《视觉 SLAM 十四讲》V2 第 8 讲 视觉里程计2 【如何根据图像 估计 相机运动】【光流 —> 直接法】

news2025/1/16 22:03:12

OpenCV关于 光流的教程
在这里插入图片描述

文章目录

  • 第 8 讲 视觉里程计 2
    • 8.2 光流
    • 8.3 实践: LK 光流 【Code】
          • 本讲 CMakeLists.txt
    • 8.4 直接法
    • 8.5 实践: 双目的稀疏直接法 【Code】
      • 8.5.4 直接法的优缺点
    • 习题 8
      • √ 题1 光流方法
      • 题2
      • 题3
      • 题4
      • 题5

第 8 讲 视觉里程计 2

P205 第8讲
光流法 跟踪 特征点
直接法 估计相机位姿
多层直接法

8.1 直接法

第 7 讲 使用特征点 估计 相机运动
缺点:
1、关键点的提取 与 描述子的计算 非常耗时
2、只使用 特征点,丢弃了大部分 可能有用的图像信息
3、无明显纹理信息的地方(白墙、空走廊),无法匹配

改进思路:
在这里插入图片描述
直接法不保留特征点
在这里插入图片描述
特征点法 估计 相机运动: 最小化 重投影误差(Reprojection error)
直接法:最小化 光度误差(Photometric error)。根据 像素的亮度信息估计相机运动

特征点法: 只能重构稀疏地图
直接法: 稀疏、稠密、半稠密

在这里插入图片描述

8.2 光流

直接法光流 演变
同:相同的假设条件
异:光流描述了像素在图像中的运动,直接法附带一个相机模型。

光流: 描述 像素 随时间 在图像之间运动的方法

稀疏光流: 计算部分像素运动。 Lucas-Kanade光流 【LK光流
稠密光流: 计算所有像素。 Horn-Schunck光流

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
所有算法都是在一定假设下工作的。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

LK 光流 常被用来 跟踪角点的运动。

8.3 实践: LK 光流 【Code】

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
8.3.2 用高斯牛顿法 实现光流
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

本讲 CMakeLists.txt
cmake_minimum_required(VERSION 2.8)
project(ch8)

set(CMAKE_BUILD_TYPE "Release")
add_definitions("-DENABLE_SSE")
set(CMAKE_CXX_FLAGS "-std=c++11 ${SSE_FLAGS} -g -O3 -march=native")

find_package(OpenCV 4 REQUIRED)
find_package(Sophus REQUIRED)
find_package(Pangolin REQUIRED)

include_directories(
        ${OpenCV_INCLUDE_DIRS}
        ${G2O_INCLUDE_DIRS}
        ${Sophus_INCLUDE_DIRS}
        "/usr/include/eigen3/"
        ${Pangolin_INCLUDE_DIRS}
)


add_executable(optical_flow optical_flow.cpp)
target_link_libraries(optical_flow ${OpenCV_LIBS})

#[[   # 块注释
add_executable(direct_method direct_method.cpp)
target_link_libraries(direct_method ${OpenCV_LIBS} ${Pangolin_LIBRARIES} ${Sophus_LIBRARIES})
]]

报错:

/home/xixi/Downloads/slambook2-master/ch8/optical_flow.cpp:145:37: error: ‘CV_GRAY2BGR’ was not declared in this scope
  145 |     cv::cvtColor(img2, img2_single, CV_GRAY2BGR);

改为 cv::COLOR_GRAY2BGR。有3个地方

要是 cd build 还要改图片路径。

mkdir build && cd build 
cmake ..
make 
./optical_flow

在这里插入图片描述
在这里插入图片描述
optical_flow.cpp

//
// Created by Xiang on 2017/12/19.
//

#include <opencv2/opencv.hpp>
#include <string>
#include <chrono>
#include <Eigen/Core>
#include <Eigen/Dense>

using namespace std;
using namespace cv;

string file_1 = "../LK1.png";  // first image
string file_2 = "../LK2.png";  // second image

/// Optical flow tracker and interface
class OpticalFlowTracker {
public:
    OpticalFlowTracker(
        const Mat &img1_,
        const Mat &img2_,
        const vector<KeyPoint> &kp1_,
        vector<KeyPoint> &kp2_,
        vector<bool> &success_,
        bool inverse_ = true, bool has_initial_ = false) :
        img1(img1_), img2(img2_), kp1(kp1_), kp2(kp2_), success(success_), inverse(inverse_),
        has_initial(has_initial_) {}

    void calculateOpticalFlow(const Range &range);

private:
    const Mat &img1;
    const Mat &img2;
    const vector<KeyPoint> &kp1;
    vector<KeyPoint> &kp2;
    vector<bool> &success;
    bool inverse = true;
    bool has_initial = false;
};

/**
 * single level optical flow
 * @param [in] img1 the first image
 * @param [in] img2 the second image
 * @param [in] kp1 keypoints in img1
 * @param [in|out] kp2 keypoints in img2, if empty, use initial guess in kp1
 * @param [out] success true if a keypoint is tracked successfully
 * @param [in] inverse use inverse formulation?
 */
void OpticalFlowSingleLevel(
    const Mat &img1,
    const Mat &img2,
    const vector<KeyPoint> &kp1,
    vector<KeyPoint> &kp2,
    vector<bool> &success,
    bool inverse = false,
    bool has_initial_guess = false
);

