FPGA 图像缩放 1G/2.5G Ethernet PCS/PMA or SGMII实现 UDP 网络视频传输,提供工程和QT上位机源码加技术支持

news2024/11/20 20:41:12

目录

  • 1、前言
    • 版本更新说明
    • 免责声明
  • 2、相关方案推荐
    • UDP视频传输--无缩放
    • FPGA图像缩放方案
    • 我这里已有的以太网方案
  • 3、设计思路框架
    • 视频源选择
    • ADV7611 解码芯片配置及采集
    • 动态彩条
    • 跨时钟FIFO
    • 图像缩放模块详解
      • 设计框图
      • 代码框图
      • 2种插值算法的整合与选择
    • UDP协议栈
    • UDP视频数据组包
    • UDP协议栈数据发送
    • UDP协议栈数据缓冲
    • IP地址、端口号的修改
    • Tri Mode Ethernet MAC
    • 1G/2.5G Ethernet PCS/PMA or SGMII
    • QT上位机和源码
  • 4、vivado工程详解
  • 5、工程移植说明
    • vivado版本不一致处理
    • FPGA型号不一致处理
    • 其他注意事项
  • 6、上板调试验证并演示
    • 准备工作
    • ping一下
    • 静态演示
    • 动态演示
  • 7、福利:工程源码获取

1、前言

没玩过UDP协议栈都不好意思说自己玩儿过FPGA,这是CSDN某大佬说过的一句话,鄙人深信不疑。。。本文使用Xilinx的Artix7 FPGA基于1G/2.5G Ethernet PCS/PMA or SGMII实现千兆网UDP视频传输(视频缩放后再传输),视频源有两种,分别对应开发者手里有没有摄像头的情况,一种是使用板载的HDMI输入接口(笔记本电脑输入模拟HDMI输入源);另一种是如果你的手里没有摄像头,或者你的开发板没HDMI输入接口,则可使用代码内部生成的动态彩条模拟摄像头视频,视频源的选择通过代码顶层的`define宏定义进行,上电默认选择HDMI输入接口作为视频输入源;FPGA采集视频后,首先使用纯verilog实现的图像缩放模块对视频进行缩小操作,即从输入的1920x1080分辨率缩小为1280x720,因为我们的QT上位机目前只支持1280x720,所以才需要缩放;使用FDMA将视频缓存到DDR3中,然后将视频读出,根据与QT上位机的通信协议将视频进行UDP数据组包,然后使用我们的UDP协议栈对视频进行UDP数据封装,再将数据送入Tri Mode Ethernet MAC IP,输出GMII格式数据给1G/2.5G Ethernet PCS/PMA or SGMII,1G/2.5G Ethernet PCS/PMA or SGMII在这里充当了网络变压器的角色,所以不需要外接例如RTL8211、B50610等PHY,然后UDP视频通过开发板板载的SFP光口经光模块转网口通过网线传输给电脑主机,电脑端用我们提供的QT上位机采集图像并显示;提供vivado2019.1版本的FPGA工程源码和QT上位机及其源码;

FPGA 图像缩放 1G/2.5G Ethernet PCS/PMA or SGMII实现 UDP 网络视频传输的设计方案,工程代码可综合编译上板调试,可直接项目移植,适用于在校学生、研究生项目开发,也适用于在职工程师做学习提升,可应用于医疗、军工等行业的高速接口或图像处理领域;
提供完整的、跑通的工程源码和技术支持;
工程源码和技术支持的获取方式放在了文章末尾,请耐心看到最后;

版本更新说明

此版本为第2版,根据读者的建议,对第1版工程做了如下改进和更新:
1:增加了输入视频动态彩条的选择,有的读者说他手里没有OV5640摄像头,或者摄像头原理图和我的不一致,导致在移植过程中困难很大,基于此,增加了动态彩条,它由FPGA内部产生,不需要外接摄像头就可以使用,使用方法在后文有说明,本例程板载的是HDMI输入接口,没有该接口的朋友可以选择使用动态彩条;
2:优化了FDMA,之前的FDMA内AXI4的数据读写突发长度为256,导致在低端FPGA上带宽不够,从而图像质量不佳,基于此,将FDMA内AXI4的数据读写突发长度改为128;
3:优化了UDP协议栈及其数据缓冲FIFO组的代码,并在博文里增加了这一部分的代码说明;
4:优化了整体代码架构,使得之前看起来杂乱无章的代码变得清爽简洁;

