关于python环境下的语音转文本,whisper或funASR

news2025/1/14 4:15:13

        因为前阵子,有需求要将语音转为文本再进行下一步操作。感觉这个技术也不算是什么新需求,但是一搜,都是大厂的api,或者是什么什么软件,由于想要免费的,同时也要嵌入在代码中,所以这些都不能用。、

        一筹莫展的时候,突然搜到whisper,这是个openai开源的工具,主打就是语音转文本。试了一下,还是不错的,虽然搜到的大多数介绍都是关于怎么直接命令行使用的,但是也有少量关于api的介绍,结合源码看了一下,还是很容易操作的。

        这个项目,从安装开始,这个项目可能是太有名了还是啥,有很些大神进行了扩展和优化,所以直接pip安装的话,需要注意是pip install openai-whisper,直接装whisper不是那个哟。git地址openai-whispericon-default.png?t=N7T8https://github.com/openai/whisper使用上,在代码中,import之后,whisper.load_model,传入模型名就可以了,不传的话,默认是small,个人觉得已经挺好的了,会自动下载,自动下载的权重是pt格式的,如果去hf下载的话,好像是bin格式,需要注意。模型名可以在源码中看到,或者是git上好像也有。顺便一提,由于hf需要科技,但是源码中的链接不是hf上的,下载速度还可以。

使用的时候model.transcribe再传入音频文件就可以了。是的,这个项目本身是不支持实时转录的,并且,传入的文件,他是通过ffmpeg来进行处理的,所以使用前需要安装ffmpeg。在使用transcribe方法的时候,还能追加一些参数,比如language,中文传zh或Chinese,如果不传,会自动检测音频前面一部分的主要语言,并且输出该语言。

需要注意的是,这个项目不支持多语言输出,注意,是输出,比如设定为中文,则无论输入音频是啥语言,输出都是中文,但中文是不是翻译的不太确认。这边试过英文,输入一段中文录音,结果输出是全英文,并且翻译后的英文,不是同音乱码啥的。其他参数建议就默认就行了。比如,如果torch检测到cuda可以用,就会自动切换cuda,并且量化fp16,如果是纯cpu,则fp16会报一个提示不可用,自动设为false。如果本机有显卡,但是加载显存不够而需要转cpu的话,则是在load_model方法设置device,但是即便是最大的模型,12G显存应该也是够用的,没仔细看。

这个项目有一些不足,第一,输入空白音频或者特别短的音频的时候,输出的文字是不对的,但是他有个参数名为no_speech_prob,顾名思义就是无人说话的概率;第二,接上一条,no_speech_prob这个值不太准,所以通过这个值进行过滤的时候,有可能会漏掉内容;第三,再接上一条,还是no_speech_prob这个值,这边测试,用小说软件读小说,基本上都认定无人说话,所以这个值莫非是检测是否是真人么,但对于真人录音,同样存在该值变动较大且不准的情况,即对于我的一段录音,总是会漏掉一些内容;第四,输出中文是繁体,有需要的简体的话,要再用zhconv转一下,zhconv.convert(text,'zh-cn');第五,速度快,但还不够快。

        由whisper的速度,引发了下一个项目,不够快,经过一番查找,下面这个项目还是不错的

faster-whispericon-default.png?t=N7T8https://github.com/guillaumekln/faster-whisperFasterWhsiperGUI 更快更强更好用的 whisper - 哔哩哔哩 (bilibili.com)

这个链接写了一些对于whisper的一些评价,顺便推广了他自己的项目,他的项目似乎就是对faster这个的包装,弄了一个界面。所以我就直接使用faster了。

直接说结论,速度确实提升很大,不过宣称的4倍提升倒是没有测出来,但是两倍提升还是有的。其模型不能和原版模型共用,下载的话,需要去hf下,不过他也提供了将原版模型转为自己可用的模型,但是原版模型也要是hf的版本,所以科技还是少不了。