/**
 * multi level optical flow, scale of pyramid is set to 2 by default
 * the image pyramid will be create inside the function
 * @param [in] img1 the first pyramid
 * @param [in] img2 the second pyramid
 * @param [in] kp1 keypoints in img1
 * @param [out] kp2 keypoints in img2
 * @param [out] success true if a keypoint is tracked successfully
 * @param [in] inverse set true to enable inverse formulation
 */
void OpticalFlowMultiLevel(
    const Mat &img1,
    const Mat &img2,
    const vector<KeyPoint> &kp1,
    vector<KeyPoint> &kp2,
    vector<bool> &success,
    bool inverse = false
);

/**
 * get a gray scale value from reference image (bi-linear interpolated)
 * @param img
 * @param x
 * @param y
 * @return the interpolated value of this pixel
 */

inline float GetPixelValue(const cv::Mat &img, float x, float y) {
    // boundary check
    if (x < 0) x = 0;
    if (y < 0) y = 0;
    if (x >= img.cols - 1) x = img.cols - 2;
    if (y >= img.rows - 1) y = img.rows - 2;
    
    float xx = x - floor(x);
    float yy = y - floor(y);
    int x_a1 = std::min(img.cols - 1, int(x) + 1);
    int y_a1 = std::min(img.rows - 1, int(y) + 1);
    
    return (1 - xx) * (1 - yy) * img.at<uchar>(y, x)
    + xx * (1 - yy) * img.at<uchar>(y, x_a1)
    + (1 - xx) * yy * img.at<uchar>(y_a1, x)
    + xx * yy * img.at<uchar>(y_a1, x_a1);
}

int main(int argc, char **argv) {

    // images, note they are CV_8UC1, not CV_8UC3
    Mat img1 = imread(file_1, 0);
    Mat img2 = imread(file_2, 0);

    // key points, using GFTT here.
    vector<KeyPoint> kp1;
    Ptr<GFTTDetector> detector = GFTTDetector::create(500, 0.01, 20); // maximum 500 keypoints
    detector->detect(img1, kp1);

    // now lets track these key points in the second image
    // first use single level LK in the validation picture
    vector<KeyPoint> kp2_single;
    vector<bool> success_single;
    OpticalFlowSingleLevel(img1, img2, kp1, kp2_single, success_single);

    // then test multi-level LK
    vector<KeyPoint> kp2_multi;
    vector<bool> success_multi;
    chrono::steady_clock::time_point t1 = chrono::steady_clock::now();
    OpticalFlowMultiLevel(img1, img2, kp1, kp2_multi, success_multi, true);
    chrono::steady_clock::time_point t2 = chrono::steady_clock::now();
    auto time_used = chrono::duration_cast<chrono::duration<double>>(t2 - t1);
    cout << "optical flow by gauss-newton: " << time_used.count() << endl;

    // use opencv's flow for validation
    vector<Point2f> pt1, pt2;
    for (auto &kp: kp1) pt1.push_back(kp.pt);
    vector<uchar> status;
    vector<float> error;
    t1 = chrono::steady_clock::now();
    cv::calcOpticalFlowPyrLK(img1, img2, pt1, pt2, status, error);
    t2 = chrono::steady_clock::now();
    time_used = chrono::duration_cast<chrono::duration<double>>(t2 - t1);
    cout << "optical flow by opencv: " << time_used.count() << endl;

    // plot the differences of those functions
    Mat img2_single;
    cv::cvtColor(img2, img2_single, cv::COLOR_GRAY2BGR);
    for (int i = 0; i < kp2_single.size(); i++) {
        if (success_single[i]) {
            cv::circle(img2_single, kp2_single[i].pt, 2, cv::Scalar(0, 250, 0), 2);
            cv::line(img2_single, kp1[i].pt, kp2_single[i].pt, cv::Scalar(0, 250, 0));
        }
    }

    Mat img2_multi;
    cv::cvtColor(img2, img2_multi, cv::COLOR_GRAY2BGR);
    for (int i = 0; i < kp2_multi.size(); i++) {
        if (success_multi[i]) {
            cv::circle(img2_multi, kp2_multi[i].pt, 2, cv::Scalar(0, 250, 0), 2);
            cv::line(img2_multi, kp1[i].pt, kp2_multi[i].pt, cv::Scalar(0, 250, 0));
        }
    }

    Mat img2_CV;
    cv::cvtColor(img2, img2_CV, cv::COLOR_GRAY2BGR);
    for (int i = 0; i < pt2.size(); i++) {
        if (status[i]) {
            cv::circle(img2_CV, pt2[i], 2, cv::Scalar(0, 250, 0), 2);
            cv::line(img2_CV, pt1[i], pt2[i], cv::Scalar(0, 250, 0));
        }
    }

    cv::imshow("tracked single level", img2_single);
    cv::imshow("tracked multi level", img2_multi);
    cv::imshow("tracked by opencv", img2_CV);
    cv::waitKey(0);

    return 0;
}

void OpticalFlowSingleLevel(
    const Mat &img1,
    const Mat &img2,
    const vector<KeyPoint> &kp1,
    vector<KeyPoint> &kp2,
    vector<bool> &success,
    bool inverse, bool has_initial) {
    kp2.resize(kp1.size());
    success.resize(kp1.size());
    OpticalFlowTracker tracker(img1, img2, kp1, kp2, success, inverse, has_initial);
    parallel_for_(Range(0, kp1.size()),
                  std::bind(&OpticalFlowTracker::calculateOpticalFlow, &tracker, placeholders::_1));
}

void OpticalFlowTracker::calculateOpticalFlow(const Range &range) {
    // parameters
    int half_patch_size = 4;
    int iterations = 10;
    for (size_t i = range.start; i < range.end; i++) {
        auto kp = kp1[i];
        double dx = 0, dy = 0; // dx,dy need to be estimated
        if (has_initial) {
            dx = kp2[i].pt.x - kp.pt.x;
            dy = kp2[i].pt.y - kp.pt.y;
        }

        double cost = 0, lastCost = 0;
        bool succ = true; // indicate if this point succeeded