免责声明

本工程及其源码即有自己写的一部分,也有网络公开渠道获取的一部分(包括CSDN、Xilinx官网、Altera官网等等),若大佬们觉得有所冒犯,请私信批评教育;基于此,本工程及其源码仅限于读者或粉丝个人学习和研究,禁止用于商业用途,若由于读者或粉丝自身原因用于商业用途所导致的法律问题,与本博客及博主无关,请谨慎使用。。。

2、相关方案推荐

UDP视频传输–无缩放

我这里有与本博客相似的UDP视频传输方案,但他的输入视频没有进行缩放操作,而是直接缓存后送UDP协议栈输出,博客链接如下:直接点击前往

FPGA图像缩放方案

本博客使用到的图像缩放方案,是我之前发布过的一篇博文的内容,对该图像缩放部分感兴趣的可以参考,博客链接如下:直接点击前往

我这里已有的以太网方案

目前我这里有大量UDP协议的工程源码,包括UDP数据回环,视频传输,AD采集传输等,也有TCP协议的工程,还有RDMA的NIC 10G 25G 100G网卡工程源码,对网络通信有需求的兄弟可以去看看:直接点击前往
其中千兆TCP协议的工程博客如下:
直接点击前往

3、设计思路框架

FPGA工程设计框图如下:
在这里插入图片描述

视频源选择

视频源有两种,分别对应开发者手里有没有摄像头的情况,一种是使用板载的HDMI输入接口;另一种是如果你的手里没有摄像头,或者你的开发板没HDMI输入接口,则可使用代码内部生成的动态彩条模拟摄像头视频,视频源的选择通过代码顶层的宏定义进行,上电默认选择HDMI输入接口作为视频输入源;
视频源的选择通过代码顶层的`define宏定义进行;如下:
在这里插入图片描述
选择逻辑代码部分如下:
在这里插入图片描述
选择逻辑如下:
当(注释) define COLOR_IN时,输入源视频是动态彩条;
当(不注释) define COLOR_IN时,输入源视频是HDMI输入;

ADV7611 解码芯片配置及采集

ADV7611 解码芯片需要i2c配置才能使用,ADV7611 解码芯片配置及采集这两部分均用verilog代码模块实现,代码位置如下:
在这里插入图片描述
代码中配置为1920x1080分辨率;

动态彩条

动态彩条可配置为不同分辨率的视频,视频的边框宽度,动态移动方块的大小,移动速度等都可以参数化配置,我这里配置为辨率1920x1080,动态彩条模块代码位置和顶层接口和例化如下:
在这里插入图片描述
在这里插入图片描述

跨时钟FIFO

跨时钟FIFO的作用是为了解决跨时钟域的问题,当视频不进行缩放时不存在视频跨时钟域问题,但当视频缩小或放大时就存在此问题,用FIFO缓冲可以使图像缩放模块每次读到的都是有效的输入数据,注意,原视频的输入时序在这里就已经被打乱了;

图像缩放模块详解

因为我们的QT上位机目前只支持1280x720,所以才需要缩放,即从输入的1920x1080分辨率缩小为1280x720;用笔记本电脑模拟HDMI视频输入源;

设计框图

本设计将常用的双线性插值和邻域插值算法融合为一个代码中,通过输入参数选择某一种算法;代码使用纯verilog实现,没有任何ip,可在Xilinx、Intel、国产FPGA间任意移植;代码以ram和fifo为核心进行数据缓存和插值实现,设计架构如下:
在这里插入图片描述
视频输入时序要求如下:
在这里插入图片描述
输入像素数据在dInValid和nextDin同时为高时方可改变;
视频输出时序要求如下:
在这里插入图片描述
输出像素数据在dOutValid 和nextdOut同时为高时才能输出;

