竞赛 深度学习交通车辆流量分析 - 目标检测与跟踪 - python opencv

news2024/11/15 13:46:28

文章目录

  • 0 前言
  • 1 课题背景
  • 2 实现效果
  • 3 DeepSORT车辆跟踪
    • 3.1 Deep SORT多目标跟踪算法
    • 3.2 算法流程
  • 4 YOLOV5算法
    • 4.1 网络架构图
    • 4.2 输入端
    • 4.3 基准网络
    • 4.4 Neck网络
    • 4.5 Head输出层
  • 5 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 **基于深度学习得交通车辆流量分析 **

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:5分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

在这里插入图片描述

1 课题背景

在智能交通系统中,利用监控视频进行车流量统计是一个研究热点。交管部门通过实时、准确地采集车流量信息,可以合理分配交通资源、提高道路通行效率,有效预防和应对城市交通拥堵问题。同时随着车辆数量的增加,交通违章现象频出,例如渣土车违规上道、工程车辆违规进入城市主干道、车辆停放在消防通道等,这一系列的交通违规行为给城市安全埋下了巨大隐患。对于交通管理者而言,加强对特定车辆的识别和分类管理尤为重要。然而,在实际监控识别车辆时,相当一部分车辆图像存在图像不全或者遮挡问题,极大降低了监控识别准确率。如何准确识别车辆,是当前车辆检测的重点。

根据实际情况,本文将车辆分为家用小轿车、货车两类进行车辆追踪和速度识别。

2 实现效果

可识别图片视频中的轿车和货车数量,检测行驶速度并实时显示。

在这里插入图片描述

关键代码

# 目标检测
    def yolo_detect(self, im):

        img = self.preprocess(im)

        pred = self.m(img, augment=False)[0]
        pred = pred.float()
        pred = non_max_suppression(pred, self.conf_thres, self.iou_thres )

        pred_boxes = []
        for det in pred:

            if det is not None and len(det):
                det[:, :4] = scale_coords(
                    img.shape[2:], det[:, :4], im.shape).round()

                for *x, conf, cls_id in det:
                    lbl = self.names[int(cls_id)]
                    x1, y1 = int(x[0]), int(x[1])
                    x2, y2 = int(x[2]), int(x[3])
                    pred_boxes.append(
                        (x1, y1, x2, y2, lbl, conf))

        return pred_boxes

3 DeepSORT车辆跟踪

多目标在线跟踪算法 SORT(simple online andrealtime
tracking)利用卡尔曼滤波和匈牙利匹配,将跟踪结果和检测结果之间的IoU作为代价矩阵,实现了一种简单高效并且实用的跟踪范式。但是 SORT
算法的缺陷在于所使用的关联度量(association
metric)只有在状态估计不确定性较低的情况下有效,因此算法执行时会出现大量身份切换现象,当目标被遮挡时跟踪失败。为了改善这个问题,Deep SORT
将目标的运动信息和外观信息相结合作为关联度量,改善目标消失后重新出现导致的跟踪失败问题。

3.1 Deep SORT多目标跟踪算法

跟踪处理和状态估计

Deep SORT
利用检测器的结果初始化跟踪器,每个跟踪器都会设置一个计数器,在卡尔曼滤波之后计数器累加,当预测结果和检测结果成功匹配时,该计数器置为0。在一段时间内跟踪器没有匹配到合适的检测结果,则删除该跟踪器。Deep
SORT 为每一帧中新出现的检测结果分配跟踪器,当该跟踪器连续3帧的预测结果都能匹配检测结果,则确认是出现了新的轨迹,否则删除该跟踪器。

Deep SORT使用 8维状态空间在这里插入图片描述描述目标的状态和在图像坐标系中的运动信息。在这里插入图片描述表示目标检测框的中心坐标在这里插入图片描述分别表示检测框的宽高比例和高度,在这里插入图片描述表示前面四个参数在图像坐标中的相对速度。算法使用具有恒定速度模型和线性观测模型的标准卡尔曼滤波器,将检测框参数在这里插入图片描述作为对象状态的直接观测值。

