竞赛选题 深度学习交通车辆流量分析 - 目标检测与跟踪 - python opencv

news2024/11/17 11:28:58

文章目录

  • 0 前言
  • 1 课题背景
  • 2 实现效果
  • 3 DeepSORT车辆跟踪
    • 3.1 Deep SORT多目标跟踪算法
    • 3.2 算法流程
  • 4 YOLOV5算法
    • 4.1 网络架构图
    • 4.2 输入端
    • 4.3 基准网络
    • 4.4 Neck网络
    • 4.5 Head输出层
  • 5 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 **基于深度学习得交通车辆流量分析 **

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:5分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

在这里插入图片描述

1 课题背景

在智能交通系统中,利用监控视频进行车流量统计是一个研究热点。交管部门通过实时、准确地采集车流量信息,可以合理分配交通资源、提高道路通行效率,有效预防和应对城市交通拥堵问题。同时随着车辆数量的增加,交通违章现象频出,例如渣土车违规上道、工程车辆违规进入城市主干道、车辆停放在消防通道等,这一系列的交通违规行为给城市安全埋下了巨大隐患。对于交通管理者而言,加强对特定车辆的识别和分类管理尤为重要。然而,在实际监控识别车辆时,相当一部分车辆图像存在图像不全或者遮挡问题,极大降低了监控识别准确率。如何准确识别车辆,是当前车辆检测的重点。

根据实际情况,本文将车辆分为家用小轿车、货车两类进行车辆追踪和速度识别。

2 实现效果

可识别图片视频中的轿车和货车数量,检测行驶速度并实时显示。

在这里插入图片描述

关键代码

# 目标检测
    def yolo_detect(self, im):

        img = self.preprocess(im)

        pred = self.m(img, augment=False)[0]
        pred = pred.float()
        pred = non_max_suppression(pred, self.conf_thres, self.iou_thres )

        pred_boxes = []
        for det in pred:

            if det is not None and len(det):
                det[:, :4] = scale_coords(
                    img.shape[2:], det[:, :4], im.shape).round()

                for *x, conf, cls_id in det:
                    lbl = self.names[int(cls_id)]
                    x1, y1 = int(x[0]), int(x[1])
                    x2, y2 = int(x[2]), int(x[3])
                    pred_boxes.append(
                        (x1, y1, x2, y2, lbl, conf))

        return pred_boxes

3 DeepSORT车辆跟踪

多目标在线跟踪算法 SORT(simple online andrealtime
tracking)利用卡尔曼滤波和匈牙利匹配,将跟踪结果和检测结果之间的IoU作为代价矩阵,实现了一种简单高效并且实用的跟踪范式。但是 SORT
算法的缺陷在于所使用的关联度量(association
metric)只有在状态估计不确定性较低的情况下有效,因此算法执行时会出现大量身份切换现象,当目标被遮挡时跟踪失败。为了改善这个问题,Deep SORT
将目标的运动信息和外观信息相结合作为关联度量,改善目标消失后重新出现导致的跟踪失败问题。

3.1 Deep SORT多目标跟踪算法

跟踪处理和状态估计

Deep SORT
利用检测器的结果初始化跟踪器,每个跟踪器都会设置一个计数器,在卡尔曼滤波之后计数器累加,当预测结果和检测结果成功匹配时,该计数器置为0。在一段时间内跟踪器没有匹配到合适的检测结果,则删除该跟踪器。Deep
SORT 为每一帧中新出现的检测结果分配跟踪器,当该跟踪器连续3帧的预测结果都能匹配检测结果,则确认是出现了新的轨迹,否则删除该跟踪器。

Deep SORT使用 8维状态空间在这里插入图片描述描述目标的状态和在图像坐标系中的运动信息。在这里插入图片描述表示目标检测框的中心坐标在这里插入图片描述分别表示检测框的宽高比例和高度,在这里插入图片描述表示前面四个参数在图像坐标中的相对速度。算法使用具有恒定速度模型和线性观测模型的标准卡尔曼滤波器,将检测框参数在这里插入图片描述作为对象状态的直接观测值。