代码框图

代码使用纯verilog实现,没有任何ip,可在Xilinx、Intel、国产FPGA间任意移植;
图像缩放的实现方式很多,最简单的莫过于Xilinx的HLS方式实现,用opencv的库,以c++语言几行代码即可完成,关于HLS实现图像缩放请参考我之前写的文章HLS实现图像缩放
网上也有其他图像缩放例程代码,但大多使用了IP,导致在其他FPGA器件上移植变得困难,通用性不好;相比之下,本设计代码就具有通用性;代码架构如图;
在这里插入图片描述
其中顶层接口部分如下:
在这里插入图片描述

2种插值算法的整合与选择

本设计将常用的双线性插值和邻域插值算法融合为一个代码中,通过输入参数选择某一种算法;
具体选择参数如下:

input  wire i_scaler_type //0-->bilinear;1-->neighbor

通过输入i_scaler_type 的值即可选择;

输入0选择双线性插值算法;
输入1选择邻域插值算法;

关于这两种算法的数学差异,请参考我之前写的文章HLS实现图像缩放

UDP协议栈

本UDP协议栈方案需配合Xilinx的Tri Mode Ethernet MAC三速网IP一起使用,使用UDP协议栈网表文件,虽看不见源码但可正常实现UDP通信,该协议栈目前并不开源,只提供网表文件,但不影响使用,该协议栈带有用户接口,使得用户无需关心复杂的UDP协议而只需关心简单的用户接口时序即可操作UDP收发,非常简单;
协议栈架构如下:
在这里插入图片描述
协议栈性能表现如下:
1:支持 UDP 接收校验和检验功能,暂不支持 UDP 发送校验和生成;
2:支持 IP 首部校验和的生成和校验,同时支持 ICMP 协议中的 PING 功能,可接收并响应同一个子网内部设备的 PING 请求;
3:可自动发起或响应同一个子网内设备的 ARP 请求,ARP 收发完全自适应。ARP 表可保存同一个子网内部256 个 IP 和 MAC 地址对;
4:支持 ARP 超时机制,可检测所需发送数据包的目的 IP 地址是否可达;
5:协议栈发送带宽利用率可达 93%,高发送带宽下,内部仲裁机制保证 PING 和 ARP 功能不受任何影响;
6:发送过程不会造成丢包;
7:提供64bit位宽AXI4-Stream形式的MAC接口,可与Xilinx官方的千兆以太网IP核Tri Mode Ethernet MAC,以及万兆以太网 IP 核 10 Gigabit Ethernet Subsystem、10 Gigabit Ethernet MAC 配合使用;
有了此协议栈,我们无需关心复杂的UDP协议的实现了,直接调用接口即可使用。。。
本UDP协议栈用户接口发送时序如下:
在这里插入图片描述
本UDP协议栈用户接口接收时序如下:
在这里插入图片描述

UDP视频数据组包

实现UDP视频数据的组包,UDP数据发送必须与QT上位机的接受程序一致,上位机定义的UDP帧格式包括帧头个UDP数据,帧头定义如下:
在这里插入图片描述
FPGA端的UDP数据组包代码必须与上图的数据帧格式对应,否则QT无法解析,代码中定义了数据组包状态机以及数据帧,如下:
在这里插入图片描述
另外,由于UDP发送是64位数据位宽,而图像像素数据是24bit位宽,所以必须将UDP数据重新组合,以保证像素数据的对齐,这部分是整个工程的难点,也是所有FPGA做UDP数据传输的难点;

UDP协议栈数据发送

UDP协议栈具有发送和接收功能,但这里仅用到了发送,此部分代码架构如下:
在这里插入图片描述
UDP协议栈代码组我已经做好,用户可直接拿去使用;

