
    if (pcl::io::loadPCDFile<pcl::PointXYZ>("second_radius_cloud.pcd", *cloud) == -1)
    {
        PCL_ERROR("Couldn't read the file second_radius_cloud.pcd \n");
        return (-1);
    }

    // 2. Create the KD-Tree object for the search method of the extraction
    pcl::search::KdTree<pcl::PointXYZ>::Ptr tree(new pcl::search::KdTree<pcl::PointXYZ>);
    tree->setInputCloud(cloud);

    // 3. Perform the Euclidean Cluster Extraction
    std::vector<pcl::PointIndices> cluster_indices;
    pcl::EuclideanClusterExtraction<pcl::PointXYZ> ec;
    ec.setClusterTolerance(2);
    ec.setMinClusterSize(100);
    ec.setMaxClusterSize(25000);
    ec.setSearchMethod(tree);
    ec.setInputCloud(cloud);
    ec.extract(cluster_indices);

    // 4. Visualize the result
    boost::shared_ptr<pcl::visualization::PCLVisualizer> viewer(new pcl::visualization::PCLVisualizer("Euclidean Clustering"));
    viewer->setBackgroundColor(0, 0, 0);
    pcl::PointCloud<pcl::PointXYZRGB>::Ptr colored_cloud = pcl::PointCloud<pcl::PointXYZRGB>::Ptr(new pcl::PointCloud<pcl::PointXYZRGB>());
    int j = 0;
    for (std::vector<pcl::PointIndices>::const_iterator it = cluster_indices.begin(); it != cluster_indices.end(); ++it)
    {
        for (std::vector<int>::const_iterator pit = it->indices.begin(); pit != it->indices.end(); ++pit)
        {
            pcl::PointXYZRGB point;
            point.x = cloud->points[*pit].x;
            point.y = cloud->points[*pit].y;
            point.z = cloud->points[*pit].z;
            point.r = j * 23 % 255;
            point.g = j * 77 % 255;
            point.b = j * 129 % 255;
            colored_cloud->points.push_back(point);
        }
        j++;
    }
    viewer->addPointCloud<pcl::PointXYZRGB>(colored_cloud, "Euclidean Clustering");
    viewer->setPointCloudRenderingProperties(pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 1, "Euclidean Clustering");
    viewer->spin();

    return 0;
}

PCL

#include <iostream>
#include <vector>
#include <pcl/io/pcd_io.h>
#include <pcl/point_types.h>
#include <pcl/visualization/pcl_visualizer.h>
#include <pcl/segmentation/extract_clusters.h>
#include <pcl/kdtree/kdtree.h>

int main ()
{
    // 1. Load the point cloud data from file
    pcl::PointCloud<pcl::PointXYZ>::Ptr cloud(new pcl::PointCloud<pcl::PointXYZ>);
    if (pcl::io::loadPCDFile<pcl::PointXYZ>("second_radius_cloud.pcd", *cloud) == -1)
    {
        PCL_ERROR("Couldn't read the file second_radius_cloud.pcd \n");
        return (-1);
    }

    // 2. Create the KD-Tree object for the search method of the extraction
    pcl::search::KdTree<pcl::PointXYZ>::Ptr tree(new pcl::search::KdTree<pcl::PointXYZ>);
    tree->setInputCloud(cloud);

    // 3. Perform the Euclidean Cluster Extraction
    std::vector<pcl::PointIndices> cluster_indices;
    pcl::EuclideanClusterExtraction<pcl::PointXYZ> ec;
    ec.setClusterTolerance(2);
    ec.setMinClusterSize(100);
    ec.setMaxClusterSize(25000);
    ec.setSearchMethod(tree);
    ec.setInputCloud(cloud);
    ec.extract(cluster_indices);

    // 4. Visualize the result
    boost::shared_ptr<pcl::visualization::PCLVisualizer> viewer(new pcl::visualization::PCLVisualizer("Euclidean Clustering"));
    viewer->setBackgroundColor(0, 0, 0);
    pcl::PointCloud<pcl::PointXYZRGB>::Ptr colored_cloud = pcl::PointCloud<pcl::PointXYZRGB>::Ptr(new pcl::PointCloud<pcl::PointXYZRGB>());
    int j = 0;
    for (std::vector<pcl::PointIndices>::const_iterator it = cluster_indices.begin(); it != cluster_indices.end(); ++it)
    {
        for (std::vector<int>::const_iterator pit = it->indices.begin(); pit != it->indices.end(); ++pit)
        {
            pcl::PointXYZRGB point;
            point.x = cloud->points[*pit].x;
            point.y = cloud->points[*pit].y;
            point.z = cloud->points[*pit].z;
            point.r = j * 23 % 255;
            point.g = j * 77 % 255;
            point.b = j * 129 % 255;
            colored_cloud->points.push_back(point);
        }
        j++;
    }
    viewer->addPointCloud<pcl::PointXYZRGB>(colored_cloud, "Euclidean Clustering");
    viewer->setPointCloudRenderingProperties(pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 1, "Euclidean Clustering");
    viewer->spin();

    return 0;
}

2.4 霍夫变换分割

将霍夫变换从2D延申到了3D。

PCL
圆柱体检测

#include <pcl/io/pcd_io.h>
#include <pcl/point_types.h>
#include <pcl/features/normal_3d.h>
#include <pcl/visualization/pcl_visualizer.h>
#include <pcl/segmentation/sac_segmentation.h>

int main()
{
    // 1. Load Point Cloud data
    pcl::PointCloud<pcl::PointXYZ>::Ptr cloud(new pcl::PointCloud<pcl::PointXYZ>);
    if (pcl::io::loadPCDFile<pcl::PointXYZ>("second_radius_cloud.pcd", *cloud) == -1)
    {
        PCL_ERROR("Couldn't read file second_radius_cloud.pcd \n");
        return (-1);
    }