        // Gauss-Newton iterations
        Eigen::Matrix2d H = Eigen::Matrix2d::Zero();    // hessian
        Eigen::Vector2d b = Eigen::Vector2d::Zero();    // bias
        Eigen::Vector2d J;  // jacobian
        for (int iter = 0; iter < iterations; iter++) {
            if (inverse == false) {
                H = Eigen::Matrix2d::Zero();
                b = Eigen::Vector2d::Zero();
            } else {
                // only reset b
                b = Eigen::Vector2d::Zero();
            }

            cost = 0;

            // compute cost and jacobian
            for (int x = -half_patch_size; x < half_patch_size; x++)
                for (int y = -half_patch_size; y < half_patch_size; y++) {
                    double error = GetPixelValue(img1, kp.pt.x + x, kp.pt.y + y) -
                                   GetPixelValue(img2, kp.pt.x + x + dx, kp.pt.y + y + dy);;  // Jacobian
                    if (inverse == false) {
                        J = -1.0 * Eigen::Vector2d(
                            0.5 * (GetPixelValue(img2, kp.pt.x + dx + x + 1, kp.pt.y + dy + y) -
                                   GetPixelValue(img2, kp.pt.x + dx + x - 1, kp.pt.y + dy + y)),
                            0.5 * (GetPixelValue(img2, kp.pt.x + dx + x, kp.pt.y + dy + y + 1) -
                                   GetPixelValue(img2, kp.pt.x + dx + x, kp.pt.y + dy + y - 1))
                        );
                    } else if (iter == 0) {
                        // in inverse mode, J keeps same for all iterations
                        // NOTE this J does not change when dx, dy is updated, so we can store it and only compute error
                        J = -1.0 * Eigen::Vector2d(
                            0.5 * (GetPixelValue(img1, kp.pt.x + x + 1, kp.pt.y + y) -
                                   GetPixelValue(img1, kp.pt.x + x - 1, kp.pt.y + y)),
                            0.5 * (GetPixelValue(img1, kp.pt.x + x, kp.pt.y + y + 1) -
                                   GetPixelValue(img1, kp.pt.x + x, kp.pt.y + y - 1))
                        );
                    }
                    // compute H, b and set cost;
                    b += -error * J;
                    cost += error * error;
                    if (inverse == false || iter == 0) {
                        // also update H
                        H += J * J.transpose();
                    }
                }

            // compute update
            Eigen::Vector2d update = H.ldlt().solve(b);

            if (std::isnan(update[0])) {
                // sometimes occurred when we have a black or white patch and H is irreversible
                cout << "update is nan" << endl;
                succ = false;
                break;
            }

            if (iter > 0 && cost > lastCost) {
                break;
            }

            // update dx, dy
            dx += update[0];
            dy += update[1];
            lastCost = cost;
            succ = true;

            if (update.norm() < 1e-2) {
                // converge
                break;
            }
        }

        success[i] = succ;

        // set kp2
        kp2[i].pt = kp.pt + Point2f(dx, dy);
    }
}

void OpticalFlowMultiLevel(
    const Mat &img1,
    const Mat &img2,
    const vector<KeyPoint> &kp1,
    vector<KeyPoint> &kp2,
    vector<bool> &success,
    bool inverse) {

    // parameters
    int pyramids = 4;
    double pyramid_scale = 0.5;
    double scales[] = {1.0, 0.5, 0.25, 0.125};

    // create pyramids
    chrono::steady_clock::time_point t1 = chrono::steady_clock::now();
    vector<Mat> pyr1, pyr2; // image pyramids
    for (int i = 0; i < pyramids; i++) {
        if (i == 0) {
            pyr1.push_back(img1);
            pyr2.push_back(img2);
        } else {
            Mat img1_pyr, img2_pyr;
            cv::resize(pyr1[i - 1], img1_pyr,
                       cv::Size(pyr1[i - 1].cols * pyramid_scale, pyr1[i - 1].rows * pyramid_scale));
            cv::resize(pyr2[i - 1], img2_pyr,
                       cv::Size(pyr2[i - 1].cols * pyramid_scale, pyr2[i - 1].rows * pyramid_scale));
            pyr1.push_back(img1_pyr);
            pyr2.push_back(img2_pyr);
        }
    }
    chrono::steady_clock::time_point t2 = chrono::steady_clock::now();
    auto time_used = chrono::duration_cast<chrono::duration<double>>(t2 - t1);
    cout << "build pyramid time: " << time_used.count() << endl;

    // coarse-to-fine LK tracking in pyramids
    vector<KeyPoint> kp1_pyr, kp2_pyr;
    for (auto &kp:kp1) {
        auto kp_top = kp;
        kp_top.pt *= scales[pyramids - 1];
        kp1_pyr.push_back(kp_top);
        kp2_pyr.push_back(kp_top);
    }

    for (int level = pyramids - 1; level >= 0; level--) {
        // from coarse to fine
        success.clear();
        t1 = chrono::steady_clock::now();
        OpticalFlowSingleLevel(pyr1[level], pyr2[level], kp1_pyr, kp2_pyr, success, inverse, true);
        t2 = chrono::steady_clock::now();
        auto time_used = chrono::duration_cast<chrono::duration<double>>(t2 - t1);
        cout << "track pyr " << level << " cost time: " << time_used.count() << endl;

