竞赛选题 深度学习OCR中文识别 - opencv python

news2025/1/16 5:51:37

文章目录

  • 0 前言
  • 1 课题背景
  • 2 实现效果
  • 3 文本区域检测网络-CTPN
  • 4 文本识别网络-CRNN
  • 5 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 **基于深度学习OCR中文识别系统 **

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:4分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

1 课题背景

在日常生产生活中有大量的文档资料以图片、PDF的方式留存,随着时间推移 往往难以检索和归类 ,文字识别(Optical Character
Recognition,OCR )是将图片、文档影像上的文字内容快速识别成为可编辑的文本的技术。

高性能文档OCR识别系统是基于深度学习技术,综合运用Tensorflow、CNN、Caffe
等多种深度学习训练框架,基于千万级大规模文字样本集训练完成的OCR引擎,与传统的模式识别的技术相比,深度学习技术支持更低质量的分辨率、抗干扰能力更强、适用的场景更复杂,文字的识别率更高。

本项目基于Tensorflow、keras/pytorch实现对自然场景的文字检测及OCR中文文字识别。

2 实现效果

公式检测
在这里插入图片描述
纯文字识别

在这里插入图片描述

3 文本区域检测网络-CTPN

对于复杂场景的文字识别,首先要定位文字的位置,即文字检测。

简介
CTPN是在ECCV
2016提出的一种文字检测算法。CTPN结合CNN与LSTM深度网络,能有效的检测出复杂场景的横向分布的文字,效果如图1,是目前比较好的文字检测算法。由于CTPN是从Faster
RCNN改进而来,本文默认读者熟悉CNN原理和Faster RCNN网络结构。
在这里插入图片描述
相关代码

def main(argv):
    pycaffe_dir = os.path.dirname(__file__)

    parser = argparse.ArgumentParser()
    # Required arguments: input and output.
    parser.add_argument(
        "input_file",
        help="Input txt/csv filename. If .txt, must be list of filenames.\
        If .csv, must be comma-separated file with header\
        'filename, xmin, ymin, xmax, ymax'"
    )
    parser.add_argument(
        "output_file",
        help="Output h5/csv filename. Format depends on extension."
    )
    # Optional arguments.
    parser.add_argument(
        "--model_def",
        default=os.path.join(pycaffe_dir,
                "../models/bvlc_reference_caffenet/deploy.prototxt.prototxt"),
        help="Model definition file."
    )
    parser.add_argument(
        "--pretrained_model",
        default=os.path.join(pycaffe_dir,
                "../models/bvlc_reference_caffenet/bvlc_reference_caffenet.caffemodel"),
        help="Trained model weights file."
    )
    parser.add_argument(
        "--crop_mode",
        default="selective_search",
        choices=CROP_MODES,
        help="How to generate windows for detection."
    )
    parser.add_argument(
        "--gpu",
        action='store_true',
        help="Switch for gpu computation."
    )
    parser.add_argument(
        "--mean_file",
        default=os.path.join(pycaffe_dir,
                             'caffe/imagenet/ilsvrc_2012_mean.npy'),
        help="Data set image mean of H x W x K dimensions (numpy array). " +
             "Set to '' for no mean subtraction."
    )
    parser.add_argument(
        "--input_scale",
        type=float,
        help="Multiply input features by this scale to finish preprocessing."
    )
    parser.add_argument(
        "--raw_scale",
        type=float,
        default=255.0,
        help="Multiply raw input by this scale before preprocessing."
    )
    parser.add_argument(
        "--channel_swap",
        default='2,1,0',
        help="Order to permute input channels. The default converts " +
             "RGB -> BGR since BGR is the Caffe default by way of OpenCV."

