Improving Generalization with Domain Convex Game

news2024/12/26 23:26:52

文章目录

  • Abstract
  • Introduction
    • Contributions
  • Related Work
    • Domain Generalization
    • Convex Game
    • Meta Learning
  • Domain Convex Game

使用域凸策略改进领域泛化

Abstract

Domain generalization (DG) tends to alleviate the poor generalization capability of deep neural networks by learning model with multiple source domains.

领域泛化,旨在通过训练多源域的模型来减轻神经网络的低泛化能力

A classical solution to DG is domain augmentation, the common belief of which is that diversifying source domains will be conducive to the out-of-distribution generalization.

DG的通常做法是 领域增强,这种做法认为多样化源域对分布外泛化有益

However, these claims are understood intuitively, rather than mathematically.

重点:只凭直觉理解,而非数学证明

Our explorations empirically reveal that the correlation between model generalization and the diversity of domains may be not strictly positive, which limits the effectiveness of domain augmentation

本篇工作揭示了模型泛化和领域多样性之间可能不是严格正向关系,因此对领域增强产生限制

Introduction

A common belief is that generalizable models would become easier to learn when the training distributions become more diverse, which has been also emphasized by a recent work [47].

通常认为,泛化模型可以在训练分布更多样地情况下更容易地训练,这在最近的一些工作中被证明过。

Notwithstanding the promising results shown by this strand of approaches, the claims above are vague and lack of theoretical justification, formal analyses of the relation between domain diversity and model generalization are sparse.

尽管这些方法证明了结果实现的希望,但这些说法都是模糊、缺少理论证明的,缺少领域多样和模型泛化的正式相关性分析

Further, the transfer of knowledge may even hurt the performance on target domains in some cases, which is referred to as negative transfer [33, 41].

此外,知识转移很可能在某些情况下阻碍目标域的性能

Thus the relation of domain diversity and model generalization remains unclear. In light of these points, we begin by considering the question: The stronger the domain diversity, will it certainly help to improve the model generalization capability?

因此,领域多样性和模型泛化的关联始终不清晰。

开始考虑:领域越多样,一定可以帮助提升模型泛化能力?

The results presented in Fig 1 show that with the increase of domain diversity, the model generalization (measured by the accuracy on unseen target domain) may not necessarily increase, but sometimes decreases instead, as the solid lines show.

fig1显示随着提升领域多样性,模型泛化性能可能不升反降

image-20231015144821143

On the one hand,this may be because the model does not best utilize the rich information of diversified domains; on the other hand, it may be due to the existence of low-quality samples which contain redundant or noisy information that is unprofitable to generalization [18].

一方面,可能是模型可能并没有最有效地利用多样化后地丰富资源;

另一方面,可能是包含大量低质量样本或不利于泛化地噪声信息

This discovery indicates that there is still room for improvement of the effectiveness of domain augmentation if we enable each domain to be certainly conducive to model generalization as the dash lines in Fig 1.

如果使每个域如fig1中实线那样对模型泛化有益,那么领域增强还是有提升空间的

In this work, we therefore aim to ensure the strictly positive correlation between model generalization and domain diversity to guarantee and further enhance the effectiveness of domain augmentation.h

本文旨在确保模型泛化和领域多样性的严格正相关性,并进一步提升领域增强的效果

To do this, we take inspiration from the literature of convex game that requires each player to bring profit to the coalition [4, 13, 40], which is consistent to our key insight, i.e, make each domain bring benefit to model generalization.

从凸博弈汲取灵感:(比如)使每个域对模型泛化有益

This regularization encourages each diversified domain to contribute to improving model generalization, thus enables the model to better exploit the diverse information.

这个正则化推动每个多样化后的域对提升模型泛化做贡献,使得模型能够更有效地利用多样化信息

In the meawhile, considering that there may exist samples with unprofitable or even harmful information to generalization, we further construct a sample filter based on the proposed regularization to get rid of the low-quality samples such as noisy or redundant ones, so that their deterioration to model generalization can be avoided.

同时,考虑到可能存在没有利用价值的样本,或者对泛化性能有弊的样本,因此进一步构建了基于提出的正则化而构建的样本分类器,来避免低质量的噪声样本或者数量过多的一类,从而避免他们对模型泛化的恶化

Thus, the limit of our regularization optimization is actually to achieve a constant marginal contribution, rather than an impracticable increasing marginal contribution.

正则优化的极限是实现一个恒定的边际贡献,而不是实现不切实际的上升边际贡献

Contributions

(i) Exploring the relation of model generalization and source domain diversity, which reveals the limit of previous domain augmentation strand;

探索模型泛化和源域多样性之间的相关性,揭示了先前领域增强链的局限

(ii) Introducing convex game into DG to guarantee and further enhance the validity of domain augmentation. The proposed framework encourages each domain to conducive to generalization while avoiding the negative impact of low-quality samples, enabling the model to better utilize the information within diversified domains;

将凸博弈引入DG,保证并进一步提高领域增强的有效性。提出的框架支持在避免低质量消极样本的情况下对泛化性能有益,从而使得多样化后的域更好地利用信息

(iii) Providing heuristic analysis and intuitive explanations about the rationality. The effectiveness and superiority are verified empirically across extensive real-world datasets.