        if (level > 0) {
            for (auto &kp: kp1_pyr)
                kp.pt /= pyramid_scale;
            for (auto &kp: kp2_pyr)
                kp.pt /= pyramid_scale;
        }
    }

    for (auto &kp: kp2_pyr)
        kp2.push_back(kp);
}

在这里插入图片描述

8.4 直接法

光流: 首先追踪特征点位置,再根据这些位置确定相机的运动

  • 很难保证全局的最优性。

——> 在后一步中,调整前一步的结果。

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

稀疏直接法:关键点,假设周围像素不变(因此不必计算描述子)。可快速求解相机位姿。
半稠密直接法:只使用带有梯度的像素点
稠密直接法:多数需要GPU加速

8.5 实践: 双目的稀疏直接法 【Code】

基于特征点的深度恢复(三角化)
基于块匹配的深度恢复

多层直接法 金字塔式

在这里插入图片描述
输出: 每个图像的每层金字塔上的追踪点,并输出运行时间。

源码改动:
1、在这里插入图片描述
所有 SE3d 去掉 d

2、改路径
3、报错3

/home/xixi/Downloads/slambook2-master/ch8/direct_method.cpp:206:35: error: ‘CV_GRAY2BGR’ was not declared in this scope
  206 |     cv::cvtColor(img2, img2_show, CV_GRAY2BGR);

改为 cv::COLOR_GRAY2BGR。有3个地方

4、报错4

/usr/bin/ld: CMakeFiles/direct_method.dir/direct_method.cpp.o: in function `JacobianAccumulator::accumulate_jacobian(cv::Range const&)':
/home/xixi/Downloads/slambook2-master/ch8/direct_method.cpp:235: undefined reference to `Sophus::SE3::operator*(Eigen::Matrix<double, 3, 1, 0, 3, 1> const&) const'
/usr/bin/ld: CMakeFiles/direct_method.dir/direct_method.cpp.o: in function `DirectPoseEstimationSingleLayer(cv::Mat const&, cv::Mat const&, std::vector<Eigen::Matrix<double, 2, 1, 0, 2, 1>, Eigen::aligned_allocator<Eigen::Matrix<double, 2, 1, 0, 2, 1> > > const&, std::vector<double, std::allocator<double> >, Sophus::SE3&)':
/home/xixi/Downloads/slambook2-master/ch8/direct_method.cpp:178: undefined reference to `Sophus::SE3::exp(Eigen::Matrix<double, 6, 1, 0, 6, 1> const&)'
/usr/bin/ld: /home/xixi/Downloads/slambook2-master/ch8/direct_method.cpp:178: undefined reference to `Sophus::SE3::operator*(Sophus::SE3 const&) const'

Sophus库链接问题

add_executable(direct_method direct_method.cpp)
target_link_libraries(direct_method ${OpenCV_LIBS} ${Pangolin_LIBRARIES} ${Sophus_LIBRARIES})
byzanz-record -x 146 -y 104 -w 786 -h 533  -d 20 --delay=5 -c  /home/xixi/myGIF/test.gif

在这里插入图片描述

这里程序运行感觉不太对,暂时不清楚哪里。

direct_method.cpp

#include <opencv2/opencv.hpp>
#include <sophus/se3.h>
#include <boost/format.hpp>
#include <pangolin/pangolin.h>

using namespace std;

typedef vector<Eigen::Vector2d, Eigen::aligned_allocator<Eigen::Vector2d>> VecVector2d;

// Camera intrinsics
double fx = 718.856, fy = 718.856, cx = 607.1928, cy = 185.2157;
// baseline
double baseline = 0.573;
// paths
string left_file = "../left.png";
string disparity_file = "../disparity.png";
boost::format fmt_others("../%06d.png");    // other files

// useful typedefs
typedef Eigen::Matrix<double, 6, 6> Matrix6d;
typedef Eigen::Matrix<double, 2, 6> Matrix26d;
typedef Eigen::Matrix<double, 6, 1> Vector6d;

/// class for accumulator jacobians in parallel
class JacobianAccumulator {
public:
    JacobianAccumulator(
        const cv::Mat &img1_,
        const cv::Mat &img2_,
        const VecVector2d &px_ref_,
        const vector<double> depth_ref_,
        Sophus::SE3 &T21_) :
        img1(img1_), img2(img2_), px_ref(px_ref_), depth_ref(depth_ref_), T21(T21_) {
        projection = VecVector2d(px_ref.size(), Eigen::Vector2d(0, 0));
    }

    /// accumulate jacobians in a range
    void accumulate_jacobian(const cv::Range &range);

    /// get hessian matrix
    Matrix6d hessian() const { return H; }

    /// get bias
    Vector6d bias() const { return b; }

    /// get total cost
    double cost_func() const { return cost; }

    /// get projected points
    VecVector2d projected_points() const { return projection; }

    /// reset h, b, cost to zero
    void reset() {
        H = Matrix6d::Zero();
        b = Vector6d::Zero();
        cost = 0;
    }

private:
    const cv::Mat &img1;
    const cv::Mat &img2;
    const VecVector2d &px_ref;
    const vector<double> depth_ref;
    Sophus::SE3 &T21;
    VecVector2d projection; // projected points

    std::mutex hessian_mutex;
    Matrix6d H = Matrix6d::Zero();
    Vector6d b = Vector6d::Zero();
    double cost = 0;
};

/**
 * pose estimation using direct method
 * @param img1
 * @param img2
 * @param px_ref
 * @param depth_ref
 * @param T21
 */
void DirectPoseEstimationMultiLayer(
    const cv::Mat &img1,
    const cv::Mat &img2,
    const VecVector2d &px_ref,
    const vector<double> depth_ref,
    Sophus::SE3 &T21
);