该项目的主要提升是速度提升很大,但是准确率没下降很多,但是这边测着,略有下降吧,不知道是不是个体差异,非专业和大量测试。

这两个whisper项目,优点是速度快,准确度还不错,缺点是幻听问题和返回是纯文本,没有标点的话,对于短文本还好,如果语句较长,歧义的风险比较大,不过他们都有返回时间戳,自己判断一下,在间隔较大的地方加个逗号也算满足要求。

但是由于我需要做的是语音ai对话,这样的话,如果输入文字有错误的话,ai的回复可能就会很莫名其妙,所以我需要找一个准确度更高的项目,此时强烈推荐funASR项目,由阿里达摩院开源。

funASRicon-default.png?t=N7T8https://github.com/alibaba-damo-academy/FunASR这个项目有点大,功能有点多,不过教程也是非常多的,简要说明一下,该项目支持三种模式,2pass:实时转录,并且会回头检测输出的文本,自动进行修改和标点添加;online:似乎是实时转录但是不会回头检测,没用过;offline:对全音频检测,就是输出2pass的最终结果,中间过程不输出。后面我用的全都offline模式,简单说一下其中的坑,最关键的是,从项目介绍来看,至少目前还不支持gpu,虽然用的时候好像显存有增加,但是他自己说gpu版还在进行中。

首先,我是git下载源文件再安装的,因为如果pip下载的话,我不知道源文件在哪,而他的快速使用教程里面,需要找到源文件,再去某个目录下,开启服务端,再通过客户端请求转录文本,虽然有点麻烦,但是准确率比前面的高,并且,他自己介绍说,一般的硬件水平下也能支持百路并发,还是比较心动的,毕竟whisper的话,岂不是要我自己写flask来回应请求,效率不敢想。

此时发现,他的python服务端,只能支持一路,要多路并行,需要编译,不知道win能不能编译,反正教程是只写了linux怎么编。

再python环境下,同一段1分多几秒的音频,whisper需要10s左右,large模型,faster需要4s左右,也是large模型,但是内容有缺漏,换成small模型,只需要3s不到,内容反而不缺漏了。funasr用了33s,调用的是源文件中提供的api代码,里面有一些等待参数,都设为非常小的值了,0.0001什么的,这才到33s,如果设大一些,等待更久。查看api代码可知,他的请求方式是将音频循环读取chunk并发给服务端,服务端此时会返回识别内容,所以随着循环的进行,返回的内容会越来越多,越来越准,可以理解2pass模式是怎么工作的了。然后在最后关闭这个连接,此时会发来一个最终结果,这个就是offline的结果。不太能理解为什么不能一次输入全文件,然后直接得到结果。但是问题在于,在调用api的时候,发现,他最终结果经常发来一个空,反而是循环体中返回的内容是可用和正确的。感觉还是主打2pass,至少这个api文件是这样,如果设置为2pass模式的话,能看到每一步的返回,还有内容的修改,挺有意思的,大概是流式输出的意思。

总结,funasr,准确率高,有标点,但是慢,极慢。

事情还没完,在使用funasr之后,既眼馋他的准确,又遗憾他的速度,难道就不能两全么,原本我的目标是放在c++编译上,大不了编译出来一个,按说python转成c++之后,十倍提升应该不是问题才对。

此时仔细研究了下源码文件,发现之前使用的是runtime下的python目录的websocket,而python目录下还有onnx和libtorch,从目录名来看,这个项目貌似支持很多语言,然后仅就python而言,也有多种实现方式。