对合理性提供启发式分析和直觉式探索,通过广泛的真实世界数据集验证了方法的有效性和先进性。

Related Work

Domain Generalization

Domain Generalization researches out-of-distribution generalization with knowledge only extracted from multiple source domains.

领域泛化研究的是只是多源的分布外泛化

L2AOT [54] creates pseudo-novel domains from source data by maximizing an optimal transport-based divergence measure.

从源域最大化基于传输的差异优化

CrossGrad [39] generates samples from fictitious domains via gradient-based domain perturbation while AdvAug [46] achieves so via adversarially perturbing images.

CrossGrad 通过基于梯度的领域扰动从人工领域中生成样本

AdvAug 通过对抗扰动图像 实现相同

MixStyle [56] and FACT [48] mix style information of different instances to synthetic novel domains.

MixStyle 和 FACT 混合不同实例的风格信息到综合的新域中

Instead of enriching domain diversity, another popular solution that learning domain-invariant representations by distribution alignment via kernel-based optimization [8, 30], adversarial learning [22, 29], or using uncertainty modeling [24] demonstrate effectiveness for model generalization.

不同于富态领域的多样性,新方法:通过基于核优化、对比学习,或者使用不确定建模的分布对齐来学习零域不变表征,来证明模型泛化的有效性

Convex Game

A game is called convex when it satisfies the condition that the profit obtained by the cooperation of two coalitions plus the profit obtained by their intersection will not be less than the sum of profit obtained by the two respectively (a.k.a. supermodularity) [4, 13, 40].

小结:1+1>2

Co-Mixup [15] formulates the optimal construction of mixup augmentation data while encouraging diversity among them by introducing supermodularity.

co-mixup 支持在混合增强数据中引入超模博弈来制定最优结构

To the best of our knowledge, this work is the first to introduce convex game into DG to enhance generalization capability.

本文第一个在DG中引入凸博弈来增强泛化能力

Meta Learning

pass

Domain Convex Game

Domain Convex Game (DCG)

域凸博弈

First, we cast DG as a convex game between domains and design a novel regularization term employing the supermodularity, which encourages each domain to benefit model generalization.

首先,将DG映射到一个介于域和使用超模博弈设计新式正则的凸博弈中,这种博弈能够使每个域从模型泛化中受益

Further, we construct a sample filter based on the regularization to exclude bad samples that may cause negative effect on generalization.

接着,构建一个基于正则来排除可能对泛化产生负面影响样本的样本分类器

image-20231016143322777

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1098041.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

在自己的摄像头上测试ORB_SLAM3

文章目录 硬件相机标定IMU标定依赖编译可能遇到的问题 硬件 x86电脑realsense d435i相机 相机标定 IMU标定 依赖 Ceres # CMake sudo apt-get install cmake # google-glog gflags sudo apt-get install libgoogle-glog-dev libgflags-dev # BLAS & LAPACK sudo apt…

STM32 外部中断

STM32 外部中断 中断系统 中断:在主程序运行过程中,出现了特定的中断触发条件(中断源),使得CPU暂停当前正在运行的程序,转而去处理中断程序,处理完成后又返回原来被暂停的位置继续运行 中断就是…

ABeam ESG News | 深化校企合作,ABeam中国ESG与可持续发展负责人做客上海财经大学ESG主题讲座回顾

ABeam上海财经大学 近日,ABeam中国ESG与可持续发展负责人杨丽楠女士受邀来到上海财经大学,作为外语学院30周年院庆系列学术活动的分享嘉宾,为近200名学生开展了ESG主题专场讲座。本次讲座探讨了ESG(环境、社会和治理)因…

使用CFimagehost源码搭建无需数据库支持的PHP免费图片托管私人图床

文章目录 1.前言2. CFImagehost网站搭建2.1 CFImagehost下载和安装2.2 CFImagehost网页测试2.3 cpolar的安装和注册 3.本地网页发布3.1 Cpolar临时数据隧道3.2 Cpolar稳定隧道(云端设置)3.3.Cpolar稳定隧道(本地设置) 4.公网访问测…

前端实现锥形渐变

锥形渐变 使用conic-gradient即可解决 渐变效果 width: 150px 和 height: 150px 设置元素的宽度和高度为 150 像素,使其呈现为一个正方形。border-radius: 50% 设置元素的圆角半径为 50%,使其呈现为一个圆形。border: 2px solid #000 设置元素的边框为…

研发效能认证学员作品:如何做好敏捷实践丨IDCF

作者:徐渊峰(现就职兴业数字金融服务(上海)股份有限公司 研发管理部) 研发效能(DevOps)工程师(中级)认证、A-CSM认证、ITIL4 认证、信息系统项目管理师 引言 有句话是…

k8s-16 k8s调度

调度器通过 kubernetes 的 watch 机制来发现集群中新创建且尚未被调度到 Node上的 Pod。调度器会将发现的每一个未调度的 Pod 调度到一个合适的 Node 上来运行。 kube-scheduler 是 Kubernetes 集群的默认调度器,并且是集群控制面的一部分如果你真的希望或者有这方面…

