【Retinex theory】【图像增强】-笔记

news2025/1/25 9:21:26

1 前言

retinex 是常见的图像增强的方法,retinex 是由两个单词合成的:retina + conrtex ,即视网膜+皮层。

2 建立的基础

Land 的 retinex theory 建立在三个假设之下:

  1. 真实世界是无色的,我们所谓的颜色是光和物质相互作用的结果。
  2. 每一颜色区域由给定波长的红、绿、蓝三原色构成。
  3. 每个单位区域的颜色由三原色决定。

3 算法理论的发展

  1. 单尺度 Retinex 算法 SSR (single scale retinex)
  2. 多尺度加权平均 Retinex 算法 MSR (multi-scale retinex)
  3. 带彩色恢复的多尺度 Retinex 算法 MSRCR(multi-scale retinex with color restoration)

4 算法理论

  1. 物体的颜色由物体对长波、中波、短波广西的反射能力决定,与反射光强度的绝对值无关。
  2. 物体的色彩不受光照非均性影响,具有一致性。即,retinex 以色感一致性(颜色恒常性)为基础。
  3. 不同于传统的线性、非线性的只能增强图像某一类特征的方法,Retinex可以在动态范围压缩、边缘增强和颜色恒常三个方面达到平衡,因此可以对各种不同类型的图像进行自适应的增强。

Retinex theory 认为图像 I ( x , y ) I(x,y) I(x,y)由两幅不同的图像构成:入射图像(亮度图像) L ( x , y ) L(x,y) L(x,y) + 反射图像 R ( x , y ) R(x,y) R(x,y)
入射光照射到反射物体上,通过物体的反射,形成反射光进入人眼,最后形成图像。
用公式表示就是: I ( x , y ) = L ( x , y ) ∗ R ( x , y ) I(x,y)=L(x,y)*R(x,y) I(x,y)=L(x,y)R(x,y)
其中, L ( x , y ) L(x, y) L(x,y)表示入射光图像,环境光的照射分量,它直接决定了图像中像素所能达到的动态范围,应当尽量去除。 R ( x , y ) R(x,y) R(x,y)表示了物体的反射性质,即图像的内在属性,应尽量的保留。 I ( x , y ) I(x,y) I(x,y)表示人眼所能接收到的反射光图像。
L ( x , y ) L(x,y) L(x,y)的输入是光源的位置、强度、颜色,输出是物体表面上不同位置的照亮值。
R ( x , y ) R(x,y) R(x,y)的输入是物体表面的材质、颜色、法线,输出是表面不同位置的反射率和颜色。
在这里插入图片描述
Retinex 理论的基本思想:在原始图像中,通过某种方法去除或者降低入射图像 L ( x , y ) L(x,y) L(x,y)的影响,从而尽量的保留物体本质的反射属性图像 R ( x , y ) R(x,y) R(x,y)
基于Retinex的图像增强的目的:从原始图像S中估计出光照L,从而分解出R,消除光照不均的影响,以改善图像的视觉效果,正如人类视觉系统那样。
根据亮度图像 L ( x , y ) L(x,y) L(x,y)估计方法的不同,先后涌现出了很多Retinex算法。

5 处理步骤

原理:

  1. 利用取对数的方法将照射光的分量与反射光分量分离:
    l o g ( I ( x , y ) ) = l o g ( L ( x , y ) ) + l o g ( R ( x , y ) ) log(I(x,y))=log(L(x,y))+log(R(x,y)) log(I(x,y))=log(L(x,y))+log(R(x,y))
    (因为对数形式与人类在感受亮度的过程属性最相近)
  2. 用高斯模板对图像做卷积,近似获得入射图像 L ( x , y ) L(x,y) L(x,y)
  3. 使用步骤1的公式,获得反射图像 R ( x , y ) = e x p ( l o g ( I ( x , y ) ) − l o g ( L ( x , y ) ) ) R(x,y)=exp(log(I(x,y))-log(L(x,y))) R(x,y)=exp(log(I(x,y))log(L(x,y)))
  4. R ( x , y ) R(x,y) R(x,y)做对比度增强,得到最终的结果图像。

实际操作:

  1. 用高斯模板对原图像做卷积,相当于对原图做低通滤波,得到低通滤波后的图像D(x,y),其中F(x,y)表示高斯滤波函数。
    D ( x , y ) = I ( x , y ) ∗ F ( x , y , σ ) D(x,y)=I(x,y)*F(x,y,σ) D(x,y)=I(x,y)F(x,y,σ)
  2. 在对数域中,用原图像减去低通滤波图像,得到高频增强的图像G(x,y)
    G ( x , y ) = l o g ( I ( x , y ) ) − l o g ( D ( x , y ) ) G(x,y)=log(I(x,y))-log(D(x,y)) G(x,y)=log(I(x,y))log(D(x,y))
  3. 对G(x,y)取反对数,得到增强后的图像:
    R ( x , y ) = e x p ( G ( x , y ) ) R(x,y)=exp(G(x,y)) R(x,y)=exp(G(x,y))
  4. R ( x , y ) R(x,y) R(x,y)做对比度增强,得到最终的结果图像。

6 SSR 算法

具体步骤如下:

  1. 输入原始图像 I ( x , y ) I(x,y) I(x,y) 和滤波的半径范围 s i g m a   σ sigma \ σ sigma σ ;
  2. 计算原始图像 I ( x , y ) I(x,y) I(x,y)高斯滤波后的结果,得到 L ( x , y ) L(x,y) L(x,y);
  3. 按照公式计算,得到 l o g [ R ( x , y ) ] log[R(x,y)] log[R(x,y)]
  4. 将得到的结果量化为 [0, 255] 范围的像素值,然后输出结果图像。

需要注意的是,最后一步量化的过程中,并不是将 l o g [ R ( x , y ) ] log[R(x,y)] log[R(x,y)] 进行 e x p exp exp 量化得到 R ( x , y ) R(x,y) R(x,y) ,而是直接将 l o g [ R ( x , y ) ] log[R(x,y)] log[R(x,y)] 的结果直接用如下公式进行量化:
R ( x , y ) = V a l u e − M i n M a x − M i n ∗ 255 R(x,y)=\frac{Value-Min}{Max-Min}*255 R(x,y)=MaxMinValueMin255


上述过程整合起来:
R S S R ( x , y , σ ) = l o g ( I ( x , y ) ) − l o g ( I ( x , y ) ∗ F ( x , y , σ ) ) R_{SSR}(x,y,σ)=log(I(x,y))-log(I(x,y)*F(x,y,σ)) RSSR(x,y,σ)=log(I(x,y))log(I(x,y)F(x,y,σ))
R 表示在对数域的输出。

7 MSR 算法

多尺度视网膜算法是在 SSR 算法的基础上提出的,采用多个不同的 s i g m a σ sigma σ sigmaσ值,然后将最后得到的不同结果进行加权取值,公式如下所示:
R M S R ( x , y , σ ) = ∑ k = 1 n w k R S S R k ( x , y , σ k ) R_{MSR}(x,y,σ)=\sum_{k=1}^nw_kR_{SSR_k}(x,y,σ_k) RMSR(x,y,σ)=k=1nwkRSSRk(x,y,σk)
其中 n n n 是尺度的数量, σ = σ 1 , σ 2 , . . . , σ n σ= {σ_1,σ_2,...,σ_n} σ=σ1,σ2,...,σn 是高斯模糊系数的向量, w k w_k wk是与第 k 个尺度相关的权重,其中 w 1 + w 2 + . . . + w n = 1 w_1 + w_2 + ... + w_n = 1 w1+w2+...+wn=1 。(权重一般都为1/N)

优点是可以同时保持图像高保真度与对图像的动态范围进行压缩的同时,MSR也可实现色彩增强、颜色恒常性、局部动态范围压缩、全局动态范围压缩,也可以用于X光图像增强。
一般的Retinex算法对光照图像估计时,都会假设初始光照图像是缓慢变化的,即光照图像是平滑的。但实际并非如此,亮度相差很大区域的边缘处,图像光照变化并不平滑。所以在这种情况下,Retinuex增强算法在亮度差异大区域的增强图像会产生光晕。
另外MSR常见的缺点还有边缘锐化不足,阴影边界突兀,部分颜色发生扭曲,纹理不清晰,高光区域细节没有得到明显改善,对高光区域敏感度小等。

8 MSRCR 算法

在前面的增强过程中,图像可能会因为增加了噪声,而使得图像的局部细节色彩失真,不能显现出物体的真正颜色,整体视觉效果变差。针对这一点不足,MSRCR在MSR的基础上,加入了色彩恢复因子C来调节由于图像局部区域对比度增强而导致颜色失真的缺陷:

R M S R C R ( x , y , σ ) = β l o g ( α I i ( x , y ) ∑ j = 1 3 I j ( x , y ) ) R M S P i ( x , y , σ ) R_{MSRCR}(x,y,σ)=βlog(\frac{αI_i(x,y)}{\sum_{j=1}^3I_j(x,y)})R_{MSP_i}(x,y,σ) RMSRCR(x,y,σ)=βlog(j=13Ij(x,y)αIi(x,y))RMSPi(x,y,σ)

  • I i ( x , y ) I_i(x, y) Ii(x,y) 表示第 i 个通道的图像
  • C i C_i Ci 表示第 i 个通道的彩色恢复因子,用来调节3个通道颜色的比例;
  • β 是增益常数;
  • α 是受控制的非线性强度;

MSRCR算法利用彩色恢复因子C,调节原始图像中3个颜色通道之间的比例关系,从而把相对较暗区域的信息凸显出来,达到了消除图像色彩失真的缺陷。
处理后的图像局部对比度提高,亮度与真实场景相似,在人们视觉感知下,图像显得更加逼真。

在这里插入图片描述

参考博文

1. csdn参考博文
2. 知乎参考博文
3. csdn参考博文

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1094390.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

VARMA模型的原理与实现

文章目录 1.多变量模型的基本思想2.VAR模型与VARMA模型3.VARMA模型的实现 1.多变量模型的基本思想 ​ 在现实和竞赛中,时序数据往往是多变量时间序列,我们往往需要借助除了时间之外的变量的帮助来完成预测。比如,如果我们需要预测居民消费支…

数据结构与算法--其他算法

数据结构与算法--其他算法 1 汉诺塔问题 2 字符串的全部子序列 3 字符串的全排列 4 纸牌问题 5 逆序栈问题 6 数字和字符串转换问题 7 背包问题 8 N皇后问题 暴力递归就是尝试 1,把问题转化为规模缩小了的同类问题的子问题 2,有明确的不需要继续…

yolov5+车辆重识别【附代码】

本篇文章主要是实现的yolov5和reid结合的车辆重识别项目。是在我之前实现的yolov5_reid行人重识别的代码上修改实现的baseline模型。 目录 相关参考资料 数据集说明 环境说明 项目使用说明 vehicle reid训练 yolov5车辆重识别 从视频中获取想要检测的车(待检测车辆) 车…

Attention Is All You Need原理与代码详细解读

文章目录 前言一、Transformer结构的原理1、Transform结构2、位置编码公式3、transformer公式4、FFN结构 二、Encode模块代码解读1、编码数据2、文本Embedding编码3、位置position编码4、Attention编码5、FFN编码 三、Decode模块代码解读1、编码数据2、文本Embedding与位置编码…

centos6/7 SOCKS5 堆溢出漏洞修复(RPM方式)curl 8.4 CVE-2023-38545 CVE-2023-38546

引用 https://darkdark.top/update-curl.html centos6 rpm 升级包下载:https://download.csdn.net/download/sinat_24092079/88425840 yum update libcurl-8.4.0-1.el6.1.x86_64.rpm curl-8.4.0-1.el6.1.x86_64.rpmcentos7 rpm 升级包下载:https://down…

ELF和静态链接:为什么程序无法同时在Linux和Windows下运行?

目录 疑问 编译、链接和装载:拆解程序执行 ELF 格式和链接:理解链接过程 小结 疑问 既然我们的程序最终都被变成了一条条机器码去执行,那为什么同一个程序,在同一台计算机上,在 Linux 下可以运行,而在…

Linux | 关于入门Linux你有必要了解的指令

目录 前言 1、ls指令 2、pwd指令 3、cd指令 4、touch指令 5、stat指令 6、mkdir指令 7、rmdir 与 rm指令 8、man指令 9、cp指令 10、mv指令 11、cat指令 (1)输入重定向 (2)输出重定向与追加重定向 12、less指令 1…

多模态模型文本预处理方式

句子级别 句子级别的表征编码一整个句子到一个特征中。如果一个句子有多个短语,提取这些短语丢弃其他的单词。 缺点:这种方式会丢失句子中细粒度的信息。 单词级别 将句子中的类别提取出来,结合成一个句子。 缺点:会在类别之…