分配问题

Deep SORT
结合运动信息和外观信息,使用匈牙利算法匹配预测框和跟踪框。对于运动信息,算法使用马氏距离描述卡尔曼滤波预测结果和检测器结果的关联程度,如公式中:

在这里插入图片描述

在这里插入图片描述分别表示第 j 个检测结果和第 i
个预测结果的状态向量,Si 表示检测结果和平均跟踪结

当目标运动信息不确定性较低的时候,马氏距离是一种合适的关联因子,但是当目标遮挡或者镜头视角抖动时,仅使用马氏距离关联会导致目标身份切换。因此考虑加入外观信息,对每一个检测框
dj 计算出对应的外观特征描述符 rj ,并且设置在这里插入图片描述。对于每一个跟踪轨迹 k
设置特征仓库在这里插入图片描述,用来保存最近100条目标成功关联的特征描述符,在这里插入图片描述。计算第 i 个跟踪框和第 j
个检测框最小余弦距离,如公式:

在这里插入图片描述

在这里插入图片描述小于指定的阈值,认为关联成功。

马氏距离在短时预测情况下可以提供可靠的目标位置信息,使用外观特征的余弦相似度可以在目标遮挡又重新出现时恢复目标
ID,为了使两种度量的优势互补,使用线性加权的方式进行结合:

在这里插入图片描述

3.2 算法流程

Deepsort算法的工作流程如下图所示:

在这里插入图片描述

源码流程

主函数部分整体逻辑是比较简单的,首先是将命令行参数进行解析,解析的内容包括,MOTChanlleng序列文件所在路径、需要检测文件所在的目录等一系列参数。解析之后传递给run方法,开始运行。

在这里插入图片描述

进入run函数之后,首先会收集流信息,包括图片名称,检测结果以及置信度等,后续会将这些流信息传入到检测框生成函数中,生成检测框列表。然后会初始化metric对象,metric对象简单来说就是度量方式,在这个地方我们可以选择两种相似度的度量方式,第一种叫做余弦相似度度量,另一种叫做欧拉相似度度量。通过metric对象我们来初始化追踪器。
在这里插入图片描述

接着根据display参数开始生成对应的visuializer,如果选择将检测结果进行可视化展示,那么便会生成Visualization对象,我从这个类中可以看到,它主要是调用opencv
image
viewer来讲追踪的结果进行展示。如果display是false则会生成一个NoVisualization对象,它一个虚拟可视化对象,它以给定的顺序循环遍历所有帧以更新跟踪器,而无需执行任何可视化。两者主要区别其实就是是否调用opencv将图片展示出来。其实前边我们所做的一系列工作可以说都是准备的工作,实际上核心部分就是在执行这个run方法之后。此处我们可以看到,在run方法中传入了一个frame_callback函数,这个frame_callback函数可以说是整个算法的核心部分,每一帧的图片都会执行该函数。
在这里插入图片描述

4 YOLOV5算法

6月9日,Ultralytics公司开源了YOLOv5,离上一次YOLOv4发布不到50天。而且这一次的YOLOv5是完全基于PyTorch实现的!在我们还对YOLOv4的各种高端操作、丰富的实验对比惊叹不已时,YOLOv5又带来了更强实时目标检测技术。按照官方给出的数目,现版本的YOLOv5每个图像的推理时间最快0.007秒,即每秒140帧(FPS),但YOLOv5的权重文件大小只有YOLOv4的1/9。

目标检测架构分为两种,一种是two-stage,一种是one-stage,区别就在于 two-stage 有region
proposal过程,类似于一种海选过程,网络会根据候选区域生成位置和类别,而one-stage直接从图片生成位置和类别。今天提到的 YOLO就是一种
one-stage方法。YOLO是You Only Look Once的缩写,意思是神经网络只需要看一次图片,就能输出结果。YOLO
一共发布了五个版本,其中 YOLOv1 奠定了整个系列的基础,后面的系列就是在第一版基础上的改进,为的是提升性能。

YOLOv5有4个版本性能如图所示:

在这里插入图片描述

4.1 网络架构图

在这里插入图片描述

YOLOv5是一种单阶段目标检测算法,该算法在YOLOv4的基础上添加了一些新的改进思路,使其速度与精度都得到了极大的性能提升。主要的改进思路如下所示:

4.2 输入端

在模型训练阶段,提出了一些改进思路,主要包括Mosaic数据增强、自适应锚框计算、自适应图片缩放;

  • Mosaic数据增强:Mosaic数据增强的作者也是来自YOLOv5团队的成员,通过随机缩放、随机裁剪、随机排布的方式进行拼接,对小目标的检测效果很不错

在这里插入图片描述

4.3 基准网络

融合其它检测算法中的一些新思路,主要包括:Focus结构与CSP结构;

4.4 Neck网络

在目标检测领域,为了更好的提取融合特征,通常在Backbone和输出层,会插入一些层,这个部分称为Neck。Yolov5中添加了FPN+PAN结构,相当于目标检测网络的颈部,也是非常关键的。

在这里插入图片描述

在这里插入图片描述

FPN+PAN的结构

在这里插入图片描述

这样结合操作,FPN层自顶向下传达强语义特征(High-Level特征),而特征金字塔则自底向上传达强定位特征(Low-
Level特征),两两联手,从不同的主干层对不同的检测层进行特征聚合。

FPN+PAN借鉴的是18年CVPR的PANet,当时主要应用于图像分割领域,但Alexey将其拆分应用到Yolov4中,进一步提高特征提取的能力。

4.5 Head输出层

输出层的锚框机制与YOLOv4相同,主要改进的是训练时的损失函数GIOU_Loss,以及预测框筛选的DIOU_nms。

对于Head部分,可以看到三个紫色箭头处的特征图是40×40、20×20、10×10。以及最后Prediction中用于预测的3个特征图:


①==>40×40×255

②==>20×20×255

③==>10×10×255

在这里插入图片描述

相关代码

class Detect(nn.Module):
    stride = None  # strides computed during build
    onnx_dynamic = False  # ONNX export parameter

    def __init__(self, nc=80, anchors=(), ch=(), inplace=True):  # detection layer
        super().__init__()
        self.nc = nc  # number of classes
        self.no = nc + 5  # number of outputs per anchor
        self.nl = len(anchors)  # number of detection layers
        self.na = len(anchors[0]) // 2  # number of anchors
        self.grid = [torch.zeros(1)] * self.nl  # init grid
        self.anchor_grid = [torch.zeros(1)] * self.nl  # init anchor grid
        self.register_buffer('anchors', torch.tensor(anchors).float().view(self.nl, -1, 2))  # shape(nl,na,2)
        self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch)  # output conv
        self.inplace = inplace  # use in-place ops (e.g. slice assignment)

    def forward(self, x):
        z = []  # inference output
        for i in range(self.nl):
            x[i] = self.m[i](x[i])  # conv
            bs, _, ny, nx = x[i].shape  # x(bs,255,20,20) to x(bs,3,20,20,85)
            x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()

            if not self.training:  # inference
                if self.onnx_dynamic or self.grid[i].shape[2:4] != x[i].shape[2:4]:
                    self.grid[i], self.anchor_grid[i] = self._make_grid(nx, ny, i)

                y = x[i].sigmoid()
                if self.inplace:
                    y[..., 0:2] = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i]  # xy
                    y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]  # wh
                else:  # for YOLOv5 on AWS Inferentia https://github.com/ultralytics/yolov5/pull/2953
                    xy = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i]  # xy
                    wh = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]  # wh
                    y = torch.cat((xy, wh, y[..., 4:]), -1)
                z.append(y.view(bs, -1, self.no))

        return x if self.training else (torch.cat(z, 1), x)

    def _make_grid(self, nx=20, ny=20, i=0):
        d = self.anchors[i].device
        if check_version(torch.__version__, '1.10.0'):  # torch>=1.10.0 meshgrid workaround for torch>=0.7 compatibility
            yv, xv = torch.meshgrid([torch.arange(ny).to(d), torch.arange(nx).to(d)], indexing='ij')
        else:
            yv, xv = torch.meshgrid([torch.arange(ny).to(d), torch.arange(nx).to(d)])
        grid = torch.stack((xv, yv), 2).expand((1, self.na, ny, nx, 2)).float()
        anchor_grid = (self.anchors[i].clone() * self.stride[i]) \
            .view((1, self.na, 1, 1, 2)).expand((1, self.na, ny, nx, 2)).float()
        return grid, anchor_grid