    // 2. Estimate Point Normals
    pcl::NormalEstimation<pcl::PointXYZ, pcl::Normal> ne;
    pcl::PointCloud<pcl::Normal>::Ptr normals(new pcl::PointCloud<pcl::Normal>);
    pcl::search::KdTree<pcl::PointXYZ>::Ptr tree(new pcl::search::KdTree<pcl::PointXYZ>());
    ne.setSearchMethod(tree);
    ne.setInputCloud(cloud);
    ne.setKSearch(50);
    ne.compute(*normals);

    // 3. Apply Hough Transform based cylinder segmentation
    pcl::SACSegmentationFromNormals<pcl::PointXYZ, pcl::Normal> seg;
    pcl::PointIndices::Ptr inliers_cylinder(new pcl::PointIndices);
    pcl::ModelCoefficients::Ptr coefficients_cylinder(new pcl::ModelCoefficients);
    seg.setOptimizeCoefficients(true);
    seg.setModelType(pcl::SACMODEL_CYLINDER);
    seg.setMethodType(pcl::SAC_RANSAC);
    seg.setNormalDistanceWeight(0.1);
    seg.setMaxIterations(10000);
    seg.setDistanceThreshold(50);
    seg.setRadiusLimits(0.0, 0.1);
    seg.setInputCloud(cloud);
    seg.setInputNormals(normals);
    seg.segment(*inliers_cylinder, *coefficients_cylinder);

    // 4. Visualize the Cylinder
    pcl::visualization::PCLVisualizer::Ptr viewer(new pcl::visualization::PCLVisualizer("Hough Transform Cylinder Segmentation"));
    viewer->setBackgroundColor(0, 0, 0);
    viewer->addPointCloud<pcl::PointXYZ>(cloud, "cloud");
    pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_cylinder(new pcl::PointCloud<pcl::PointXYZ>);

    viewer->addPointCloud<pcl::PointXYZ>(cloud_cylinder, "cylinder", 0);
    viewer->setPointCloudRenderingProperties(pcl::visualization::PCL_VISUALIZER_COLOR, 1.0, 0, 0, "cylinder");

    while (!viewer->wasStopped())
    {
        viewer->spinOnce(100);
    }
    return 0;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1115102.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

下拉选择框监听el-option的方式

<el-select v-model"form.expenseType" placeholder"请选择费用类型" clearable filterable size"small"><el-option v-for"item in expenseNameList" :key"item.value" :label"item.label" :value"…

发现学习的新契机——广东开放大学电大搜题服务

广东开放大学一直以来致力于为广大学子提供优质的教育资源和学习支持&#xff0c;而最新推出的电大搜题微信公众号更进一步满足了学生们对于学习资料的需求。这一全新的学习辅助工具将为学子们带来便捷、高效的学习体验。 无论是传统的广播电视大学学生&#xff0c;还是广东开…

首届中国虚拟艺术巡展 NFT Showcase 圆满落幕!

由 Web3 营销先锋 Beep Crypto 精心策划&#xff0c;于 10 月 5 日至 10 月 17 日在广州潮流策展空间 YCC! 天宜隆重呈现。 本届展览以“虚拟时尚”为主题&#xff0c;融汇了众多的数字艺术展品&#xff0c;包括诸如 RTFKT X Nike、Gucci X 10KTF、Tiffany X Cryptopunks、Mee…

python二次开发Solidworks:读取立方体的高度

在SW中新建一个零件文档&#xff0c;建立一个立方体&#xff0c;长度和宽度自定义&#xff0c;高度100mm&#xff0c;下面通过python实现读取该立方体的高度&#xff1a; import win32com.client as win32 import pythoncomswApp win32.Dispatch(sldworks.application) swApp.…

使用telegram机器人发送通知

文章目录 背景1 创建机器人2 与机器人的会话3 调用API让机器人发送消息 背景 在训练深度学习模型时&#xff0c;除了粗略估计外&#xff0c;很难预测训练何时结束。此外&#xff0c;我们可能还想随时随地查看训练情况&#xff0c;如果每次都需要登录回服务器的话并不方便。因此…

RK3568笔记四:基于TensorFlow花卉图像分类部署

若该文为原创文章&#xff0c;转载请注明原文出处。 基于正点原子的ATK-DLRK3568部署测试。 花卉图像分类任务&#xff0c;使用使用 tf.keras.Sequential 模型&#xff0c;简单构建模型&#xff0c;然后转换成 RKNN 模型部署到ATK-DLRK3568板子上。 在 PC 使用 Windows 系统…

