win10下yolov7 tensorrt模型部署

news2025/1/10 2:56:45
  • TensorRT系列之 Win10下yolov8 tensorrt模型加速部署

  • TensorRT系列之 Linux下 yolov8 tensorrt模型加速部署

  • TensorRT系列之 Linux下 yolov7 tensorrt模型加速部署

  • TensorRT系列之 Linux下 yolov6 tensorrt模型加速部署

  • TensorRT系列之 Linux下 yolov5 tensorrt模型加速部署

  • TensorRT系列之 Linux下 yolox tensorrt模型加速部署

  • TensorRT系列之 Linux下 u2net tensorrt模型加速部署

  • 更多(点我进去)…

    文章目录

    • 一、YOLOv7简介
    • 二、Win10 TensorRT环境配置
      • 2.1 安装VS2019
      • 2.2 安装库
        • 2.2.1 安装Nvidia显卡驱动
        • 2.2.2 安装 cuda11.2
        • 2.2.3 安装 cudnn8.2.1
        • 2.2.4 下载 tensorrt8.4.2.4
        • 2.2.5 OpenCV4.5.5安装
      • 2.3 创建属性表
        • 2.3.1 创建OpenCV属性表
        • 2.3.2 创建TensorRT属性表
        • 2.3.3 创建CUDA属性表
        • 2.3.4 新建工程与设置
          • 2.3.4.1 新建vs工程
          • 2.3.4.2 vs2019工程设置
    • 三、从yolov7源码中导出onnx文件
    • 四、利用tensorrt编译onnx模型
    • 五、编译执行yolov7-tensorrt工程
    • 六、结束语

一、YOLOv7简介

YOLOv7是一种基于深度学习的目标检测算法,由美国计算机科学家Joseph Redmon等人于2016年提出。YOLOv7的创新点在于其速度和准确性的平衡,以及在处理小目标时的优越性能。

YOLOv7的主要创新点包括:

  1. 多尺度预测:YOLOv7采用了多尺度预测的方法,可以同时检测不同大小的目标,提高了检测的准确性。

  2. 特征融合:YOLOv7使用了更深的卷积神经网络来提取特征,并将浅层和深层的特征进行融合,提高了检测的准确性。

  3. 锚框设计:YOLOv7采用了Darknet-53作为基础网络,并设计了新的锚框,使得模型能够更好地适应各种形状的目标。

  4. 损失函数优化:YOLOv7使用了新的损失函数,使得模型在训练过程中能够更好地学习到目标的位置信息。

YOLOv7的作者Joseph Redmon是YOLO系列算法的主要贡献者,他在计算机视觉领域有着广泛的影响力。他的研究成果被广泛应用于自动驾驶、安防监控等领域。

YOLOv7对业界的影响主要体现在以下几个方面:

  1. 提高了目标检测的速度和准确性:YOLOv7在保持较高准确性的同时,大大提高了检测速度,满足了实时性的需求。

  2. 推动了深度学习在目标检测领域的应用:YOLOv7的成功应用,推动了深度学习在目标检测领域的广泛应用。

  3. 促进了相关技术的发展:YOLOv7的出现,推动了目标检测技术、深度学习技术等相关技术的发展。


    本文提供深度学习CV领域模型加速部署案例,仓库实现的cuda c支持多batch图像预处理、推理、decode、NMS。大部分模型转换流程为:torch->onnx->tensorrt。下图左边是yolov7-python源码推理结果,右边是本文基于tensorrt实现yolov7模型部署的推理结果。
    yolov7-tiny : Offical( left ) vs Ours( right )

    yolov7-tiny : Offical( left ) vs Ours( right )

有源码!有源码!有源码! 不要慌,哈哈哈。

在这里插入图片描述

二、Win10 TensorRT环境配置

三步解决win环境配置

  • 1、安装vs2019、Nvidia驱动、cuda,cudnn、opencv、tensorrt;
  • 2、创建属性表;
  • 3、工程设置,运行;
  • :一定是先安装vs2019,再安装cuda,顺序不能颠倒,因为cuda会自动给vs2019安装插件。
    问题:windows环境下,为什么使用vs2019属性表,而不用cmake?
    回答:因为属性表可以做到:一次创建,到处使用。