UDP协议栈数据缓冲

这里对代码中用到的数据缓冲FIFO组做如下解释:
由于 UDP IP 协议栈的 AXI-Stream 数据接口位宽为 64bit,而 Tri Mode Ethernet MAC 的 AXI-Stream数据接口位宽为 8bit。因此,要将 UDP IP 协议栈与 Tri Mode Ethernet MAC 之间通过 AXI-Stream 接口互联,需要进行时钟域和数据位宽的转换。实现方案如下图所示:
在这里插入图片描述
收发路径(本设计只用到了发送)都使用了2个AXI-Stream DATA FIFO,通过其中1个FIFO实现异步时钟域的转换,1个FIFO实
现数据缓冲和同步Packet mode功能;由于千兆速率下Tri Mode Ethernet MAC的AXI-Stream数据接口同步时钟信号为125MHz,此时,UDP协议栈64bit的AXI-Stream数据接口同步时钟信号应该为125MHz/(64/8)=15.625MHz,因此,异步
AXI-Stream DATA FIFO两端的时钟分别为125MHz(8bit),15.625MHz(64bit);UDP IP协议栈的AXI-Stream接口经过FIFO时钟域转换后,还需要进行数据数据位宽转换,数据位宽的转换通过AXI4-Stream Data Width Converter完成,在接收路径中,进行 8bit 到 64bit 的转换;在发送路径中,进行 64bit 到 8bit 的转换;

IP地址、端口号的修改

UDP协议栈留出了IP地址、端口号的修改端口供用户自由修改,位置如下:
在这里插入图片描述

Tri Mode Ethernet MAC

Tri Mode Ethernet MAC主要是为了适配1G/2.5G Ethernet PCS/PMA or SGMII,因为后者的输入接口是GMII,而Tri Mode Ethernet MAC的输入接口是AXIS,输出接口是GMII,Tri Mode Ethernet MAC配置如下:
在这里插入图片描述
在这里插入图片描述

1G/2.5G Ethernet PCS/PMA or SGMII

1G/2.5G Ethernet PCS/PMA or SGMII在这里充当了网络变压器的角色,所以不需要外接例如RTL8211、B50610等PHY,1G/2.5G Ethernet PCS/PMA or SGMII配置为1G,其与MAC的接口为GMII,配置如下:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

QT上位机和源码

我们提供和UDP通信协议相匹配的QT抓图显示上位机及其源代码,目录如下:
在这里插入图片描述
我们的QT目前仅支持1280x720分辨率的视频抓图显示,但同时预留了1080P接口,对QT开发感兴趣的朋友可以尝试修改代码以适应1080P,因为QT在这里只是验证工具,不是本工程的重点,所以不再过多赘述,详情请参考资料包的QT源码,位置如下:
在这里插入图片描述

4、vivado工程详解

开发板FPGA型号:Xilinx–Artix7–xc7a35tfgg484-2;
开发环境:Vivado2019.1;
输入:HDMI或动态彩条,分辨率1920x1080;
输出:SFP光口;
工程作用:FPGA基于1G/2.5G Ethernet PCS/PMA or SGMII实现 UDP 网络视频传输;
工程BD如下:
在这里插入图片描述
工程代码架构如下:
在这里插入图片描述
工程的资源消耗和功耗如下:
在这里插入图片描述

5、工程移植说明

vivado版本不一致处理

1:如果你的vivado版本与本工程vivado版本一致,则直接打开工程;
2:如果你的vivado版本低于本工程vivado版本,则需要打开工程后,点击文件–>另存为;但此方法并不保险,最保险的方法是将你的vivado版本升级到本工程vivado的版本或者更高版本;
在这里插入图片描述
3:如果你的vivado版本高于本工程vivado版本,解决如下:
在这里插入图片描述
打开工程后会发现IP都被锁住了,如下:
在这里插入图片描述
此时需要升级IP,操作如下:
在这里插入图片描述
在这里插入图片描述

FPGA型号不一致处理

如果你的FPGA型号与我的不一致,则需要更改FPGA型号,操作如下:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
更改FPGA型号后还需要升级IP,升级IP的方法前面已经讲述了;

其他注意事项

1:由于每个板子的DDR不一定完全一样,所以MIG IP需要根据你自己的原理图进行配置,甚至可以直接删掉我这里原工程的MIG并重新添加IP,重新配置;
2:根据你自己的原理图修改引脚约束,在xdc文件中修改即可;
3:纯FPGA移植到Zynq需要在工程中添加zynq软核;