【数据结构】线性表的抽象数据类型

🦄个人主页:修修修也 🎏所属专栏:数据结构 ⚙️操作环境:Visual Studio 2022 线性表抽象数据类型(LinearListAbstractDataType,简称 ADT)是一种非常重要的抽象数据类型,它是一种使用抽象的方式表示和实现一组数据元素的集合以及与…

宝塔面板服务器内存使用率高的三招解决方法

卸载多余PHP版本。假若安装了多个PHP版本,甚至把 php 5.3、5.4、7.0、7.3 全都安装上了,就会严重增加系统负载和内存使用率。 安装memcached 缓存组件,建议在宝塔面板后台直接安装。 卸载不常用软件。如:宝塔运维、宝塔一键安装…

php如何查找地图距离

要在PHP中使用高德地图、百度地图或腾讯地图获取位置信息,您可以使用它们的相应API服务。以下是获取位置信息的一般步骤: 思路: 获取API密钥:首先,您需要注册并获取相应地图服务提供商的API密钥。这将允许您访问他们的API以获取位…

CSS的美化(文字、背景) Day02

一、文字控制属性 分为:字体样式属性 、文本样式属性 1.1 CSS字体样式属性 1.color定义元素内文字颜色2.font-size 字号大小3 font-family 字体4 font-weight 字体粗细5.font-style 字体风格6.font 字体综合属性 1.1.1 > 文字颜色 color 属性名: color color …

Yakit工具篇:简介和安装使用

简介(来自官方文档) 基于安全融合的理念,Yaklang.io 团队研发出了安全领域垂直语言Yaklang,对于一些无法原生集成在Yak平台中的产品/工具,利用Yaklang可以重新编写 他们的“高质量替代”。对于一些生态完整且认可度较高的产品,Y…

C# CodeFormer 图像修复

效果 项目 代码 using Microsoft.ML.OnnxRuntime; using Microsoft.ML.OnnxRuntime.Tensors; using OpenCvSharp; using System; using System.Collections.Generic; using System.Drawing; using System.Drawing.Imaging; using System.Windows.Forms;namespace 图像修复 {p…

高校教务系统登录页面JS分析——南京邮电大学

高校教务系统密码加密逻辑及JS逆向 本文将介绍南京邮电大学教务系统的密码加密逻辑以及使用JavaScript进行逆向分析的过程。通过本文,你将了解到密码加密的基本概念、常用加密算法以及如何通过逆向分析来破解密码。 本文仅供交流学习,勿用于非法用途。 一…

C++标准模板(STL)- 类型支持 (数值极限,min_exponent10,max_exponent,max_exponent10)

数值极限 std::numeric_limits 定义于头文件 <limits> 定义于头文件 <limits> template< class T > class numeric_limits; numeric_limits 类模板提供查询各种算术类型属性的标准化方式&#xff08;例如 int 类型的最大可能值是 std::numeric_limits&l…

多个Python包懒得import,那就一包搞定!

使用Python时&#xff0c;有的代码需要依赖多个框架或库者来完成&#xff0c;代码开头需要import多次&#xff0c;比如&#xff0c; import pandas as pd from pyspark import SparkContext from openpyxl import load_workbook import matplotlib.pyplot as plt import seabo…

Java Day2(Java基础语法)

Java基础 Java基础语法1. 注释、关键字、标识符1.1 Java中的注释1.2 关键字1.3 标识符 2. 数据类型&#xff08;1&#xff09;基本类型&#xff08;primitive type&#xff09;a.字节b.进制c. 浮点数拓展d. 字符拓展 &#xff08;2&#xff09; 引用类型(Reference type ) 3. 类…

【软件测试】总结

文章目录 一. 测试用例1. 常见设计测试用例(1)非软件题型(2)软件题型(3)代码型题(4)关于个人项目设计测试用例 2. 万能公式和具体的方法如何理解(1)万能公式(2)Fiddler实现弱网模式(3)针对公交卡设计测试用例 3. 进阶设计测试用例 二. 自动化1. 什么是自动化以及为什么要做自动…

杀死僵尸进程ZooKeeperMain

关闭Hadoop后jps发现还有个进程ZooKeeperMain没有关闭&#xff0c;使用kill -9 <>也没有用&#xff0c;这种就是僵尸进程&#xff0c;需要用父进程ID来杀死 解决方法 话不多说&#xff0c;直接上解决方案&#xff0c; 1. 第一步 清楚需要关闭的进程ID&#xff0c;我…