2.1 安装VS2019

需要Microsoft账号,如果您有别的途径下载安装也可以。

  • 进入:https://visualstudio.microsoft.com/zh-hans/vs/older-downloads/
  • 选择:[2019] -> [下载]
  • 在新页面选择: Visual Studio Community 2019 (version 16.11)
  • 下载完成之后安装过程选择如下图:
    请添加图片描述
  • 重启系统

2.2 安装库

注:Nvidia相关网站需要注册账号。

2.2.1 安装Nvidia显卡驱动

  • 进入: https://www.nvidia.cn/Download/index.aspx?lang=cn#
  • 依据实际情况选择,如下图是我的选择(for RTX3070):
    请添加图片描述
  • 选择:[搜索]->[下载] ->[双击默认安装] -> [重启系统] -> [进入cmd],输入如下指令:
nvidia-smi

看到如下信息表明驱动正常:
请添加图片描述

2.2.2 安装 cuda11.2

  • 进入: https://developer.nvidia.com/cuda-toolkit-archive
  • 选择:CUDA Toolkit 11.2.0 (December 2020)
  • 选择:[Windows] -> [x86_64] -> [10] -> [exe(local)] -> [Download(2.9GB)]
  • 双击安装,重启在cmd窗口输入如下指令:
nvcc -V

CMD窗口打印如下信息表示cuda11.2安装正常

nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2020 NVIDIA Corporation
Built on Mon_Nov_30_19:15:10_Pacific_Standard_Time_2020
Cuda compilation tools, release 11.2, V11.2.67
Build cuda_11.2.r11.2/compiler.29373293_0

note:cuda11.2 不需要手动设置环境变量,如下图,环境变量都是自动设置的。
请添加图片描述

2.2.3 安装 cudnn8.2.1

  • 进入网站:https://developer.nvidia.com/rdp/cudnn-archive
  • 选择: Download cuDNN v8.2.1 (June 7th, 2021), for CUDA 11.x
  • 选择: cuDNN Library for Windows (x86)
  • 你将会下载这个压缩包: “cudnn-11.3-windows-x64-v8.2.1.32_2.zip”
  • 解压之后,cudnn的头文件、库文件都要拷贝到cuda安装目录。
  • 如下图,进入cudnn解压所在文件夹中include,拷贝所有头文件,粘贴到CUDA/v11.2/include中
  • lib、bin中的文件也拷贝到对应cuda目录中
  • 重启系统
    请添加图片描述

2.2.4 下载 tensorrt8.4.2.4

  • 进入网站: https://developer.nvidia.cn/nvidia-tensorrt-8x-download
  • 把这个打勾: I Agree To the Terms of the NVIDIA TensorRT License Agreement
  • 选择: TensorRT 8.4 GA Update 1
  • 选择: TensorRT 8.4 GA Update 1 for Windows 10 and CUDA 11.0, 11.1, 11.2, 11.3, 11.4, 11.5, 11.6 and 11.7 ZIP Package
  • 你将会下载这个压缩包: “TensorRT-8.4.2.4.Windows10.x86_64.cuda-11.6.cudnn8.4.zip”
  • 解压到F:\ThirdParty,并重命名为:TensorRT-8.4.2.4
  • 并将路径"F:\ThirdParty\TensorRT-8.4.2.4\lib"添加到环境变量,如下图:
  • 重启系统
    请添加图片描述

2.2.5 OpenCV4.5.5安装

  • 进入:https://opencv.org/releases/
  • 选择:[OpenCV – 4.5.5] -> [Windows]
  • 下载完成之后,是一个exe的自解压格式,解压到:D:\ThirdParty
  • 并将路径:“D:\ThirdParty\opencv4.5.5\build\bin” 和 "D:\ThirdParty\opencv4.5.5\build\x64\vc15\bin"添加到环境变量,如下图:
  • 重启系统
    note:我的opencv在D盘,tensorrt在E盘,根据实际情况修改就行了。
    请添加图片描述

2.3 创建属性表

一般地,Visual Studio 2019,一个库对应两个属性表文件,分别对应:vs2019的debug模式和release模式,例如:本文中OpenCV创建了这两种。而TensorRT和CUDA只需要创建一种属性表(适用以上两种模式)。

2.3.1 创建OpenCV属性表

创建opencv库debug属性表:

  • step1:基于VS2019随便新建一个C++项目,如下图,项目设置为Debug、X64模式
    请添加图片描述
  • step2:如下图,选择:[属性窗口] -> [右击Debug|x64] -> [添加新项目属性表]
    请添加图片描述
  • step3:文件命名为:OpenCV4.5.5_DebugX64.props -> [添加]
  • 编辑属性表:[如下图:双击属性表]
    请添加图片描述
  • step4:如下图,选择:[通用属性] -> [VC++目录] -> [包含目录] -> [编辑]
    请添加图片描述
  • step5:如下图,将两个OpenCV两个头文件目录拷贝进去 -> [确认]
    请添加图片描述
  • step6:选择:[通用属性] -> [VC++目录] -> [库目录] -> [编辑] -> 将路径:"D:\ThirdParty\opencv4.5.5\build\x64\vc15\lib"拷贝进去 -> [确认]
  • step7:选择:[通用属性] -> [链接器] -> [输入] -> [附加依赖项] -> 将文件名"opencv_world455d.lib"拷贝进去->[确认]
    小结

    到这里,opencv库debug属性表制作完成,release属性表和上述流程一样,唯一区别在于,如下图,项目切换到Release x64模式,新建OpenCV4.5.5_ReleaseX64属性表,然后在step7中,将文件名修改为:“opencv_world455.lib
    请添加图片描述
    请记住,制作属性表就3个步骤:
  • 拷贝include路径
  • 拷贝lib路径,外加设置dll到系统环境变量
  • 拷贝lib文件名称

2.3.2 创建TensorRT属性表

右击Debug|x64 or 右击Release|x64新建属性表,重命名为:TensorRT8.4.2.4_X64,

# include路径
F:\ThirdParty\TensorRT-8.4.2.4\include
F:\ThirdParty\TensorRT-8.4.2.4\samples\common
# F:\ThirdParty\TensorRT-8.4.2.4\samples\common\windows # 这个路径文件不需要包含
# lib路径
F:\ThirdParty\TensorRT-8.4.2.4\lib
# lib文件名称(for release& debug)
nvinfer.lib
nvinfer_plugin.lib
nvonnxparser.lib
nvparsers.lib

依照上一节3个步骤:

  • step1:选择:[通用属性] -> [VC++目录] -> [包含目录] -> [编辑] -> 把上述3个include路径拷贝进去
  • step2:选择:[通用属性] -> [VC++目录] -> [库目录] -> [编辑] -> 把上述lib路径拷贝进去
  • step3:选择:[通用属性] -> [链接器] -> [输入] -> [附加依赖项] -> [编辑] -> 将上述lib文件名称拷贝进去->[确认]
    最后,修改tensorrt属性表:[通用属性] -> [C/C++] -> [预处理器] -> [预处理器定义] -> 添加指令:_CRT_SECURE_NO_WARNINGS -> [确认]

2.3.3 创建CUDA属性表

CUDA属性表直接白嫖官方,在路径:C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.2\extras\visual_studio_integration\MSBuildExtensions\CUDA 11.2.props

最后,我们应该有了如下属性表文件:
请添加图片描述
其中,cuda 和tensorrt的属性表同时兼容release x64 和debug x64,你再新建TensorRT-Alpha中yolov8 yolov7 yolov6 等项目后,只需要把上述提前做好的属性表引入到工程就行了,当然项目还需要进行简单设置(设置NVCC,避免tensorrt的坑),在后文提到。属性表做到了一次新建,到处使用。

2.3.4 新建工程与设置

这一节演示如何新建vs工程,如何设置工程,是通用方法。适用于仓库所有模型源码。

2.3.4.1 新建vs工程

如下图,打开vs2019,点击:文件 -> 新建-> 项目。
请添加图片描述
选择:空项目 -> 下一步。
在这里插入图片描述
选择创建。
在这里插入图片描述
如下图,现在将工程设置为:Release X64。
在这里插入图片描述

2.3.4.2 vs2019工程设置

如下图,选择:属性管理器 -> Release | x64 -> 添加现有属性表,把上一节生成的三个RleaseX64属性表添加进来。
在这里插入图片描述
添加进来后样子如下图:
在这里插入图片描述
TensorRT项目包含c++和cuda c代码,通俗讲,c++代码文件格式为:

  • .h头文件
  • .cpp文件
  • 由c++编译器编译
    而cuda代码头文件格式为:
  • .h头文件
  • .cu文件
  • 由NVCC编译器编译
    例如:我们添加如下图5个文件,在工程中。
    在这里插入图片描述
    添加CUDA依赖:右击项目 -> 生成依赖项 -> 生成自定义
    在这里插入图片描述
    将如下图CUDA11.2打钩 -> 确认
    在这里插入图片描述
    右击项目 -> 属性,将会打开如下界面,将字符集设置为未设置,点击确认。
    在这里插入图片描述
    最后,在项目中,同时选中所有.cu文件和对应的.h文件,注意是所有。我这里就是a.h 和 a.cu文件了。然后右击 -> 点属性。
    【注】:在tensorrt-alpha开源项目中,例如yolov8,会添加多个.cu .cpp .h格式文件,其中.cu和对应的.h文件都是这样设置,目的就是让NVCC编译器来编译cuda代码。
    在这里插入图片描述
    得到如下界面,我们把项类型设置为CUDA C/C++,点击确认。
    在这里插入图片描述
    然后编译一下:
    在这里插入图片描述
    编译成功如下图:
    在这里插入图片描述

三、从yolov7源码中导出onnx文件

可以直接从网盘下载onnx文件[weiyun]:weiyun or google driver ,你也可以自己下载仓库,然后按照下面指令手动导出onnx文件,下载yolov7源码:

git clone https://github.com/WongKinYiu/yolov7
git checkout  072f76c72c641c7a1ee482e39f604f6f8ef7ee92

安装 yolov7环境

pip install -r requirements.txt

命令行进入yolov7源码根目录,用以下指令导出onnx模型文件

# 640
python export.py --weights yolov7-tiny.pt  --dynamic  --grid
python export.py --weights yolov7.pt  --dynamic  --grid
python export.py --weights yolov7x.pt  --dynamic  --grid
# 1280
python export.py --weights yolov7-w6.pt  --dynamic  --grid --img-size 1280

四、利用tensorrt编译onnx模型

将上一个章节中导出onnx模型放到任意路径。进入到tensorrt根目录下bin文件里,里面有个tensorrt官方提供的模型编译工具,即:trtexec.exe 如下图:
在这里插入图片描述
然后使用,以下指令编译onnx模型,需要注意:参数 --onnx 和 --saveEngine 可以设置为自定义路径,例如:

 --onnx=d:/Data/xxx.onnx  --saveEngine=d:/Data/xxx.trt 
# 640
.\trtexec.exe    --onnx=yolov7-tiny.onnx  --saveEngine=yolov7-tiny.trt  --buildOnly --minShapes=images:1x3x640x640 --optShapes=images:4x3x640x640 --maxShapes=images:8x3x640x640
.\trtexec.exe    --onnx=yolov7.onnx   	--saveEngine=yolov7.trt       --buildOnly --minShapes=images:1x3x640x640 --optShapes=images:4x3x640x640 --maxShapes=images:8x3x640x640
.\trtexec.exe    --onnx=yolov7x.onnx   	--saveEngine=yolov7x.trt      --buildOnly --minShapes=images:1x3x640x640 --optShapes=images:4x3x640x640 --maxShapes=images:8x3x640x640
# 1280
.\trtexec.exe    --onnx=yolov7-w6.onnx    --saveEngine=yolov7-w6.trt    --buildOnly --minShapes=images:1x3x1280x1280 --optShapes=images:4x3x1280x1280 --maxShapes=images:8x3x1280x1280

注:如果报错(Error Code 1: Cuda Runtime (an illegal memory access was encountered “bool context = m_context->executeV2((void**)bindings)” returns false)
可能是爆显存了,降低batch-size就行了

五、编译执行yolov7-tensorrt工程

下载源码并编译

git clone https://github.com/FeiYull/tensorrt-alpha

仿造 2.3.4 新建工程与设置 中新建、设置vs2019工程;其中,yolov7需要将如下图多个文件添加到工程中:

  • 红色框内文件来自TensorRT-Alpha/utils/
  • 蓝色框内文件来自TensorRT-Alpha/yolov7/
  • 绿色框内文件来自TensorrRT安装路径下:TensorRT-8.4.2.4.Windows10.x86_64.cuda-11.6.cudnn8.4\TensorRT-8.4.2.4\samples\common\logger.cpp
    在这里插入图片描述
    如下图,yolov7项目编译成功,从下面编译信息可以看到,exe文件所在路径为:
  • D:\my_code_trt\TensorRT-Alpha-VS2019\TensorRT-Alpha\x64\Release\yolov7.exe
1>------ 已启动生成: 项目: yolov7, 配置: Release x64 ------
1>正在生成代码
1>0 of 1033 functions ( 0.0%) were compiled, the rest were copied from previous compilation.
1>  0 functions were new in current compilation
1>  0 functions had inline decision re-evaluated but remain unchanged
1>已完成代码的生成
1>yolov7.vcxproj -> D:\my_code_trt\TensorRT-Alpha-VS2019\TensorRT-Alpha\x64\Release\yolov7.exe
========== 生成: 成功 1 个,失败 0 个,最新 0 个,跳过 0==========

