2022年亚太杯APMCM数学建模大赛B题高速列车的优化设计求解全过程文档及程序

news2025/1/12 5:55:15

2022年亚太杯APMCM数学建模大赛

B题 高速列车的优化设计

原题再现:

  2022年4月12日,中国高铁复兴号CR450动车组在开放线上成功实现单车时速435公里,相对速度870公里,创造了高铁动车组列车穿越开放线和隧道速度的世界纪录。新一代标准动车组“复兴号”是中国自主研发的具有完全知识产权的新一代高速列车。它集成了大量国内现代高科技,在牵引、制动、网络、转向架、车轴等关键技术上取得了重要突破。这是中国科技创新的又一重大成果。图1是高速铁路几何结构的简化模型。
在这里插入图片描述
  中国高速铁路的车头结构为子弹头,日本高速铁路采用鸭嘴结构。图2显示了四种典型高速铁路头部结构的简化模型,包括TP1、TP2、TP3和TP4。其中,高铁轨头结构的设计主要考虑空气阻力和噪声水平。
在这里插入图片描述
  高速铁路弹头的设计过程不仅要以空气动力学为基本原理,还要反复进行仿真和实验。为了实现车头和车身周围的气流、空气动力等相关参数之间的优化方案,可以经过数千次计算和实验进行优化。图3显示了流线型高速轨头结构的不同区域。
在这里插入图片描述
  请收集相关数据,建立几个数学模型,并回答以下问题:

  问题1:请建立高速铁路空气阻力的数学模型,考虑一般条件和极端天气(如雨、雪、风)下高速铁路几何形状与受力之间的关系,模拟圆锥形和四种典型高速铁路的空气阻力分布,如图2所示,并选择空气阻力最小的最佳高速铁路形状。

  问题2:请分析高铁轨头曲线弧度对空气阻力的影响,建立高铁外形优化模型,设计出最佳的高铁外形,使高铁受空气阻力最小,并绘制出优化后的高铁形状草图。

  问题3:请建立高铁产生噪声的数学模型,分析锥形和四种典型高铁产生的噪声强度,如图2所示,模拟它们各自的噪声分布,选择产生噪声最小的最佳高铁形状。

  问题4:请结合前三个问题的结果,建立高铁形状的综合优化模型,设计出最佳的高铁形状,同时提高高铁列车的速度,降低噪音。绘制高速铁路的形状草图,并给出相应的结构参数。

整体求解过程概述(摘要)

  随着计算领域的快速发展,追求高速、低噪声污染的气动外形显得尤为重要。本文建立了相应的数学模型来研究高速铁路的速度域和噪声域,并进行了仿真。

  对于问题1,基于标准𝑘 − 𝜀 模型,分别建立了四个初步的高速列车模型,并对通用车头进行了二维受力分析,并利用RWIND风洞软件对四个模型进行了仿真,定义了用于描述的Δ因子,并对每个模型的Δ因子进行了比较,得出TP1是空气阻力最小的最佳高速列车形状。

  对于问题2,我们将TP1分为5个部分,采用Pareto搜索方法对其进行优化和微调,并建立了优化的高铁模型。针对问题3,以及许多学者对高速列车噪声污染进行了研究,许多国家也出台了相应的限速规定。基于湍流的物理特性,我们对以85m/s速度行驶的高速列车进行了建模和分析,并得出结论,TP4是产生最小噪声的最佳高速列车形状。

  最后,我们结合TP1和TP4的特点,使用多目标粒子群算法设计了一种新的列车,该列车在风洞实验中具有更平衡的力分布,即良好的速度上限和对环境的低噪声,并且与Δ因子相比,新列车的Δ非常好。𝚫TP1=0.0105,𝚫TP4=0.0031,𝚫TPbest=0.0029。比较优化前后的模型可以发现,鼻锥高度减小,鼻锥长度增加,鼻锥变得更光滑;驾驶员室的高度向下调整,流线型的前半部分变得更窄,后半部分的宽度增加。

模型假设:

  1.不同高速铁路的材料相同。

  2.高铁是直的。

  3.风速相同。

  4.身体长度相同。

问题分析:

  问题1
  通过我们对流体连续性原理的分析,本质上流体在流动中的质量守恒,对于理想流体可以得到伯努利方程它是机械能守恒,对于实际流体可以得到泊肃耳定理它是粘性摩擦的存在,这种粘性摩擦会对流体和固体的相对运动产生一种阻力,据此建立空气阻力模型来研究高速铁路的空气阻力。当流体速度非常快时,会产生湍流。在这方面𝑘 − 𝜀 应用该模型求解湍流动能及其耗散率方程。对于四种高速铁路形状,在极端天气(如雨雪)下,我们使用受力分析方法来表示受力关系,对于不同形状的高速铁路,我们使用Blender软件制作了四个高速铁路前端模型,并对这四个模型进行了风洞实验,可以直观地感受到空气对每个部件的阻力,通过比较空气阻力分布来选择空气阻力分布,我们选择了空气阻力最小的高速铁路形状。最终的TP1是空气阻力最小的最佳高速铁路模型。

  问题2
  在TP1的基础上,基于Pareto搜索过程建立了优化模型,设计出空气阻力最小的最优高铁模型。

  问题3
  我们首先收集了相关的噪声数据,对各国高速列车(列车)的噪声有了一定的了解,然后得出当车速很快时,波面加速了积聚,使空气摩擦增加,噪声也随之增加。对此,建立了高速列车的外部空气动力学噪声模型,并通过湍流中的空气阻力模型提取每个节点的湍流动能湍流耗散率,从而确定每个节点的声功率。然后将Lighthill-Colle声学类比理论与高速铁路压力分布进行比较,实现了空气动力学噪声仿真。TP4最终被确定为产生最小噪声的高速铁路的最佳形状。

  问题4
  在第二个问题中Pareto搜索的基础上,我们使用多目标粒子群算法(MOPSO)结合TP1和TP4的特性来找到近似模型,并在风洞中对该模型进行模拟以获得相关数据。结合第三个问题中理论圆锥曲线的模拟值,优化模型𝚫TPbest=0.0029是TP1和TP4中Δ系数最小的(越小越好),与TP1相比降低了72.38%,降低了6.45%,验证了模型的可行性。

模型的建立与求解整体论文缩略图

在这里插入图片描述
在这里插入图片描述

全部论文请见下方“ 只会建模 QQ名片” 点击QQ名片即可

程序代码:

部分程序如下:
present00=importdata(’ex00_.txt’);
present01=importdata(’ex01_.txt’);
present02=importdata(’ex02_.txt’);
present03=importdata(’ex03_.txt’);
present04=importdata(’ex04_.txt’);
a00=present00(1:300,3:3);
a01=present01(1:300,3:3);
a02=present02(1:300,3:3);
a03=present03(1:300,3:3);
a04=present04(1:300,3:3);
x=present00(1:300,1:1);
deltaY1 = (a01-a00).ˆ2;
deltaY2 = (a02-a00).ˆ2;
deltaY3 = (a03-a00).ˆ2;
deltaY4 = (a04-a00).ˆ2;
k1=sum(deltaY1);
k2=sum(deltaY2);
k3=sum(deltaY3);
k4=sum(deltaY4);
\begin{tikzpicture}
\draw[->](0,0.1)arc(165:120:5 and 3);
\draw[->](0,-0.3)arc(165:120:5 and 3);
\draw[->](0,-0.5)arc(165:120:5 and 3);
\draw[->](0,-0.7)arc(165:120:5 and 3);
\draw[->](0,-0.1)arc(165:120:5 and 3) ;
\draw[->](0,0.3)arc(165:120:5 and 3);
\draw[rotate around={93:(1.8,1.42)}](1.8,1.3) ellipse(0.5 and 0.3);
\draw[rotate around={-45:(0.4,-0.2)}](0,0) ellipse(0.3 and 0.15);
\end{tikzpicture}
\begin{tikzpicture}
\draw(0,0)arc(80:20:5 and 3);
\draw(0,1)arc(80:20:5 and 3);
\draw(0,-3)--(4,-3);
\draw(0.5,-3)--(0.5,-0.1);
\draw(2.8,-0.9)--(2.8,-3);
\draw(0.6,0.41) ellipse(0.2 and 0.49);
\draw(0.4,0.45) ellipse(0.2 and 0.48);
\draw[rotate around={-45:(3.2,-0.75)}](3.2,-0.75) ellipse(0.15 and 0.38);
\draw(2.5,-0.75)arc(149:100:0.8 and 1.4);
\node[left]at(0.5,-2){$h_{1}$};
\node[left]at(2.8,-2){$h_{2}$};
\node[above]at(0.5,1){$a_{1}b_{1}$};
\draw[->](-0.5,0.45)--(0.2,0.45);
\draw[->](3.8,-1.4)--(3.3,-0.9);
\node[below]at(3.8,-1.4){$p_{2}S_{2}$};
\node[above]at(-0.2,0.45){$p_{1}S_{1}$};
\node[above]at(3.2,-0.2){$a_{2}$};
\node[above]at(3.6,-0.6){$b_{2}$};
\end{tikzpicture}
\begin{tikzpicture}
\draw(2,2) ellipse(1 and 3);
\draw(2,2)ellipse(0.8 and 2.5);
\draw(10,2) ellipse(1 and 3);
\draw(10,2) ellipse(0.8 and 2.5);
\draw(2,-1)--(10,-1);
\draw(2,5)--(10,5);
\draw(2,-0.5)--(10,-0.5);
\draw(2,4.5)--(10,4.5);
\node[above]at (2,5){$a$};
\node[above]at (10,5){$b$};
\draw(2,-1.1)--(2,-2);
\draw(10,-1.1)--(10,-2);
\draw[->](6,-1.5)--(2,-1.5);
\draw[->](6.3,-1.5)--(10,-1.5);
\node[right]at(6,-1.5){$l$};
\draw[->](7,5.2)--(5,5.2);
\draw(1.9,5)--(0.1,5);
\draw(10,4.5)--(0.9,4.5);
\draw[->](5,4.3)--(7,4.3);
\draw(0.3,2)--(1.8,2);
\draw[->](2.1,2)--(4,2);
\draw(4.2,2)--(8,2);
\draw(8.2,2)--(10,2);
\draw(10.2,2)--(12,2);
\draw[->](0.5,3.8)--(0.5,5);
\node[below]at(0.5,3.8){$r+dr$};
\draw[->](0.5,3.3)--(0.5,2);
\draw[->](1,3.3)--(1,4.5);
\node[below]at(1,3.3){$r$};
\draw[->](1,3)--(1,2);
\node[below]at(10.5,2){$p_{b}$};
\node[above]at(6,5.2){$f_{r+dr}$};
\node[below]at(6,4.3){$f_{r}$};
\node[below]at(0.5,2){$P_{a}$};
\node[above]at(4,2){$v$};
\end{tikzpicture}
全部论文请见下方“ 只会建模 QQ名片” 点击QQ名片即可