这边试了下libtorch,其每个文件夹下都有一个readme和demo,比较详细的介绍了怎么用,比如如何安装 torch版,然后怎么转换模型,因为直接下载的模型是pb格式,他需要转成torchscript格式,这一步卡了我好就,因为没有关注到这一点,一直以为是我下载的模型不对,而在modelscope中搜索半天,找不到之后,都准备提issue了,然后再一次看readme的时候,发现开头就写了要装onnx来转一下权重。而且不知道是不是路径问题,转换的时候会重新下载权重到当前目录下然后再转,所以可以提前把默认路径下的权重拷贝到当前目录。

demo中,关于model的加载,有一条是注释了gpu的,但是使用的话,无论传什么音频进去都提示“input wav is silence or noise”,不信邪的我再查看源码,发现这句打印只是在except中,打开注释掉的traceback.format_exc(),会打印真实原因,说是two device,看报错似乎不是我可以解决的,于是还是改为cpu版,此时速度只需要3s左右,准确率很好,但是没有了标点,只有一大段文字。然后下载官方长音频版权重,带vad和punc,输出还是没有标点,最后根据每个字的时间戳,遍历了一遍,总耗时达到4s,再改,用gevent,只需要分析相邻两字的时间即可,此时总耗时大概是3s,行吧,不想折腾了。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1108469.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

半导体可靠性测试方法都有哪些?

半导体测试是半导体设备中的一种技术,其中半导体组件(芯片、模块等)在组装到系统就会出现故障。在特定电路的监控下,部件被迫经历一定的半导体试验条件,并分析部件的负载能力等性能。这种半导体测试有助于确保系统中使用的组件导体器件&#…

JDK命令行工具

1 jps: jps命令可以方便的查看进程id,启动类,传入参数, jvm参数 jps命令类似于linux 下的ps,但是只列出java的进程. 直接运行jps不加参数,会列出java程序的进场ID,及main函数名称 C:\Users\shj>jps 42340 Jps 41064 42040 JucApplication 37804 Launcher可以看到,目前有4个…

Confluence 用户管理

1. 创建用户 功能入口: Confluence→管理→用户管理→添加用户 功能说明: 填写必要信息,点击“添加”按钮,即可完成用户创建 用户名:英文名称,真实用户统一采用邮箱前缀;全名:中…

python换源,解决pip安装第三方库时无法下载和连接超时等问题

使用pip安装包是用python编码最基础并且必不可少的基础,新手入门时常常会跟着网上的教程说换源,但还会出现意料之外的问题,比如: 1.换源之后还是连接超时 2.在pycharm的python interpreter中安装包显示 Error updating package …

多模态及图像安全的探索与思考

前言 第六届中国模式识别与计算机视觉大会(The 6th Chinese Conference on Pattern Recognition and Computer Vision, PRCV 2023)已于近期在厦门成功举办。通过参加本次会议,使我有机会接触到许多来自国内外的模式识别和计算机视觉领域的研究…

计算机X86架构的描述

先来看看计算机的工作模式。 对于一个计算机来讲,最核心的就是 CPU(Central Processing Unit,中央处理器)。这是这台计算机的大脑,所有的设备都围绕它展开。 CPU 和其他设备连接,要靠一种叫做总线&#xf…

多模块打包报错找不到包的问题

最近做微服务项目,服务A,服务B,..,服务A依赖B,在idea里都可以跑起来,但是当打包部署到服务器时,懵逼了,各种clean package 就是不行,总是报找不到类或找不到包&#xff0…

代码随想录Day22 LeetCode T39 组合总和 T40 组合总和II T131 分割回文串

LeetCode T39 组合总和 题目链接:39. 组合总和 - 力扣(LeetCode) 树形图 题目思路: 这我们会发现和昨天的题目很像,只是这里的元素并不是只能选取一次了,我们可以根据代码画出树形图来解决问题,下面我们开始递归三部曲 首先我们先定义出result和path数…

2.4 如何在FlinkSQL使用DataGen(数据生成器)

1、DataGen SQL 连接器 FLinkSQL中可以使用内置的DataGen SQL 连接器来生成测试数据 官网链接:DataGen SQL 连接器 2、随机数数据生成器 随机数数据生成器支持随机生成 char、varchar、binary、varbinary、string 类型的数据 它是一个无界流的数据生成器 -- TO…