6、上板调试验证并演示

准备工作

首先连接开发板和电脑,开发板端连接后如下图:
在这里插入图片描述
然后将你的电脑IP地址改为和代码里规定的IP一致,当然,代码里的IP是可以任意设置的,但代码里的IP修改后,电脑端的IP也要跟着改,我的设置如下:
在这里插入图片描述

ping一下

在开始测试前,我们先ping一下,测试UDP是否连通,如下:
在这里插入图片描述

静态演示

HDMI输入1920x1080缩小到1280x720后UDP网络传输QT上位机显示如下:
在这里插入图片描述
动态彩条1920x1080缩小到1280x720后UDP网络传输QT上位机显示如下:
在这里插入图片描述

动态演示

动态视频演示如下:

FPGA-SFP-UDP-1G-HDMI

7、福利:工程源码获取

福利:工程代码的获取
代码太大,无法邮箱发送,以某度网盘链接方式发送,
资料获取方式:私,或者文章末尾的V名片。
网盘资料如下:
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1105222.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

从0到1,申请cos服务器并上传图片到cos文件服务器

目录 准备工作 Java代码编写 控制台打印 整理成工具类 编写接口 Postman测试 准备工作 1.进入网址腾讯云 产业智变云启未来 - 腾讯 (tencent.com) 2.搜索cos,点击立即使用,刚开始会免费赠送你 3.存储都是基于桶的,先创建桶,在桶里面创…

【C++】多态 -- 详解

⚪前言 声明一下,下面的代码和解释都是在 VS2019 下的 X86 程序中进行的,涉及的指针都是 4 bytes。如果要其他平台下,部分代码需要改动。比如:如果是 X64 程序,则需要考虑指针是 8 bytes 问题等等。其它编译环境下&…

TCP/IP(十八)TCP 实战抓包分析(二)TCP 三次握手和四次挥手

一 TCP三次握手和四次挥手 说明: 本文三次握手和四次挥手 无异常情况下的分析目标: 通过抓取和分析 HTTP 协议网络包,理解 TCP 三次握手和四次挥手的工作原理 ① 抓包和测试准备 1、 服务端事先执行 tcpdump 抓包 --> 172.25.2.100tcpdump -i b…

VMware 虚拟机里连不上网的解决方案

解决办法一: 虚拟机设置里,找到“网络适配器”,右边的网络连接选择“NAT 模式”,如果不行的话再 linux系统。还是不行的话接着看第二种解决方案。 解决方法二: 可能原因是VMware NET Service服务没开 win R,输入&a…

CSS 笔记/练习

CSS 概述 与 html 配合,实现内容与样式分离样式美化 标签中元素作用 class:class属性用于为元素指定一个或多个样式类。通过为元素添加class属性,可以将其与CSS样式表中的样式规则关联起来,从而改变元素的外观和行为。一个元素可…

Confluence 解决PDF导出乱码问题

1.原因 PDF导出乱码是因为由于服务器缺少必要字体 2.解决办法 下载字体文件将字体文件重命名为simhei.ttf Confluence→管理→PDF导出语言支持,导入字体即可

sqlalchemy更新json 字段的部分字段

需求描述: 我们有个json字段,存储的数据形如下,现在需要修改love {"dob":"21","subject":{"love":"programming"}}工程结构 main.py from sqlalchemy import Column, String, Integer,c…

微信公众号如何变更为订阅号?

公众号迁移有什么作用?只能变更主体吗?大家都知道,微信公众号是不支持直接变更主体的;但是很多情况下,我们又不得不进行账号主体的更换;这时候,我么就可以通过账号迁移功能,将A公众号…

图像抓取代码示例

以下是一个使用luasocket-http库的Lua下载器程序,用于下载图像。此程序使用了https://www.duoip.cn/get_proxy的代码。 -- 引入luasocket和luasocket-http库 local socket require("socket") local http require("http") ​ -- 获取代理服务…

Java入门GUI第一章

Java入门GUI第一章 一.简介 GUI的核心技术:Swing AWT 现在GUI逐渐被淘汰,因为: 界面不美观需要jre环境 为什么我们要学习? 可以写出自己想要的小工具工作时候可能会遇到维护Swing界面,概率特别小!了…