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1108979.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Python 练习100实例(21-40)

Python 练习实例21 题目:猴子吃桃问题:猴子第一天摘下若干个桃子,当即吃了一半,还不瘾,又多吃了一个第二天早上又将剩下的桃子吃掉一半,又多吃了一个。以后每天早上都吃了前一天剩下的一半零一个。到第10天…

工程监测仪器无线振弦采集仪高低温试验箱测试原理

工程监测仪器无线振弦采集仪高低温试验箱测试原理 无线振弦采集仪是一种用来测量结构物动力学特性的仪器,它可以通过振弦传感器采集到结构物的振动信号,并通过数据分析,得到结构物的自然频率、阻尼比、振型等信息。为了确保无线振弦采集仪的…

使用 ClickHouse 深入了解 Apache Parquet (一)

​ 【squids.cn】 全网zui低价RDS,免费的迁移工具DBMotion、数据库备份工具DBTwin、SQL开发工具等 自2013年作为Hadoop的列存储发布以来,Parquet几乎已经成为一种无处不在的文件交换格式,它提供了高效的存储和检索。这种采纳使其成为更近期的…

DC电源模块的开发周期

BOSHIDA DC电源模块的开发周期 DC电源模块是一种被广泛应用于电力系统中的设备,它能够将交流电转换成为直流电,为电子设备提供可靠、稳定的电源。DC电源模块的开发周期涉及到多个方面,包括设计、测试、验证、批量生产等环节。本文将从这几个方…

腾讯云服务器端口localhost可以访问,外部无法访问解决

搭建frp跳板,发现无法使用。ssh 连接不上。 主要检查2个东西: 1. ubuntu ufw系统防火墙。这个默认是关掉的 2. tencent这个防火墙规则设置后,还要设置到实例上。 以前不是这样的。就掉坑里了。 # systemctl rootVM-4-4-ubuntu:/lib/syst…

虹科干货 | Redis Enterprise 自动分层技术:大数据集高性能解决方案

文章来源:虹科云科技 阅读原文:https://mp.weixin.qq.com/s/5ik-WLHwEmPn42f1FissQw 越来越多的应用程序依赖于庞大的数据集合,而这些应用程序必须快速响应。借助自动分层,Redis Enterprise 7.2 帮助开发人员轻松创建超快的应用程…

《数据结构、算法与应用C++语言描述》使用C++语言实现数组循环队列

《数据结构、算法与应用C语言描述》使用C语言实现数组循环队列 定义 队列的定义 队列(queue)是一个线性表,其插入和删除操作分别在表的不同端进行。插入元素的那一端称为队尾(back或rear),删除元素的那一…