快速解决 Resource not accessible by integration

简介 最近好久没有写博客了,今天在写开源项目 python-package-template 的时候,正好遇到一个问题,记录一下吧。本文将介绍 Resource not accessible by integration 的几种解决方案。 也欢迎大家体验一下 python-package-template 这个项目&…

node重装-解铃还须系铃人

一、问题场景 node的重装真的浪费我一整天时间,必须写下这篇踩坑日记 我在做博客项目的时候,启动前端Vue项目的时候,由于之前的node版本是18.16.1,npm install的时候出现问题,原因是node的版本过高,应该配…

Leetcode 242 有效的字母异位词(字符串转字符串数组+排序 哈希表)

Leetcode 242 有效的字母异位词(哈希表) 解法1. 转为字符串数组-排序-比较解法2 解法1. 转为字符串数组-排序-比较 采用排序的方法,先把字符串转化为字符数组,之后进行字符数组排序,之后比较两个字符数组是否相同 字符…

水库大坝安全监测方案,筑牢水库安全防线!

方案背景 党的十九届五中全会提出:“统筹发展和安全、加快病险水库除险加固”;国务院常务会议明确“十四五”期间,水库除险加固和运行管护要消除存量隐患,实现常态化管理;到2025年前,完成新出现病险水库的…

【算法】TOP101-二叉树篇(持续更新ing)

文章目录 1. JZ36 二叉搜索树与双向链表2. 100. 相同的树3. 572. 另一棵树的子树4. BM26 求二叉树的层序遍历 1. JZ36 二叉搜索树与双向链表 JZ36 二叉搜索树与双向链表 解题思路: 由题目可知,这是一颗二叉搜索树.二叉搜索树的特点就是他的中序遍历是有序的.所以本题我们大的…

SpringBoot整合Caffeine实现缓存

Caffeine Caffeine是一种基于Java的高性能缓存库,它提供了可配置、快速、灵活的缓存实现。Caffeine具有以下特点: 高性能:Caffeine使用了一些优化技术,如基于链表的并发哈希表和无锁算法,以提供卓越的读写性能。容量…

Python--随机出拳(random)--if判断--综合案例练习:石头剪刀布

注:涉及相关链接: Python:if判断--综合案例练习:石头剪刀布-CSDN博客 Python语言非常的强大,强大之处就在于其拥有很多模块(module),这些模块中拥有很多别人已经开发好的代码&…

华为eNSP配置专题-NAT的配置

文章目录 华为eNSP配置专题-NAT的配置0、参考文档1、前置环境1.1、宿主机1.2、eNSP模拟器 2、基本环境搭建2.1、基本终端构成和连接2.2、各终端基本配置2.2.1、PC1和PC2的配置2.2.2、交换机不做任何配置2.2.3、网关路由器的配置2.2.4、模拟互联网的路由器的配置 3、配置静态NAT…

JS 通过年份获取月,季度,半年度,年度

​功能描述: 实例化一个函数,给函数内传递不同的参数,获取从起始年份到现在年度所有的月份,季度,半年度,年度 动态演示 ---------正文代码开始-------- 1. 封装函数 createMonth 注:此代码可…

基于B/S架构,包括PC后台管理端、APP移动端、可视化大屏端的智慧工地源码

智慧工地管理平台充分运用数字化技术,聚焦施工现场岗位一线,依托物联网、互联网、AI等技术,围绕施工现场管理的人、机、料、法、环五大维度,以及施工过程管理的进度、质量、安全三大体系为基础应用,实现全面高效的工程…

【java吐血整理】

又到一年求职季,持续更新高频java面试题 目录 java 基础JDK JRE JVM字节码final异常异常处理hashCode、equals、JAVA SE 和 JAVA EEJava 访问修饰符 public、private、protected,default接口和抽象类String、StringBuffer、StringBuilder为什么String不…