/**
 * pose estimation using direct method
 * @param img1
 * @param img2
 * @param px_ref
 * @param depth_ref
 * @param T21
 */
void DirectPoseEstimationSingleLayer(
    const cv::Mat &img1,
    const cv::Mat &img2,
    const VecVector2d &px_ref,
    const vector<double> depth_ref,
    Sophus::SE3 &T21
);

// bilinear interpolation
inline float GetPixelValue(const cv::Mat &img, float x, float y) {
    // boundary check
    if (x < 0) x = 0;
    if (y < 0) y = 0;
    if (x >= img.cols) x = img.cols - 1;
    if (y >= img.rows) y = img.rows - 1;
    uchar *data = &img.data[int(y) * img.step + int(x)];
    float xx = x - floor(x);
    float yy = y - floor(y);
    return float(
        (1 - xx) * (1 - yy) * data[0] +
        xx * (1 - yy) * data[1] +
        (1 - xx) * yy * data[img.step] +
        xx * yy * data[img.step + 1]
    );
}

int main(int argc, char **argv) {

    cv::Mat left_img = cv::imread(left_file, 0);
    cv::Mat disparity_img = cv::imread(disparity_file, 0);

    // let's randomly pick pixels in the first image and generate some 3d points in the first image's frame
    cv::RNG rng;
    int nPoints = 2000;
    int boarder = 20;
    VecVector2d pixels_ref;
    vector<double> depth_ref;

    // generate pixels in ref and load depth data
    for (int i = 0; i < nPoints; i++) {
        int x = rng.uniform(boarder, left_img.cols - boarder);  // don't pick pixels close to boarder
        int y = rng.uniform(boarder, left_img.rows - boarder);  // don't pick pixels close to boarder
        int disparity = disparity_img.at<uchar>(y, x);
        double depth = fx * baseline / disparity; // you know this is disparity to depth
        depth_ref.push_back(depth);
        pixels_ref.push_back(Eigen::Vector2d(x, y));
    }

    // estimates 01~05.png's pose using this information
    Sophus::SE3 T_cur_ref;

    for (int i = 1; i < 6; i++) {  // 1~10
        cv::Mat img = cv::imread((fmt_others % i).str(), 0);
        // try single layer by uncomment this line
        // DirectPoseEstimationSingleLayer(left_img, img, pixels_ref, depth_ref, T_cur_ref);
        DirectPoseEstimationMultiLayer(left_img, img, pixels_ref, depth_ref, T_cur_ref);
    }
    return 0;
}

void DirectPoseEstimationSingleLayer(
    const cv::Mat &img1,
    const cv::Mat &img2,
    const VecVector2d &px_ref,
    const vector<double> depth_ref,
    Sophus::SE3 &T21) {

    const int iterations = 10;
    double cost = 0, lastCost = 0;
    auto t1 = chrono::steady_clock::now();
    JacobianAccumulator jaco_accu(img1, img2, px_ref, depth_ref, T21);

    for (int iter = 0; iter < iterations; iter++) {
        jaco_accu.reset();
        cv::parallel_for_(cv::Range(0, px_ref.size()),
                          std::bind(&JacobianAccumulator::accumulate_jacobian, &jaco_accu, std::placeholders::_1));
        Matrix6d H = jaco_accu.hessian();
        Vector6d b = jaco_accu.bias();

        // solve update and put it into estimation
        Vector6d update = H.ldlt().solve(b);;
        T21 = Sophus::SE3::exp(update) * T21;
        cost = jaco_accu.cost_func();

        if (std::isnan(update[0])) {
            // sometimes occurred when we have a black or white patch and H is irreversible
            cout << "update is nan" << endl;
            break;
        }
        if (iter > 0 && cost > lastCost) {
            cout << "cost increased: " << cost << ", " << lastCost << endl;
            break;
        }
        if (update.norm() < 1e-3) {
            // converge
            break;
        }

        lastCost = cost;
        cout << "iteration: " << iter << ", cost: " << cost << endl;
    }

    cout << "T21 = \n" << T21.matrix() << endl;
    auto t2 = chrono::steady_clock::now();
    auto time_used = chrono::duration_cast<chrono::duration<double>>(t2 - t1);
    cout << "direct method for single layer: " << time_used.count() << endl;

    // plot the projected pixels here
    cv::Mat img2_show;
    cv::cvtColor(img2, img2_show, cv::COLOR_GRAY2BGR);
    VecVector2d projection = jaco_accu.projected_points();
    for (size_t i = 0; i < px_ref.size(); ++i) {
        auto p_ref = px_ref[i];
        auto p_cur = projection[i];
        if (p_cur[0] > 0 && p_cur[1] > 0) {
            cv::circle(img2_show, cv::Point2f(p_cur[0], p_cur[1]), 2, cv::Scalar(0, 250, 0), 2);
            cv::line(img2_show, cv::Point2f(p_ref[0], p_ref[1]), cv::Point2f(p_cur[0], p_cur[1]),
                     cv::Scalar(0, 250, 0));
        }
    }
    cv::imshow("current", img2_show);
    cv::waitKey();
}

void JacobianAccumulator::accumulate_jacobian(const cv::Range &range) {

    // parameters
    const int half_patch_size = 1;
    int cnt_good = 0;
    Matrix6d hessian = Matrix6d::Zero();
    Vector6d bias = Vector6d::Zero();
    double cost_tmp = 0;

    for (size_t i = range.start; i < range.end; i++) {

        // compute the projection in the second image
        Eigen::Vector3d point_ref =
            depth_ref[i] * Eigen::Vector3d((px_ref[i][0] - cx) / fx, (px_ref[i][1] - cy) / fy, 1);
        Eigen::Vector3d point_cur = T21 * point_ref;
        if (point_cur[2] < 0)   // depth invalid
            continue;

        float u = fx * point_cur[0] / point_cur[2] + cx, v = fy * point_cur[1] / point_cur[2] + cy;
        if (u < half_patch_size || u > img2.cols - half_patch_size || v < half_patch_size ||
            v > img2.rows - half_patch_size)
            continue;

        projection[i] = Eigen::Vector2d(u, v);
        double X = point_cur[0], Y = point_cur[1], Z = point_cur[2],
            Z2 = Z * Z, Z_inv = 1.0 / Z, Z2_inv = Z_inv * Z_inv;
        cnt_good++;