如何破解企业数字化转型的焦虑

在今年整体的大环境下,焦虑的不仅是个人,还有数字化转型中的企业。 01 焦虑中的企业数字化 焦虑往往不是来源于无知,而是未知! 现阶段还未采取行动的企业会焦虑:现在开始是否会落后,市场红利是否会错过&…

JVS-rules中的基础与复合变量:规则引擎的心脏

JVS-rules中的“变量”概念与编程语言中的变量类似,但它们通常在规则系统中处理条件判断、业务结果复制场景,如下所示: 条件判断:在规则引擎中,规则通常由两个部分组成:条件和分支。变量用于描述条件部分中…

MongoDB实战之快速开始

写在前面:以前使用mongo只了解了个增删改查,而且没有集成springboot里面使用过。最近花了几小时系统的学习了一遍MongoDB,为了巩固和方便查找,在此记录下学习过程。 一、MongoDB的简介 MongoDB 是一个高性能、高可用性和易扩展的 NoSQL 数据…

idea设置字体大小快捷键 Ctrl+鼠标上下滑 字体快捷键缩放设置

双击 按住ctrl鼠标滑轮上划放大就好了 这个双击设置为,Ctrl鼠标下滑 字体缩小就好了

中文编程开发语言工具开发案例:多种称重方式编程实际例子

中文编程开发语言工具开发案例:多种称重方式编程实际例子 上图为 计价秤,使用串口通讯线连接电脑的主机,软件自动读取称的重量,自动计算金额。这种方式称重快速,不需再打印条码。 上图这个称重方式为 一体称称重&#…

CentOS7安装MySQL8.0.28

CentOS7安装MySQL8.0.28 一、下载MySQL安装包二、安装配置mysql 一、下载MySQL安装包 点击以下链接可以自动跳转:MySQL官网 接下来按如图所示依次点击进入。 选择自己所需要版本 此处如需下载历史版本可以点击 二、安装配置mysql 1、登录ssh或其他相关软件上…

电子奖牌-参数

产品参数 产品型号 ESL_6color_8.14_BLE 尺寸(mm) 200*135*7mm 显示技术 电子墨水屏 显示区域(mm) 180.22(H) * 101.38(V) 分辨率(像素) 1024*576 像素尺寸(mm) 0.176*0.176 144pdi 显示颜色 黑/白/红/黄/蓝/绿 外观颜色 实木色 视觉角度 180 工作温度 …

Yolov7代码解析

代码解析 backbone # -1代表前一层,channel:32 size:3 stride:1 [[-1, 1, Conv, [32, 3, 1]], # 0[-1, 1, Conv, [64, 3, 2]], # 1-P1/2 [-1, 1, Conv, [64, 3, 1]],[-1, 1, Conv, [128, 3, 2]], # 3-P2/4 #ELAN 4-11层[-1, 1, Conv, [64, 1, 1]],[-2, 1,…

蓝绿发布,灰度发布,滚动发布

写在前面 本文看下生产环境中有哪些常用的发布策略。 1:蓝绿发布 蓝绿发布要求将线上机器分成逻辑上的AB两(蓝绿就是两种颜色)组,升级时先将A组从负载均衡中摘除,由B组对外提供服务,如下图: 当A组升级…

代码随想录算法训练营第二十七天丨 回溯算法part04

93.复原IP地址 思路 其实只要意识到这是切割问题,切割问题就可以使用回溯搜索法把所有可能性搜出来,和刚做过的131.分割回文串 (opens new window)十分类似。 切割问题可以抽象为树型结构,如图: ​ 回溯三部曲 递归参数 在13…

浏览器中的网络钓鱼防护

网络钓鱼防护是一项功能,可保护用户免受旨在窃取其敏感信息的网络钓鱼攻击,网络钓鱼是网络犯罪分子常用的技术,这是一种社会工程攻击,诱使用户单击指向受感染网页的恶意链接,用户在该网页中感染了恶意软件或其敏感信息…

神经网络硬件加速器-DPU分析

一 DPU概述 DPU是专为卷积神经网络优化的可编程引擎,其使用专用指令集,支持诸多卷积神经网络的有效实现。 1、关键模块 卷积引擎:常规CONV等ALU:DepthwiseConvScheduler:指令调度分发Buffer Group:片上数据…

利用爬虫采集音频信息完整代码示例

以下是一个使用WWW::RobotRules和duoip.cn/get_proxy的Perl下载器程序: #!/usr/bin/perluse strict; use warnings; use WWW::RobotRules; use LWP::UserAgent; use HTTP::Request; use HTTP::Response;# 创建一个UserAgent对象 my $ua LWP::UserAgent->new();#…