分配问题

Deep SORT
结合运动信息和外观信息,使用匈牙利算法匹配预测框和跟踪框。对于运动信息,算法使用马氏距离描述卡尔曼滤波预测结果和检测器结果的关联程度,如公式中:

在这里插入图片描述

在这里插入图片描述分别表示第 j 个检测结果和第 i
个预测结果的状态向量,Si 表示检测结果和平均跟踪结

当目标运动信息不确定性较低的时候,马氏距离是一种合适的关联因子,但是当目标遮挡或者镜头视角抖动时,仅使用马氏距离关联会导致目标身份切换。因此考虑加入外观信息,对每一个检测框
dj 计算出对应的外观特征描述符 rj ,并且设置在这里插入图片描述。对于每一个跟踪轨迹 k
设置特征仓库在这里插入图片描述,用来保存最近100条目标成功关联的特征描述符,在这里插入图片描述。计算第 i 个跟踪框和第 j
个检测框最小余弦距离,如公式:

在这里插入图片描述

在这里插入图片描述小于指定的阈值,认为关联成功。

马氏距离在短时预测情况下可以提供可靠的目标位置信息,使用外观特征的余弦相似度可以在目标遮挡又重新出现时恢复目标
ID,为了使两种度量的优势互补,使用线性加权的方式进行结合:

在这里插入图片描述

3.2 算法流程

Deepsort算法的工作流程如下图所示:

在这里插入图片描述

源码流程

主函数部分整体逻辑是比较简单的,首先是将命令行参数进行解析,解析的内容包括,MOTChanlleng序列文件所在路径、需要检测文件所在的目录等一系列参数。解析之后传递给run方法,开始运行。

在这里插入图片描述

进入run函数之后,首先会收集流信息,包括图片名称,检测结果以及置信度等,后续会将这些流信息传入到检测框生成函数中,生成检测框列表。然后会初始化metric对象,metric对象简单来说就是度量方式,在这个地方我们可以选择两种相似度的度量方式,第一种叫做余弦相似度度量,另一种叫做欧拉相似度度量。通过metric对象我们来初始化追踪器。
在这里插入图片描述

接着根据display参数开始生成对应的visuializer,如果选择将检测结果进行可视化展示,那么便会生成Visualization对象,我从这个类中可以看到,它主要是调用opencv
image
viewer来讲追踪的结果进行展示。如果display是false则会生成一个NoVisualization对象,它一个虚拟可视化对象,它以给定的顺序循环遍历所有帧以更新跟踪器,而无需执行任何可视化。两者主要区别其实就是是否调用opencv将图片展示出来。其实前边我们所做的一系列工作可以说都是准备的工作,实际上核心部分就是在执行这个run方法之后。此处我们可以看到,在run方法中传入了一个frame_callback函数,这个frame_callback函数可以说是整个算法的核心部分,每一帧的图片都会执行该函数。
在这里插入图片描述

4 YOLOV5算法

6月9日,Ultralytics公司开源了YOLOv5,离上一次YOLOv4发布不到50天。而且这一次的YOLOv5是完全基于PyTorch实现的!在我们还对YOLOv4的各种高端操作、丰富的实验对比惊叹不已时,YOLOv5又带来了更强实时目标检测技术。按照官方给出的数目,现版本的YOLOv5每个图像的推理时间最快0.007秒,即每秒140帧(FPS),但YOLOv5的权重文件大小只有YOLOv4的1/9。

目标检测架构分为两种,一种是two-stage,一种是one-stage,区别就在于 two-stage 有region
proposal过程,类似于一种海选过程,网络会根据候选区域生成位置和类别,而one-stage直接从图片生成位置和类别。今天提到的 YOLO就是一种
one-stage方法。YOLO是You Only Look Once的缩写,意思是神经网络只需要看一次图片,就能输出结果。YOLO
一共发布了五个版本,其中 YOLOv1 奠定了整个系列的基础,后面的系列就是在第一版基础上的改进,为的是提升性能。

YOLOv5有4个版本性能如图所示:

在这里插入图片描述

4.1 网络架构图

在这里插入图片描述

YOLOv5是一种单阶段目标检测算法,该算法在YOLOv4的基础上添加了一些新的改进思路,使其速度与精度都得到了极大的性能提升。主要的改进思路如下所示:

4.2 输入端

在模型训练阶段,提出了一些改进思路,主要包括Mosaic数据增强、自适应锚框计算、自适应图片缩放;

  • Mosaic数据增强:Mosaic数据增强的作者也是来自YOLOv5团队的成员,通过随机缩放、随机裁剪、随机排布的方式进行拼接,对小目标的检测效果很不错

在这里插入图片描述

4.3 基准网络

融合其它检测算法中的一些新思路,主要包括:Focus结构与CSP结构;

4.4 Neck网络

在目标检测领域,为了更好的提取融合特征,通常在Backbone和输出层,会插入一些层,这个部分称为Neck。Yolov5中添加了FPN+PAN结构,相当于目标检测网络的颈部,也是非常关键的。

在这里插入图片描述

在这里插入图片描述

FPN+PAN的结构

在这里插入图片描述

这样结合操作,FPN层自顶向下传达强语义特征(High-Level特征),而特征金字塔则自底向上传达强定位特征(Low-
Level特征),两两联手,从不同的主干层对不同的检测层进行特征聚合。

FPN+PAN借鉴的是18年CVPR的PANet,当时主要应用于图像分割领域,但Alexey将其拆分应用到Yolov4中,进一步提高特征提取的能力。

4.5 Head输出层

输出层的锚框机制与YOLOv4相同,主要改进的是训练时的损失函数GIOU_Loss,以及预测框筛选的DIOU_nms。

对于Head部分,可以看到三个紫色箭头处的特征图是40×40、20×20、10×10。以及最后Prediction中用于预测的3个特征图:


①==>40×40×255

②==>20×20×255

③==>10×10×255

在这里插入图片描述

相关代码

class Detect(nn.Module):
    stride = None  # strides computed during build
    onnx_dynamic = False  # ONNX export parameter

    def __init__(self, nc=80, anchors=(), ch=(), inplace=True):  # detection layer
        super().__init__()
        self.nc = nc  # number of classes
        self.no = nc + 5  # number of outputs per anchor
        self.nl = len(anchors)  # number of detection layers
        self.na = len(anchors[0]) // 2  # number of anchors
        self.grid = [torch.zeros(1)] * self.nl  # init grid
        self.anchor_grid = [torch.zeros(1)] * self.nl  # init anchor grid
        self.register_buffer('anchors', torch.tensor(anchors).float().view(self.nl, -1, 2))  # shape(nl,na,2)
        self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch)  # output conv
        self.inplace = inplace  # use in-place ops (e.g. slice assignment)

    def forward(self, x):
        z = []  # inference output
        for i in range(self.nl):
            x[i] = self.m[i](x[i])  # conv
            bs, _, ny, nx = x[i].shape  # x(bs,255,20,20) to x(bs,3,20,20,85)
            x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()

            if not self.training:  # inference
                if self.onnx_dynamic or self.grid[i].shape[2:4] != x[i].shape[2:4]:
                    self.grid[i], self.anchor_grid[i] = self._make_grid(nx, ny, i)

                y = x[i].sigmoid()
                if self.inplace:
                    y[..., 0:2] = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i]  # xy
                    y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]  # wh
                else:  # for YOLOv5 on AWS Inferentia https://github.com/ultralytics/yolov5/pull/2953
                    xy = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i]  # xy
                    wh = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]  # wh
                    y = torch.cat((xy, wh, y[..., 4:]), -1)
                z.append(y.view(bs, -1, self.no))

        return x if self.training else (torch.cat(z, 1), x)

    def _make_grid(self, nx=20, ny=20, i=0):
        d = self.anchors[i].device
        if check_version(torch.__version__, '1.10.0'):  # torch>=1.10.0 meshgrid workaround for torch>=0.7 compatibility
            yv, xv = torch.meshgrid([torch.arange(ny).to(d), torch.arange(nx).to(d)], indexing='ij')
        else:
            yv, xv = torch.meshgrid([torch.arange(ny).to(d), torch.arange(nx).to(d)])
        grid = torch.stack((xv, yv), 2).expand((1, self.na, ny, nx, 2)).float()
        anchor_grid = (self.anchors[i].clone() * self.stride[i]) \
            .view((1, self.na, 1, 1, 2)).expand((1, self.na, ny, nx, 2)).float()
        return grid, anchor_grid

5 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1110318.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

保姆级教程,教你AI数字人应该怎么制作?!