        // and compute error and jacobian
        for (int x = -half_patch_size; x <= half_patch_size; x++)
            for (int y = -half_patch_size; y <= half_patch_size; y++) {

                double error = GetPixelValue(img1, px_ref[i][0] + x, px_ref[i][1] + y) -
                               GetPixelValue(img2, u + x, v + y);
                Matrix26d J_pixel_xi;
                Eigen::Vector2d J_img_pixel;

                J_pixel_xi(0, 0) = fx * Z_inv;
                J_pixel_xi(0, 1) = 0;
                J_pixel_xi(0, 2) = -fx * X * Z2_inv;
                J_pixel_xi(0, 3) = -fx * X * Y * Z2_inv;
                J_pixel_xi(0, 4) = fx + fx * X * X * Z2_inv;
                J_pixel_xi(0, 5) = -fx * Y * Z_inv;

                J_pixel_xi(1, 0) = 0;
                J_pixel_xi(1, 1) = fy * Z_inv;
                J_pixel_xi(1, 2) = -fy * Y * Z2_inv;
                J_pixel_xi(1, 3) = -fy - fy * Y * Y * Z2_inv;
                J_pixel_xi(1, 4) = fy * X * Y * Z2_inv;
                J_pixel_xi(1, 5) = fy * X * Z_inv;

                J_img_pixel = Eigen::Vector2d(
                    0.5 * (GetPixelValue(img2, u + 1 + x, v + y) - GetPixelValue(img2, u - 1 + x, v + y)),
                    0.5 * (GetPixelValue(img2, u + x, v + 1 + y) - GetPixelValue(img2, u + x, v - 1 + y))
                );

                // total jacobian
                Vector6d J = -1.0 * (J_img_pixel.transpose() * J_pixel_xi).transpose();

                hessian += J * J.transpose();
                bias += -error * J;
                cost_tmp += error * error;
            }
    }

    if (cnt_good) {
        // set hessian, bias and cost
        unique_lock<mutex> lck(hessian_mutex);
        H += hessian;
        b += bias;
        cost += cost_tmp / cnt_good;
    }
}

void DirectPoseEstimationMultiLayer(
    const cv::Mat &img1,
    const cv::Mat &img2,
    const VecVector2d &px_ref,
    const vector<double> depth_ref,
    Sophus::SE3 &T21) {

    // parameters
    int pyramids = 4;
    double pyramid_scale = 0.5;
    double scales[] = {1.0, 0.5, 0.25, 0.125};

    // create pyramids
    vector<cv::Mat> pyr1, pyr2; // image pyramids
    for (int i = 0; i < pyramids; i++) {
        if (i == 0) {
            pyr1.push_back(img1);
            pyr2.push_back(img2);
        } else {
            cv::Mat img1_pyr, img2_pyr;
            cv::resize(pyr1[i - 1], img1_pyr,
                       cv::Size(pyr1[i - 1].cols * pyramid_scale, pyr1[i - 1].rows * pyramid_scale));
            cv::resize(pyr2[i - 1], img2_pyr,
                       cv::Size(pyr2[i - 1].cols * pyramid_scale, pyr2[i - 1].rows * pyramid_scale));
            pyr1.push_back(img1_pyr);
            pyr2.push_back(img2_pyr);
        }
    }

    double fxG = fx, fyG = fy, cxG = cx, cyG = cy;  // backup the old values
    for (int level = pyramids - 1; level >= 0; level--) {
        VecVector2d px_ref_pyr; // set the keypoints in this pyramid level
        for (auto &px: px_ref) {
            px_ref_pyr.push_back(scales[level] * px);
        }

        // scale fx, fy, cx, cy in different pyramid levels
        fx = fxG * scales[level];
        fy = fyG * scales[level];
        cx = cxG * scales[level];
        cy = cyG * scales[level];
        DirectPoseEstimationSingleLayer(pyr1[level], pyr2[level], px_ref_pyr, depth_ref, T21);
    }

}

8.5.4 直接法的优缺点

优点:
1、省去计算特征点、描述子的时间
2、只要求有像素梯度,不需要特征点,可 在特征缺失的场合使用。
3、可以构建 半稠密 乃至 稠密的地图

缺点:
1、图像 强烈非凸。优化算法易进入极小,只有运动很小时直接法才能成功。金字塔的引入可以在一定程度上减小非凸的影响。
2、单个像素无区分度 ——> 图像块 or 相关性。500个点以上
3、强假设: 灰度值不变。 ——> 同时估计相机的曝光参数

在这里插入图片描述

习题 8

在这里插入图片描述

√ 题1 光流方法

1、除了LK光流,还有哪些光流方法?它们各有什么特点?