以下是命令行执行指令,需要说明的是执行推理任务,支持图片、视频、摄像头

## 640
# infer image
./app_yolov7.exe  --model=../../data/yolov7/yolov7-tiny.trt --size=640  --batch_size=1  --img=../../data/6406401.jpg  --show --savePath
./app_yolov7.exe  --model=../../data/yolov7/yolov7-w6.trt   --size=1280 --batch_size=1  --img=../../data/6406401.jpg  --show --savePath=../

# infer video
./app_yolov7.exe  --model=../../data/yolov7/yolov7-tiny.trt     --size=640 --batch_size=2  --video=../../data/people.mp4  --show 

# infer camera
./app_yolov7.exe  --model=../../data/yolov7/yolov7-tiny.trt     --size=640 --batch_size=2  --cam_id=0  --show

这里给个示范,例如我要在命令行使用yolov7推理一张图:

.\yolov7.exe --model=D:/ThirdParty/TensorRT-8.4.2.4/bin/yolov7-tiny.trt --size=640  --batch_size=1  --img=d:/Data/1.jpg  --show --savePath=d:/

效果如下图:
请添加图片描述
下面是推理视频效果,可以自己玩一玩:

yolov7 tensorrt cuda模型推理加速部署TensorRT-Alpha《Korea-Night》

六、结束语

都看到这里了,觉得可以请点赞收藏,有条件的去仓库点个star,仓库:https://github.com/FeiYull/tensorrt-alpha
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1109542.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【数据结构】排序--归并排序

目录 一 基本思想 二 代码实现 三 非递归归并排序 一 基本思想 归并排序(MERGE-SORT)是建立在归并操作上的一种有效的排序算法,该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。将已有序的子序列合并&#xff…

linux常见命令-文件目录类

9.4 文件目录类 (1)pwd 指令:显示当前工作目录的绝对路径 (2)Is指令:查看当前目录的所有内容信息 基本语法: ls [选项,可选多个] [目录或是文件] 常用选项:-a:显示当前目录所有的文件和目录,包括隐藏的…

02Nacos和Feign及Gateway配置

一、Nacos配置管理 1.统一配置管理 配置更改热更新 ①在Nacos中添加配置信息: ②在弹出表单中填写配置信息: 2.配置获取的步骤如下 配置文件bootstrap.yml的优先级比application.yml优先级高。把nacos地址放入bootstrap.yml。 ①在userservice中引入N…

Python —— Reference | hou

Houdini有非常多的Python模块可使用,不止一个hou,如hutil、toolutils、husd、kramautils等,只是帮助文档并没有提起,可从源代码docstring中查询; //查询有效的模块 help(modules) hou模块按功能可分为三类:…

windows 10下安装Pytorch的操作文档与避坑指南

前言 PyTorch3D 是 Facebook AI Research (FAIR) 开发的一个用于 3D 计算机视觉任务的开源深度学习库。它是建立在 PyTorch 框架之上的,并旨在为研究人员和工程师提供处理 3D 数据、渲染和几何计算的工具和模块。 PyTorch3D的用途: 3D 几何操作&#x…

Linux 内核启动分析

Linux 内核启动分析-BugMan-ChinaUnix博客 通过《Linux应用程序elf描述》,我们了解到一个应用程序编译后,最终会按照指定方式进行链接,而我们通过ld --verbose可以查看对应应用的默认链接方式。那么对于Linux内核呢?毫无疑问&…

大模型背景下软件工程的机遇与挑战

点击链接了解详情 本文作者:汪晟杰 导语:AISE(AI Software Engineering)有人说是软件工程 3.0,即基于大模型(LLM - Large Language Model)时代下的软件工程。那么究竟什么是 AISE,他的发展历程对…

Java学习入门偏(2)

⭐简单说两句⭐ 作者:后端小知识 CSDN个人主页:后端小知识 🔎GZH:后端小知识 🎉欢迎关注🔎点赞👍收藏⭐️留言📝 Hello,亲爱的各位友友们,好久不见&#xff0…

官媒代运营:内容营销是什么?为什么要做内容营销?