随着人工智能的发展,利用数字人制作短视频已经成为当下火热的项目,因为这种方式不需要真人出镜,避免了个人不上镜或者不喜上镜而不能做短视频的缺点,用数字人代替真人,不仅内容里人物有了,而且这种形式还非…

智能井盖是什么?万宾科技智能井盖传感器有什么特点

智能井盖是一种基于物联网和人工智能技术的新型城市设施。它不仅具备传统井盖的功能,还能通过数字化、自动化的方式实现远程监控和智能管理,提升城市运行效率和服务水平。 WITBEE万宾智能井盖传感器EN100-C2是一款井盖异动监测的传感终端。对窨井盖状态(…

shein面试:nacos无入侵配置,做过吗,怎么做?

说在前面 在40岁老架构师 尼恩的读者社区(50)中,最近有小伙伴拿到了一线互联网企业如阿里、滴滴、极兔、有赞、shein 希音、百度、网易的面试资格,遇到很多很重要的面试题: 无入侵配置,做过吗,怎么做的?Na…

剪映怎么一键去水印?三分钟教会你

剪映怎么一键去水印?无论是使用剪映提供的方法还是专业的去水印软件,都能够帮助用户轻松去除视频中的水印,提高视频的质量和观赏性,以根据自己的需求和场景选择合适的方法进行操作,今天就教大家如何使用剪映一键去水印…

美光科技发布1β制程节点技术的16Gb DDR5存储器,领先业界 | 百能云芯

存储器大厂美光科技(Micron)宣布推出采用 1β 制程节点技术的 16Gb DDR5 存储器。美光 1β DDR5 DRAM 的内置系统功能速率可达 7200MT/s,目前已出货给所有资料中心及 PC 端客户。美光 1β DDR5 存储器采用先进高介电常数 CMOS 制程、四相位时…

Failed to process, please exclude the tableName or statementId.

说明&#xff1a;执行一次查询时&#xff0c;报下面这个错误&#xff1b; Failed to process, please exclude the tableName or statementId.排查结果&#xff0c;在Mapper.xml里面&#xff0c;对应的statement使用了复杂的函数&#xff0c; <select id"getLastEleRa…

ODrive移植keil(八)—— 闭环控制

目录 一、硬件接线二、官方代码操作2.1、力矩模式2.2、速度模式2.3、位置模式 三、移植后的代码操作3.1、力矩模式3.2、速度模式3.3、位置模式3.4、跳过上电校准3.4.1、手动输入参数3.4.2、flash保存参数 3.5、测试云台电机 四、代码说明五、定点运算和浮点运算 ODrive、VESC和…

全感知智能配电房:让电力运行可控、高效

在当今数字化、智能化的时代&#xff0c;全感知智能配电房的出现无疑为电力行业带来了革命性的变革。这种新型配电房不仅提高了电力供应的效率&#xff0c;还大大降低了运营成本&#xff0c;为我们的日常生活和工作提供了更稳定、更可靠的电力保障。 力安科技全感知智能配电…

Teleport

从官网中获取到的代码如下 App.vue <template><div class"outer"><h3>Tooltips with Vue 3 Teleport</h3><div><MyModal /></div></div> </template> <script setup> import MyModal from "./My…

pinia踩坑之旅——在组件外使用pinia

pinia踩坑之旅——在组件外使用pinia 缘由 最近在使用 pinia 开发项目时产生了一个 bug&#xff0c;说在定义 pinia 前使用了 pinia。 报错如下&#xff1a; 代码展示 先来看一个我的代码&#xff08;这里我新开了一个项目用于演示&#xff09;&#xff0c;如果懒得看代码的…