    )
    parser.add_argument(
        "--context_pad",
        type=int,
        default='16',
        help="Amount of surrounding context to collect in input window."
    )
    args = parser.parse_args()

    mean, channel_swap = None, None
    if args.mean_file:
        mean = np.load(args.mean_file)
        if mean.shape[1:] != (1, 1):
            mean = mean.mean(1).mean(1)
    if args.channel_swap:
        channel_swap = [int(s) for s in args.channel_swap.split(',')]

    if args.gpu:
        caffe.set_mode_gpu()
        print("GPU mode")
    else:
        caffe.set_mode_cpu()
        print("CPU mode")

    # Make detector.
    detector = caffe.Detector(args.model_def, args.pretrained_model, mean=mean,
            input_scale=args.input_scale, raw_scale=args.raw_scale,
            channel_swap=channel_swap,
            context_pad=args.context_pad)

    # Load input.
    t = time.time()
    print("Loading input...")
    if args.input_file.lower().endswith('txt'):
        with open(args.input_file) as f:
            inputs = [_.strip() for _ in f.readlines()]
    elif args.input_file.lower().endswith('csv'):
        inputs = pd.read_csv(args.input_file, sep=',', dtype={'filename': str})
        inputs.set_index('filename', inplace=True)
    else:
        raise Exception("Unknown input file type: not in txt or csv.")

    # Detect.
    if args.crop_mode == 'list':
        # Unpack sequence of (image filename, windows).
        images_windows = [
            (ix, inputs.iloc[np.where(inputs.index == ix)][COORD_COLS].values)
            for ix in inputs.index.unique()
        ]
        detections = detector.detect_windows(images_windows)
    else:
        detections = detector.detect_selective_search(inputs)
    print("Processed {} windows in {:.3f} s.".format(len(detections),
                                                     time.time() - t))

    # Collect into dataframe with labeled fields.
    df = pd.DataFrame(detections)
    df.set_index('filename', inplace=True)
    df[COORD_COLS] = pd.DataFrame(
        data=np.vstack(df['window']), index=df.index, columns=COORD_COLS)
    del(df['window'])

    # Save results.
    t = time.time()
    if args.output_file.lower().endswith('csv'):
        # csv
        # Enumerate the class probabilities.
        class_cols = ['class{}'.format(x) for x in range(NUM_OUTPUT)]
        df[class_cols] = pd.DataFrame(
            data=np.vstack(df['feat']), index=df.index, columns=class_cols)
        df.to_csv(args.output_file, cols=COORD_COLS + class_cols)
    else:
        # h5
        df.to_hdf(args.output_file, 'df', mode='w')
    print("Saved to {} in {:.3f} s.".format(args.output_file,
                                            time.time() - t))

CTPN网络结构
在这里插入图片描述

4 文本识别网络-CRNN

CRNN 介绍
CRNN 全称为 Convolutional Recurrent Neural Network,主要用于端到端地对不定长的文本序列进行识别,不用

图来自文章:一文读懂CRNN+CTC文字识别

整个CRNN网络结构包含三部分,从下到上依次为:

  1. CNN(卷积层),使用深度CNN,对输入图像提取特征,得到特征图;
  2. RNN(循环层),使用双向RNN(BLSTM)对特征序列进行预测,对序列中的每个特征向量进行学习,并输出预测标签(真实值)分布;
  3. CTC loss(转录层),使用 CTC 损失,把从循环层获取的一系列标签分布转换成最终的标签序列。

CNN
卷积层的结构图:
在这里插入图片描述

这里有一个很精彩的改动,一共有四个最大池化层,但是最后两个池化层的窗口尺寸由 2x2 改为 1x2,也就是图片的高度减半了四次(除以 2^4
),而宽度则只减半了两次(除以2^2),这是因为文本图像多数都是高较小而宽较长,所以其feature
map也是这种高小宽长的矩形形状,如果使用1×2的池化窗口可以尽量保证不丢失在宽度方向的信息,更适合英文字母识别(比如区分i和l)。