在这里插入图片描述

文档

稠密光流:
在这里插入图片描述
DIS(Dense Inverse Search,稠密逆搜索)光流算法:【低时间复杂度+有竞争力的精度
DIS光流算法。这个类实现了密集逆搜索(DIS)光流算法。包括三个预设,带有预选参数,在速度和质量之间提供合理的权衡。但是,即使是最慢的预设也还是比较快的,如果你需要更好的质量,不关心速度,可以使用DeepFlow。
Till Kroeger, Radu Timofte, Dengxin Dai, and Luc Van Gool. Fast optical flow using dense inverse search. In Proceedings of the European Conference on Computer Vision (ECCV), 2016.
三部分:

  1. inverse search for patch correspondences;
  2. dense displacement field creation through patch aggregation along multiple scales; 多尺度斑块聚集 形成 密集位移场;
  3. variational refinement.

——————————
cv::FarnebackOpticalFlow
使用Gunnar Farneback算法计算密集光流。

  • Two-Frame Motion Estimation Based on
    Polynomial Expansion

——————————
基于鲁棒局部光流(RLOF,robust local optical flow)算法和稀疏到密集插值方案的快速密集光流计算
有相应的稀疏 API
在这里插入图片描述

——————————
“Dual TV L1” Optical Flow Algorithm.
在这里插入图片描述
C. Zach, T. Pock and H. Bischof, “A Duality Based Approach for Realtime TV-L1 Optical Flow”. Javier Sanchez, Enric Meinhardt-Llopis and Gabriele Facciolo. “TV-L1 Optical Flow Estimation”.
在这里插入图片描述

——————————
基于翘曲理论的高精度光流估计:角误差更小,对参数变化不敏感,噪声鲁棒】Thomas Brox, Andres Bruhn, Nils Papenberg, and Joachim Weickert. High accuracy optical flow estimation based on a theory for warping. In Computer Vision-ECCV 2004, pages 25–36. Springer, 2004.
将一个连续的、旋转不变的能量泛函,用于光流计算,该泛函基于两个项:一个具有亮度常数和梯度常数假设的鲁棒数据项,结合一个保持不连续的时空 TV 正则化器。
在这里插入图片描述
cv::VariationalRefinement::calcUV()

稀疏光流
在这里插入图片描述

该类可以使用金字塔迭代Lucas-Kanade方法计算稀疏特征集的光流。

题2

2、 在本节程序的求图像梯度过程中,我们简单地求了 u + 1 u+1 u+1 u − 1 u-1 u1 的灰度之差除以 2,作为 u u u 方向上的梯度值。这种做法有什么缺点?提示:对于距离较近的特征,变化应该较快;而距离较远的特征在图像中变化较慢,求梯度时能否利用此信息?

题3

3、直接法是否能和光流一样,提出“反向法”的概念?即,使用原始图像的梯度代替目标图像的梯度?

题4

4、使用Ceres或g2o实现稀疏直接法和半稠密直接法。

题5

单目直接法:在优化时 把 像素深度 也作为优化变量
在这里插入图片描述

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1107828.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

vue3脚手架搭建

一.安装 vue3.0 脚手架 如果之前安装了2.0的脚手架&#xff0c;要先卸载掉&#xff0c;输入&#xff1a; npm uninstall vue-cli -g 进行全局卸载 1.安装node.js&#xff08;npm&#xff09; node.js&#xff1a;简单的说 Node.js 就是运行在服务端的 JavaScript。Node.js 是…

Linux高性能服务器编程——ch2笔记

第2章 IP 协议详解 2.1 IP服务的特点 无状态&#xff1a;IP通信双方不同步传输数据的状态信息。IP数据报相互独立&#xff0c;缺点是无法处理乱序和重复的IP数据报。上层协议如果是面向连接的协议&#xff08;TCP&#xff09;&#xff0c;能够自己处理乱序和重复的报文段。IP…

【Leetcode】 707. 设计链表

你可以选择使用单链表或者双链表&#xff0c;设计并实现自己的链表。 单链表中的节点应该具备两个属性&#xff1a;val 和 next 。val 是当前节点的值&#xff0c;next 是指向下一个节点的指针/引用。 如果是双向链表&#xff0c;则还需要属性 prev 以指示链表中的上一个节点…

英语——分享篇——每日200词——1201-1400

1201——wound——[wu:nd]——n.伤口&#xff0c;创伤——wound——wo我(拼音)un联合国(编码)d狗(编码dog)——我在联合国治好了狗的伤口——The nurse cleaned the wound .——护士清洗了伤口。 1202——from——[frɒm]——prep.来自&#xff0c;从&#xff0c;由于——from—…

正点原子嵌入式linux驱动开发——pinctrl和gpio子系统

在上一篇笔记中&#xff0c;学习编写了基于设备树的LED驱动&#xff0c;但是驱动的本质还是没变&#xff0c;都是配置LED灯 所使用的GPIO寄存器&#xff0c;驱动开发方式和裸机基本没区别。Linux是一个庞大而完善的系统&#xff0c;尤其是驱动框架&#xff0c;像GPIO这种最基本…

C++11 正则表达式详解

目录 1 正则表达式语法1.1 字符和特殊字符1.2 限定符1.3 定位符1.4 选择和反向引用 2 C正则表达式标准库常用接口3 C正则表达式模板的使用3.1 匹配&#xff08;Match&#xff09;3.2 搜索&#xff08;Search&#xff09;3.3 分词&#xff08;Tokenize&#xff09;3.4 替换&…

【前端学习】—ES6新增的方法有哪些(十五)

【前端学习】—ES6新增的方法有哪些&#xff08;十五&#xff09; 一 、ES6中新增的方法 &#xff08;一&#xff09;、Object.is() //用于判断两个值/数据类型是否相等/* 特点&#xff1a;不仅可以对值类型进行正常处理&#xff0c;对象类型的值也可以处理对于特殊的值NaN 也…

分享一下怎么做多门店小程序

近年来&#xff0c;随着互联网的普及和移动支付的兴起&#xff0c;越来越多的商家开始涉足线上业务&#xff0c;开发自己的小程序。对于拥有多家门店的连锁品牌来说&#xff0c;开发多门店小程序是一个非常不错的选择。本文将围绕多门店小程序的制作展开讨论&#xff0c;希望能…

阿里8年经验之谈 —— 如何选择合适的自动化测试工具?