项目环境配置

一、后端环境搭建-前后端联调 1.1 nginx反向代理 1.2 nginx负载均衡配置 二、完善登录功能 处理密码明文&#xff0c;防止密码被别人获取破坏系统 MD5加密是单向的不可逆的 &#xff0c;不能由加密后的换算加密前的 //密码比对password DigestUtils.md5DigestAsHex ( pa…

二叉树,堆排序及TopK问题

要讲二叉树的概念&#xff0c;就要先讲树的概念。 树是什么呢&#xff1f; 树其实是一种储存数据的结构&#xff0c;因为他的结构倒过来和生活中的树很相似所以才被称之为树。 这是一颗多叉树&#xff0c;从最顶端的节点可以找到下边的几个节点&#xff0c;下边的节点又可以找…

Apollo:前端开发者的全栈探索之旅

前言 「作者主页」&#xff1a;雪碧有白泡泡 「个人网站」&#xff1a;雪碧的个人网站 「推荐专栏」&#xff1a; ★java一站式服务 ★ ★ React从入门到精通★ ★前端炫酷代码分享 ★ ★ 从0到英雄&#xff0c;vue成神之路★ ★ uniapp-从构建到提升★ ★ 从0到英雄&#xff…

【C语言必知必会 | 第四篇】一文带你精通顺序结构

引言 C语言是一门面向过程的、抽象化的通用程序设计语言&#xff0c;广泛应用于底层开发。它在编程语言中具有举足轻重的地位。 此文为【C语言必知必会】系列第四篇&#xff0c;进行C语言顺序结构的专项练习&#xff0c;结合专题优质题目&#xff0c;带领读者从0开始&#xff0…

Halcon手眼标定

手眼标定&#xff08;参考&#xff1a;B站王佳琪老师) 这里说的手眼标定中的手指的是机械手或者电机运动的轴&#xff0c;眼表示摄像头 就是两个空间坐标系的转换&#xff0c;这个转换需要一个转换矩阵&#xff0c;那么转换矩阵需要根据两个坐标系的对应的九个点来通过vec_to…

如何用记事本制作一个简陋的小网页(3)——注册信息表

目录 前提须知&#xff1a; 一、表格建立之前&#xff1a; 二、表格的建立&#xff1a; 三、信息表的内容填充&#xff1a; 1.昵称 和 电话 &#xff1a; 2.密码&#xff1a; 3.性别&#xff1a; 4. 爱好&#xff1a; 5.民族&#xff1a; 6. 出生日期&#xff1a; 7.…

Python用selenium实现自动登录和下单的项目实战

本文主要介绍了Python用selenium实现自动登录和下单的项目实战&#xff0c;文中通过示例代码介绍的非常详细&#xff0c;对大家的学习或者工作具有一定的参考学习价值&#xff0c;需要的朋友们下面随着小编来一起学习学习吧− 前言 学python对selenium应该不陌生吧 Selenium…

什么是低代码开发平台?有什么优势?

目录 一、低代码平台演进 1. 低代码概念 2. 低代码衍生历程 二、为什么要用低代码&#xff1f; &#xff08;1&#xff09;降本提效&#xff0c;便捷开发 &#xff08;2&#xff09;降低开发门槛&#xff0c;扩大应用开发劳动力 &#xff08;3&#xff09;加快数字化转型建设 三…

“第四十五天” 数据结构基本概念

目前看的有关数据结构的课&#xff0c;估计这周就看完了&#xff0c;但感觉差很多&#xff0c;还是和c一样&#xff0c;这样过一下吧。但可能比较急&#xff0c;目前是打算争取寒假回家之前把四大件都先大致过一遍。 数据结构里面有很多新的定义和概念&#xff0c;学到现在&am…

054协同过滤算法的电影推荐系统

大家好✌&#xff01;我是CZ淡陌。一名专注以理论为基础实战为主的技术博主&#xff0c;将再这里为大家分享优质的实战项目&#xff0c;本人在Java毕业设计领域有多年的经验&#xff0c;陆续会更新更多优质的Java实战项目&#xff0c;希望你能有所收获&#xff0c;少走一些弯路…

vue el-dialog弹出框自定义指令实现拖拽改变位置-宽度-高度

前言 在实际开发中我们经常使用el-dialog弹出框做表单&#xff0c;一般情况都是居中。遮挡到了一部分数据 当我们想要查看弹出框下面的数据时&#xff0c;就只能先把弹出框关闭&#xff0c;查看完数据之后在打开弹框 我们通过动态样式&#xff0c;和鼠标事件就可以实现。但自…

OpenLDAP LDIF详解

手把手一步步搭建LDAP服务器并加域 有必要理解的概念LDAPWindows Active Directory 服务器配置安装 OpenLDAP自定义安装修改对象&#xff08;用户和分组等&#xff09;修改olcSuffix 和 olcRootDN 属性增加olcRootPW 属性修改olcAccess属性验证新属性值 添加对象&#xff08;用…