CRNN 还引入了BatchNormalization模块,加速模型收敛,缩短训练过程。

输入图像为灰度图像(单通道);高度为32,这是固定的,图片通过 CNN
后,高度就变为1,这点很重要;宽度为160,宽度也可以为其他的值,但需要统一,所以输入CNN的数据尺寸为 (channel, height,
width)=(1, 32, 160)。

CNN的输出尺寸为 (512, 1, 40)。即 CNN 最后得到512个特征图,每个特征图的高度为1,宽度为40。

Map-to-Sequence
我们是不能直接把 CNN 得到的特征图送入 RNN 进行训练的,需要进行一些调整,根据特征图提取 RNN 需要的特征向量序列。

在这里插入图片描述

现在需要从 CNN 模型产生的特征图中提取特征向量序列,每一个特征向量(如上图中的一个红色框)在特征图上按列从左到右生成,每一列包含512维特征,这意味着第
i 个特征向量是所有的特征图第 i 列像素的连接,这些特征向量就构成一个序列。

由于卷积层,最大池化层和激活函数在局部区域上执行,因此它们是平移不变的。因此,特征图的每列(即一个特征向量)对应于原始图像的一个矩形区域(称为感受野),并且这些矩形区域与特征图上从左到右的相应列具有相同的顺序。特征序列中的每个向量关联一个感受野。

如下图所示:
在这里插入图片描述

这些特征向量序列就作为循环层的输入,每个特征向量作为 RNN 在一个时间步(time step)的输入。

RNN
因为 RNN 有梯度消失的问题,不能获取更多上下文信息,所以 CRNN 中使用的是 LSTM,LSTM
的特殊设计允许它捕获长距离依赖,不了解的话可以看一下这篇文章 对RNN和LSTM的理解。

LSTM
是单向的,它只使用过去的信息。然而,在基于图像的序列中,两个方向的上下文是相互有用且互补的。将两个LSTM,一个向前和一个向后组合到一个双向LSTM中。此外,可以堆叠多层双向LSTM,深层结构允许比浅层抽象更高层次的抽象。

这里采用的是两层各256单元的双向 LSTM 网络:
在这里插入图片描述

通过上面一步,我们得到了40个特征向量,每个特征向量长度为512,在 LSTM 中一个时间步就传入一个特征向量进行分

我们知道一个特征向量就相当于原图中的一个小矩形区域,RNN
的目标就是预测这个矩形区域为哪个字符,即根据输入的特征向量,进行预测,得到所有字符的softmax概率分布,这是一个长度为字符类别数的向量,作为CTC层的输入。

因为每个时间步都会有一个输入特征向量 x^T ,输出一个所有字符的概率分布 y^T ,所以输出为 40 个长度为字符类别数的向量构成的后验概率矩阵。

如下图所示:
在这里插入图片描述

然后将这个后验概率矩阵传入转录层。
CTC loss
这算是 CRNN 最难的地方,这一层为转录层,转录是将 RNN
对每个特征向量所做的预测转换成标签序列的过程。数学上,转录是根据每帧预测找到具有最高概率组合的标签序列。

端到端OCR识别的难点在于怎么处理不定长序列对齐的问题!OCR可建模为时序依赖的文本图像问题,然后使用CTC(Connectionist Temporal
Classification, CTC)的损失函数来对 CNN 和 RNN 进行端到端的联合训练。

相关代码

    def inference(self, inputdata, name, reuse=False):
        """
        Main routine to construct the network
        :param inputdata:
        :param name:
        :param reuse:
        :return:
        """
        with tf.variable_scope(name_or_scope=name, reuse=reuse):
            # centerlized data
            inputdata = tf.divide(inputdata, 255.0)
            #1.特征提取阶段
            # first apply the cnn feature extraction stage
            cnn_out = self._feature_sequence_extraction(
                inputdata=inputdata, name='feature_extraction_module'
            )
            #2.第二步,  batch*1*25*512  变成 batch * 25 * 512
            # second apply the map to sequence stage
            sequence = self._map_to_sequence(
                inputdata=cnn_out, name='map_to_sequence_module'
            )
            #第三步,应用序列标签阶段
            # third apply the sequence label stage
            # net_out width, batch, n_classes
            # raw_pred   width, batch, 1
            net_out, raw_pred = self._sequence_label(
                inputdata=sequence, name='sequence_rnn_module'
            )

        return net_out

5 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1091866.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