「蓝桥·算法双周赛」第一场公开赛【待补题填坑】

三带一【算法赛】 - 蓝桥云课 (lanqiao.cn) 给定四个字符&#xff0c;判断是否其中有三个相同&#xff0c;另一个与他们不同 #include <bits/stdc.h> void solve() {std::string s;std::cin>>s;char as[0],bs[1],cs[2],ds[3];if(ab&&ac&&a!d) std:…

AdaInf: Data Drift Adaptive Scheduling 阅读笔记

论文原文链接 文章目录 摘要一、背景、动机和主要贡献背景动机主要问题研究挑战 主要贡献 二、实验分析数据漂移对准确性的影响推理的早期退出结构最优请求批处理大小GPU内存通信 三、AdaInf系统设计概览数据漂移感知再训练-推理DAG生成决定数据漂移影响生成再训练推理DAG 数据…

【LeetCode75】第七十三题 用最少数量的箭引爆气球

目录 题目&#xff1a; 示例&#xff1a; 分析&#xff1a; 代码&#xff1a; 题目&#xff1a; 示例&#xff1a; 分析&#xff1a; 本题和上一题基本一样&#xff0c;上一题是要我们尽量让区间不重叠&#xff0c;而本题是要我们尽量让区间重叠。 所以我们的做法和上一题…

3D Web轻量化工具HOOPS Web Platform助力Rapid DCS快速上市碳估算产品!

总部位于英国的Rapid DCS提供全面的交钥匙解决方案和服务&#xff0c;帮助建筑环境领域的客户充分利用数字化的优势。 Rapid DCS技术总监James Hunter表示&#xff1a;“如今的建筑项目需要一套与20甚至10年前的建筑项目不同的功能。” “例如&#xff0c;虽然成本规划一直很重…

每日汇评:随着上升趋势的恢复,黄金在1950美元上方等待破位

周三早间&#xff0c;黄金价格逼近1950美元&#xff0c;买家纷纷出手&#xff1b; 尽管市场情绪谨慎&#xff0c;但美元与美债交投疲弱&#xff0c;中国的乐观情绪逐渐消退&#xff1b; 金价重拾200日移动均线&#xff0c;但料持续升穿1950美元&#xff1b; 金价正从每盎司1943…

E056-web安全应用-File Inclusion文件包含漏洞进阶

课程名称&#xff1a; E056-web安全应用-File Inclusion文件包含漏洞进阶 课程分类&#xff1a; web安全应用 --------------------------------------------------------------------------------------------------------------------------------- 实验等级: 中级 任…

Python批量替换文件中内容,效率加倍

文章目录 我遇到的问题解决代码我遇到的问题 由于我的SQL文件太大了,手动去替换估计累死…所以需要一个批量替换。其它类似问题,同理处理。 解决代码 # 定义要替换的内容 replacements = {utf8mb4_0900_ai_ci: utf8_general_ci,utf8mb4: utf8 }# 读取文件内容 with open<…

积分球荧光光谱测试光电检测方式有哪些优点?

积分球荧光光谱测试是一种测量光通量的方法&#xff0c;其基本原理是将待测光源放入积分球中&#xff0c;在积分球内壁涂以白色漫反射层&#xff0c;光源发出的光经球壁多次反射后&#xff0c;使整个球壁上的照度均匀分布&#xff0c;再通过球壁上的孔投射到光电探测器上的光通…

Databend hash join spill 设计与实现 | Data Infra 第 16 期

本周六&#xff0c;我们将迎来最新一期的 Data Infra 直播活动&#xff0c;本次活动我们邀请到了 Databend 研发工程师-王旭东&#xff0c;与大家分享主题为《 Databend hash join spill 设计与实现 》的相关知识。 通过本次分享&#xff0c;我们能更加了解 Databend 的 hash …

[发轫之始 百尺竿头] 家多彩居家供应链001号旗舰店正式开业

发轫之始不负期待 家多彩居家供应链001号旗舰店开业盛典于2023年10月17日上午10时18分盛大开幕&#xff0c;家多彩居家供应链品牌经过3个月的沉淀发展&#xff0c;积极探索赛道壁垒、不断尝试创新模式&#xff0c;始终坚持“数字驱动”之路&#xff0c;为广大装修业主筑就一站…