5 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1111008.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Halcon 中查看算子和函数的执行时间

1、在Halcol主窗口的底栏中的第一个图标显示算子或函数的执行时间,如下图: 2、在Halcon的菜单栏中选择【窗口】,在下拉框中选择【打开输出控制台】,进行查看算子或函数的执行时间,如下图:

「神奇的锚点定位:探索UniApp中实现滚动定位效果,与1024程序员节同欢,解析技术之美」

🎬 江城开朗的豌豆:个人主页 🔥 个人专栏 :《 VUE 》 《 javaScript 》 📝 个人网站 :《 江城开朗的豌豆🫛 》 ⛺️ 生活的理想,就是为了理想的生活 ! 目录 ⭐ 文章简介 📘 文章背景 &#…

小程序中如何使用自定义组件应用及搭建个人中心布局

一,自定义组件 从小程序基础库版本 1.6.3 开始,小程序支持简洁的组件化编程。所有自定义组件相关特性都需要基础库版本 1.6.3 或更高。 开发者可以将页面内的功能模块抽象成自定义组件,以便在不同的页面中重复使用;也可以将复杂的…

【Godot引擎开发】简单基础,外加一个小游戏DEMO

博主:_LJaXi 专栏: Godot | 横版游戏开发 Godot 物体规律移动内置虚函数浮点计算浮点数计算数组APIInput单例与自定义单例节点NodeSprite2DArea2DCollisionShape2DKinematicBody2DRigidBody2D Pong游戏场景安排玩家1玩家2小球记分系统文件概要 下面是介绍…

软件工程与计算总结(二十一)软件维护与演化

一.软件维护 1.软件可修改性和软件维护 产品交付给用户并投入运营之后,接下来的工作被看做软件维护。 因为软件不存在“磨损”的情况,所以与其他工程学科相比,软件维护只需要完成少量的使用帮助、故障解决等工作——但并不意味着维护是简单…

IOday8

#include <head.h>//要发送数据的结构体类型 struct msgbuf {long mtype; /* 消息类型*/char mtext[1024]; /* 正文数据 */}; //宏定义正文大小 #define SIZE sizeof(struct msgbuf)-sizeof(long) int main(int argc, const char *argv[]) {key_t key;if((keyft…

oracle-AWR报告生成方法

AWR报告生成方法 1. 以oracle用户登陆服务器 2. 进入到要保存awr报告的目录 3. 以sysdba身份连接数据库 sqlplus / as sysdba4. 执行生成AWR报告命令 ?/rdbms/admin/awrrpt.sql5. 选择AWR报告的文件格式 6. 选择生成多少天的AWR报告 7. 选择报告的快照起始和结束ID 8. 输入生…

Java 对象是什么样子的?

Java 对象是什么样子的&#xff1f; class Student{ int age; String name; }Student s new Student(18, “zhangsan”); 这里的 s 变量&#xff0c;就是我们常说的引用&#xff0c;这里是强引用。指向对象中的 Java对象。 很多人可能认为&#xff0c;堆中存储了 age 18, na…

Linux学习之进程一

目录 一&#xff0c;什么是进程&#xff1f; 1.何为pcb&#xff08;process control block&#xff09;&#xff1f; 2.linux的task_struct 二&#xff0c;了解task_struct的核心字段 标识符 ps指令 getpid指令 ppid&#xff08;parent process id&#xff09; getppid…

DASFAA2023 | 关系数据库和图数据库关键技术融合趋势

编者按&#xff1a; 本期论文导读为大家介绍近年来关系数据库和图数据库关键技术的融合趋势及代表性工作。相关内容来自DASFAA 2023 Tutorial “Fusion of Relational and Graph Database Techniques: An Emerging Trend”&#xff0c;由北京交通大学刘钰博士、中北大学郭青松…