【Python基础】数值类型

int(整形) 在 Python 中定义变量是 不需要指定类型&#xff08;在其他很多高级语言中都需要&#xff09; 整形&#xff0c;也被称之为整数。整数就是数学中的数字。 整形在Python中不受长度限制大小范围 使用 type 函数可以查看一个变量的类型 In[1]: 1 Out[1]: 1In[2]: t…

Win10修改编辑hosts文件无法保存的处理方法

1.首先打开hosts文件所在位置&#xff0c;我们输入C:WindowsSystem32Driversetc后回车就可以打开了&#xff0c;右键hosts文件&#xff0c;选择属性。 2.点击hosts属性对话框里的“高级”。 3.在hosts的高级安全设置界面点击更改权限&#xff0c;在新弹出的对话框里点击添加按…

TStor CSP文件存储在大模型训练中的实践

业务背景 大模型作为人工智能领域的重要发展趋势&#xff0c;正在逐渐改变人们的生活和工作方式。随着近年来大模型领域技术的突破&#xff0c;各类语言模型、图像模型、视频模型快速演进&#xff0c;国内外市场也不断涌现出优秀的大模型研究及商业化平台&#xff0c;预期通过…

竞赛 深度学习人体语义分割在弹幕防遮挡上的实现 - python

文章目录 1 前言1 课题背景2 技术原理和方法2.1基本原理2.2 技术选型和方法 3 实例分割4 实现效果5 最后 1 前言 &#x1f525; 优质竞赛项目系列&#xff0c;今天要分享的是 &#x1f6a9; 深度学习人体语义分割在弹幕防遮挡上的应用 该项目较为新颖&#xff0c;适合作为竞…

GoogleNet论文精读

论文名&#xff1a;Going depper with convolutions论文下载地址&#xff1a;https://github.com/jixiuy/paper引言第一段&#xff1a;背景成绩1*1的卷积在channel上升维和降维&#xff0c;channel融合&#xff0c;计算方法上等价于FNNGAP&#xff08;全局平均池化&#xff09;…

协同云办公原来可以这么简单!只需掌握这5个技巧

随着云计算技术的发展&#xff0c;协同云办公已经成为越来越多企业和团队的必备工具。但是&#xff0c;对于很多人来说&#xff0c;如何高效地进行协同云办公却仍是一个挑战。本文将介绍五个简单的技巧&#xff0c;让你轻松掌握协同云办公的秘诀&#xff0c;让你的工作更高效、…

《潮玩产业发展报告(2023)》发布 泡泡玛特进军海外潮玩市场

近期&#xff0c;新华网联合中国社会科学院财经战略研究院发布了《超越潮流&#xff1a;千亿级潮玩产业彰显人文经济价值——潮玩产业发展报告&#xff08;2023&#xff09;》&#xff08;下称《报告》&#xff09;。针对潮玩产业快速发展&#xff0c;课题组组长、中国社会科学…

25台兰博基尼跑车赛道巡游!泡泡玛特MOLLY攒的局就是这么拉风

入秋以来气温逐渐转冷&#xff0c;但泡泡玛特的市场活动却持续升温&#xff1a;国内首个潮玩行业沉浸式IP主题乐园泡泡玛特城市乐园正式开园&#xff1b;2023PTS上海国际潮流玩具展&#xff1b;入驻美国第二大商场、布里斯班再拓新店等海外布局步伐不停……将广大消费者的身心带…

C++数据结构X篇_18_二叉树的创建(根据遍历结果创建二叉树;#号法创建树)

本篇将会介绍二叉树的创建&#xff0c;重点学习#号法创建树的方法。 文章目录 1. 根据遍历结果创建二叉树&#xff08;只需记住结论即可&#xff09;1.1 首先有一个问题&#xff0c;根据中序遍历的结果能确定一棵树吗&#xff1f;1.2 那如何才能确定一棵树&#xff1f;&#x…

Python 框架学习 Django篇 (四) 数据库增删改查(CURD)

在上一章结尾我们了解到如采用前后端开发分离的架构模式开发&#xff0c;后端几乎不负责任何展现界面的工作&#xff0c;只负责对数据进行管理 &#xff0c;对数据的管理主要体现在&#xff1a; &#xff08;增加、修改、删除、列出 &#xff09;具体的接口参考大佬的文档BYSM…