跳过开屏广告

前段时间各大知名启屏广告自动跳过 APP,诸如李跳跳、叮小跳、蹦跶、大圣净化、一指禅等因收到律师函而停止更新维护的事情闹得人心惶惶 不少粉丝就开始担心起来「今后怎么办啊?」的问题 My My Love,Joshua Radin - Wax Wings 1 自定义规则 虽然 APP 被迫下架这事令人神伤,…

超多目标演化算法及其应用研究

超多目标优化的分类 基于算法的核心思想,我们将超多目标演化方法分为以下几类: 基于松弛的支配定义的方法(Relaxed domainance )、试图通过放松传统的支配定义来提升算法的选择压力 基于多样性的方法(Diversity &…

HCIP第一课--HCIA复习

目录 1. OSI 模型 OSI 模型: 开放式系统互联参考模型 2. 网络名词注解: 【1】封装,解封装 【2】TCP/IP: 【3】IEEE802.3数据链路层分类: 【4】访问一个谷歌(百度)服务器的流程? 【5】DHCP…

【Linux】使用timer_create()创建定时器发送信号并使用sigaction()处理信号

0x00 前言 最后更新时间&#xff1a;2023-10-16 0x01 主要函数及结构体介绍 1.sigaction函数 #include <signal.h> int sigaction(int signum, const struct sigaction *act,struct sigaction *oldact);功能&#xff1a; 用于改变进程接收到特定信号后的行为。 参数…

【Linux】chown命令使用

Linux chown&#xff08;英文全拼&#xff1a;change owner&#xff09;命令用于设置文件所有者和文件关联组的命令。 Linux/Unix 是多人多工操作系统&#xff0c;所有的文件皆有拥有者。利用 chown 将指定文件的拥有者改为指定的用户或组&#xff0c;用户可以是用户名或者用户…

分享微信聊天记录备份的2个方法!

很多时候&#xff0c;我们可能会因为一些原因不小心把微信聊天记录给弄丢&#xff0c;比如&#xff1a;卸载微信、清理了微信缓存、手滑误删、删除了微信好友等等。这对于常年使用微信的用户来说&#xff0c;无疑是一件头疼的事情。 为了防止意外发生导致数据丢失&#xff0c;…

Idea安装和使用教程

在本文中&#xff0c;我们将提供关于如何安装 IntelliJ IDEA 的详细步骤。如果您是初学者或只是想尝试一下 IDEA&#xff0c;我们建议您下载 Community 版。如果您需要更多高级功能&#xff0c;可以选择 Ultimate 版。 步骤一&#xff1a;下载 IntelliJ IDEA 首先&#xff0c;…

什么是运输报告?海运运输鉴定报告必须提供吗?MSDS+UN38.3报告是?

什么是运输报告&#xff1f;海运运输鉴定报告必须提供吗&#xff1f;MSDSUN38.3报告是&#xff1f; 什么是运输报告&#xff1f;海运运输鉴定报告必须提供吗&#xff1f;MSDSUN38.3报告是什么有什么区别&#xff1f; 运运输鉴定报告必须提供吗&#xff1f;一般MSDS、货物运输…

虹科方案 | 加州理工学院利用HK-TrueNAS开展地震研究

文章来源&#xff1a;虹科网络基础 阅读原文&#xff1a;https://mp.weixin.qq.com/s/jDzfSD4Px8sWecDyK8FiVw 客户背景 加州理工学院(CalTech)是世界顶尖的理工类科学研究型学府之一。加州理工学院地震实验室是加州理工学院地质与行星科学部(GPS)的一个分支机构&#xff0c;成…

云安全—云计算基础

0x00 前言 学习云安全&#xff0c;那么必然要对云计算相关的内容进行学习和了解&#xff0c;所以云安全会分为两个部分来进行&#xff0c;首先是云计算先关的内容。 0x01 云计算 广泛传播 云计算最早大范围传播是2006年&#xff0c;8月&#xff0c;在圣何塞【1】举办的SES&a…

40.同时最大在线人数问题求解(炸裂map)

思路分析&#xff1a; &#xff08;1&#xff09;对登录、登出数据构建map结构map(1, login_ts, -1, logout_ts)&#xff0c;使用炸裂函数对该map做炸裂处理 &#xff08;2&#xff09;炸裂后成为了两列&#xff0c;一列存储1or-1表示登录登出&#xff08;k&#xff09;&#x…

C++指针解读(9)-- void指针和NULL

1、void指针的概念 void * 这种指针称为“空类型指针”&#xff0c;它不指向任何具体类型的数据&#xff0c;只提供一个纯地址。void 指针必须强制类型转换成具体类型的指针才有意义。 int i 3; void* p &i;//printf(" %d\n", *p); //报错 printf(" %d\…