【持续更新】tutorial-Linux-Markdown-etc(Linux、命令、Markdown、md、Tex、LaTex)

1. Linux命令 1.1 常用 查看文件夹下文件数量: ls -l | wc -l7zip: 解压&#xff1a;7z x compressed_file.7z -o/path/to/destination # 注意-o和目标路径是连起来的&#xff0c;没有空格压缩&#xff1a;7z a compressed_file.zip destination_path conda 查看 conda 拥有的…

@JsonCreator(mode = JsonCreator.Mode.DELEGATING) @JsonValue解释

@JsonCreator(mode = JsonCreator.Mode.DELEGATING)public MessageId(Long id) {this.id = id;}<

【中级网络工程师】下午网络配置题

目录 dis ip routing-table 路由表如何查看 静态路由配置&#xff1a; rip和ospf配置 ACL配置 定义ACL过程 关键字traffic-filter inbound 和 traffic-filter outbpund 两种安装模式 DHCP服务 基于全局分配&#xff1a; 基于接口分配&#xff1a; 如何将划分的VLAN和创…

如何确认栈中申请的变量地址

一般一个程序被加载到内存后执行而成为一个进程。进程在内存中是分区域加载的&#xff0c;分别是代码段、数据段、bss段等等。 函数中定义的变量一般存在于栈中。现在我们通过实验验证一下&#xff0c;函数中定义的变量&#xff0c;到底存在与进程哪个位置。 1.测试程序 #in…

opencv入门到精通——图片,视频,摄像头的读取与保存

简介 OpenCV是一个流行的开源计算机视觉库&#xff0c;由英特尔公司发起发展。它提供了超过2500个优化算法和许多工具包&#xff0c;可用于灰度、彩色、深度、基于特征和运动跟踪等的图像处理和计算机视觉应用。OpenCV主要使用C语言编写&#xff0c;同时也支持Python、Java、C等…

unity操作_碰撞器 c#

碰撞器Collider 在场景中选择一个物体Cube 观察检查器Inspector 自带Cube会默认挂载盒子碰撞器Box Colilider 增加组件可以增加更多中碰撞器 Edit Collider 编辑碰撞器形状 Is Trigger选项 Is Trigger &#xff1a;是否是触发器&#xff0c;如果启用此属性 则该碰撞体将用于触…

分享一下微信小程序里的预约链接怎么做

微信小程序是一种无需下载安装即可使用的应用程序&#xff0c;它依托于微信平台&#xff0c;为用户提供了更加便捷的使用体验。在小程序中&#xff0c;我们可以制作预约链接&#xff0c;以便用户直接在微信中进行预约&#xff0c;提高服务效率。下面我们将探讨如何制作微信小程…

RabbitMQ中的核心概念和交换机类型

目录 一、RabbitMQ相关概念二、Exchange类型三、RabbitMQ概念模型总结 一、RabbitMQ相关概念 Producer&#xff1a;生产者&#xff0c;就是投递消息的一方。生产者创建消息&#xff0c;然后发布到RabbitMQ中。消息一般可以包含两个部分&#xff1a;消息体和附加消息。 消息体…

利用Nginx可视化管理工具+Cpolar实现本地服务远程访问

文章目录 前言1. docker 一键安装2. 本地访问3. Linux 安装cpolar4. 配置公网访问地址5. 公网远程访问6. 固定公网地址 前言 Nginx Proxy Manager 是一个开源的反向代理工具&#xff0c;不需要了解太多 Nginx 或 Letsencrypt 的相关知识&#xff0c;即可快速将你的服务暴露到外…

nextjs-一个基于React的全栈框架

一、nextjs基本介绍 Next.js是一个基于React的轻量级框架&#xff0c;用于构建React应用程序。它在React的基础上提供了一些增强功能&#xff0c;包括服务器渲染&#xff08;SSR&#xff09;、静态生成&#xff08;SSG&#xff09;、路由等。Next.js的目标是简化React应用程序…