自动化测试是高质量软件交付领域中最重要的实践之一。在今天的敏捷开发方法中&#xff0c;几乎任一软件开发过程都需要在开发阶段的某个时候进行自动化测试&#xff0c;以加速回归测试的工作。自动化测试工具可以帮助测试人员以及整个团队专注于自动化工具无法处理的各自任务&a…

【网络安全 --- XSS绕过】xss绕过手法及思路你了解吗?常见及常用的绕过手法了解一下吧

本次博客以pikachu靶场为例&#xff0c;需要安装靶场可以参考以下博客&#xff08;都包含工具&#xff0c;镜像下载地址&#xff09; 一&#xff0c;工具资源下载 1-1 VMware虚拟机的安装 请参考以下博客&#xff0c;包含资源下载地址&#xff08;若已安装请忽略&#xff09;…

2023年知名国产数据库厂家汇总

随着信创国产化的崛起&#xff0c;大家纷纷在寻找可替代的国产数据库厂家。这里小编就给大家汇总了一些国内知名数据库厂家&#xff0c;仅供参考哦&#xff01; 2023年知名国产数据库厂家汇总 1、人大金仓 2、瀚高 3、高斯 4、阿里云 5、华为云 6、浪潮 7、达梦 8、南大…

基于java网上书城系统的设计与实现

1 绪 论 网上书城系统采用了一种ssm的开发框架。讨论该系统的需求分析&#xff0c;将系统分为两大模块。前台模块由五部分功能组成&#xff0c;而后台模块则由八部分功能组成。作为网上书城系统&#xff0c;它的设计目的是改变传统的图书销售模式&#xff0c;迎合当代主流需…

acwing算法基础之数据结构--KMP算法

目录 1 知识点2 模板 1 知识点 KMP算法已经集成到string类型的find()方法了&#xff0c; 但这里我们不用这个&#xff0c;我们自己来实现这个方法。 KMP算法的关键步骤&#xff1a; p[N]表示输入模式串&#xff0c;求取该模式串的ne[]数组。ne[i]表示前缀等于后缀的长度&…

电压放大器在电子实验中有哪些作用

电压放大器在电子实验中扮演着重要的角色&#xff0c;它可以实现对电压信号的放大&#xff0c;为实验提供所需的电压级别。下面是电压放大器在电子实验中的几个常见作用&#xff1a; 信号放大&#xff1a;电压放大器的主要作用是将输入信号的幅度放大&#xff0c;以便进行更准确…

AXI总线协议

总线&#xff1a;总线是传输数据的通道&#xff0c;由各种逻辑器件构成&#xff0c;一般由数据线、地址线、控制线等构成 接口&#xff1a;连接标准&#xff0c;又称之为物理接口i 协议&#xff1a;传输数据的规则 什么是AXI AXI(Advanced Extensible Interfece)是高级可扩展…

ModelCenter—多学科设计优化软件

产品概述 Ansys ModelCenter是美国Ansys公司旗下的一款产品&#xff0c;用于赋能工程师创建和自动化多工具工作流&#xff0c;优化产品设计。ModelCenter是一个创新的软件框架&#xff0c;可以灵活地满足基于模型的需求工程。在ModelCenter框架内工作&#xff0c;工程师能够将…

GDPU 数据结构 天码行空5

一、实验目的 1&#xff0e;掌握队列的顺序存储结构 2&#xff0e;掌握队列先进先出运算原则在解决实际问题中的应用 二、实验内容 仿照教材顺序循环队列的例子&#xff0c;设计一个只使用队头指针和计数器的顺序循环队列抽象数据类型。其中操作包括&#xff1a;初始化、入队…

安全典型配置(四)使用自反ACL实现单向访问控制案例

【微|信|公|众|号&#xff1a;厦门微思网络】 安全典型配置&#xff08;一&#xff09;使用ACL限制FTP访问权限案例_厦门微思网络的博客-CSDN博客 安全典型配置&#xff08;二&#xff09;使用ACL限制用户在特定时间访问特定服务器的权限-CSDN博客 安全典型配置&#xff0…

【Note】CNN与现代卷积神经网络part2(附Pytorch代码)

文章目录 1.4 多输入多输出通道1.4.1 多输入通道1.4.2 多输出通道1.4.3 11卷积层1.4.4 Summary 1.5 汇聚层1.5.1 最大汇聚层和平均汇聚层1.5.2 填充和步幅1.5.3 多个通道1.5.4 Summary 1.6 卷积神经网络&#xff08;LeNet&#xff09;1.6.1 LeNet1.6.2 模型训练1.6.3 Summary 本…

一篇文章让你两种方式调用星火大模型,搭建属于自己的“chatgpt”

申请 网址&#xff1a;星火大模型api注册链接 选择零元购 获取你专属的key、密钥、appid 方法1&#xff1a;使用jquery直接调用 html: //应用插件-此插件用于对url编码加密&#xff0c;资源包已经上传&#xff0c;审核通过后&#xff0c;会在顶部显示<script src"…