在当今数字化时代,信息传播的速度和途径前所未有地广泛,企业们正在寻找新的方法来吸引潜在客户并保持现有客户的忠诚度。在这个背景下,内容营销崭露头角,成为了企业推广和营销的一项重要策略。 今天媒介易来跟大家分享干货知识&am…

Mini小主机All-in-one搭建教程6-安装苹果MacOS系统

笔者使用的ESXI7.0 Update 3 抱着试试的态度想安装一下苹果的MacOS系统 主要步骤有2个 1.解锁unlocker虚拟机系统 2.安装苹果MacOS系统 需要下载的文件 unlocker 这一步是最耗时间的,要找到匹配自己系统的unlocker文件。 https://github.com/THDCOM/ESXiUnloc…

VMware vCenter Server 6.7安装过程记录

0、前言 最近由于一些原因需要安装测试VMware ESXi,无奈所有服务器都是十几年前的,配置低也不支持。后来通过VMware兼容性列表查询,快要放弃的时候发现唯一一台Dell R420,如获至宝。通过查询得知最高支持到6.5 U3,好在…

214. Devu和鲜花

214. Devu和鲜花 - AcWing题库 如果每个盒子里的花的数量是无限的,用隔板法可以得出答案是 现在每个盒子中区的花数要满足n个条件 我们可以求答案的补集,用全部方案数减去补集方案数 每一个不符合条件的要求为,设为Bi 补集方案数为就成了…

内存卡怎么格式化?2个方法就足够!

“我是一名摄影业余爱好者,之前的内存卡里存了很多的文件,导致容量满了。我想将内存卡格式化后继续使用,但是不知道应该如何操作,谁能给些建议吗?” 内存卡格式化是维护存储设备性能和数据安全的关键操作之一。当我们发…

CRM系统在销售目标管理中的作用是什么?

销售管理者为了激励销售人员、评估业绩、进行奖励,往往需要建立一个基本标准,就是人们常说的销售目标。设定销售目标时,既要激励到员工,又不能把标准定得过高。CRM系统在销售目标管理中起到什么作用?该如何通过CRM销售…

yolov作者简介

作者简介 作者叫Joseph Redmon,在谷歌学术上搜索作者的简介。 地址:‪Joseph Redmon‬ -巨人学术搜索‬‬ (cljtscd.com) 他提出了最著名的YOLO算法。其中YOLOV1的引用量达到了40287次。 gitihub地址:github地址 主页:个人主页

复杂业务逻辑的判断与优化

作者 刘希忱 在日常开发工作当中,优秀的用户界面数据库、构建工具、样式预处理器是前端现工作阶段必不可少的三大利器,很多优秀的团队已经为我们提供了很多便利的解决方案,但仍然有很多开发场景需要提升优化,比如声明、输出、判…

Cobalt Strike 钓鱼工具使用

免杀 安装 需要js环境 介绍 obalt Strike是一款基于java的渗透测试神器,常被业界人称为CS神器。自3.0以后已经不在使用Metasploit框架而作为一个独立的平台使用,分为客户端与服务端,服务端是一个,客户端可以有多个&#xff…

mysql varchar int

年龄是数字类型int SELECT * FROM test ORDER BY age; 年龄是字符类型varchar SELECT * FROM test ORDER BY code; 第1种 补前导0可以和数字一样排序 MySQL会比较字符的ASCII值,并根据这些值来确定字符的排列顺序。 印象中oracle好像也是吧。 ASCII (American …

【yolov8目标检测】使用yolov8训练自己的数据集

目录 准备数据集 python安装yolov8 配置yaml 从0开始训练 从预训练模型开始训练 准备数据集 首先得准备好数据集,你的数据集至少包含images和labels,严格来说你的images应该包含训练集train、验证集val和测试集test,不过为了简单说…

2023年10月中国数据库排行榜:墨天轮榜单前五开新局,金仓、亚信热度攀升

怀鸿鹄之志,展骐骥之跃。 2023年10月的 墨天轮中国数据库流行度排行 火热出炉,本月共有286个数据库参与排名。本月排行榜前十名变动较大,**华为 openGauss 重归探花之位,人大金仓 KingBase 热度上升,亚信 AntDB 进军10…