编译linux的设备树

使用make dtbs命令时 在arch/arm 的目录Makefile文件中有 boot : arch/arm/boot prepare 和scripts是空的 在文件scripts/Kbuild.include中 变量build : -f $(srctree)/scripts/Makefile.build obj 在顶层Makefile中 $(srctree):. 展开后-f ./scripts/Mak…

恢复Windows 11经典右键菜单:一条命令解决显示更多选项问题

恢复Windows 11经典右键菜单:一条命令解决显示更多选项问题 恢复Windows 11经典右键菜单:一条命令解决显示更多选项问题为什么改变?恢复经典右键菜单 我是将军我一直都在,。! 恢复Windows 11经典右键菜单:一…

docker入门加实战—Docker镜像和Dockerfile语法

docker入门加实战—Docker镜像和Dockerfile语法 镜像 镜像就是包含了应用程序、程序运行的系统函数库、运行配置等文件的文件包。构建镜像的过程其实就是把上述文件打包的过程。 镜像结构 我们要从0部署一个Java应用,大概流程是这样: 准备Linux运行环…

CodeForces每日好题10.14

给你一个字符串 让你删除一些字符让它变成一个相邻的字母不相同的字符串,问你最小的删除次数 以及你可以完成的所有方/案数 求方案数往DP 或者 组合数学推公式上面去想,发现一个有意思的事情 例如1001011110 这个字符串你划分成1 00 1 0 1111 0 每…

论文学习——Class-Conditioned Latent Diffusion Model For DCASE 2023

文章目录 引言正文AbstractIntroductionSystem Overview2.1 Latent Diffusion with sound-class-based conditioning以声音类别为条件的潜在扩散模型2.2 Variational Autoencoder and neural vocoder变分自编码器和神经声码器FAD-oriented Postprocessing filter(专…

JOSEF约瑟 HJY-E1A/4D电压继电器 欠电压动作 整定范围10~242V 二转换

系列型号 HJY-E1A/3D数字式交流电压继电器; HJY-E1A/3J数字式交流电压继电器; HJY-E1B/3D数字式交流电压继电器; HJY-E1B/3J数字式交流电压继电器; HJY-E2A/3D数字式交流电压继电器; HJY-E2A/3J数字式交流电压继…

极简的MapReduce实现

目录 1. MapReduce概述 2. 极简MapReduce内存版 3. 复杂MapReduce磁盘版 4. MapReduce思想的总结 1. MapReduce概述 以前写过一篇 MapReduce思想 ,这次再深入一点,简单实现一把单机内存的。MapReduce就是把它理解成高阶函数,需要传入map和…

蓝桥杯每日一题2023.10.14

年号字串 - 蓝桥云课 (lanqiao.cn) 题目描述 我们发现每个字母都与26紧密相关&#xff0c;其%26的位置就是最后一个字母&#xff0c;由于最开始将0做为了1故在写答案时需要注意细节问题 #include<bits/stdc.h> using namespace std; char s[] "ABCDEFGHIJKLMNOPQ…

电源集成INN3270C-H215-TL、INN3278C-H114-TL、INN3278C-H215-TL简化了反激式电源转换器的设计和制造。

一、概述 InnoSwitch™3-CP系列IC极大地简化了反激式电源转换器的设计和制造&#xff0c;特别是那些需要高效率和/或紧凑尺寸的产品。InnoSwitch3-CP系列将初级和次级控制器以及安全额定反馈集成到单个IC中。 InnoSwitch3-CP系列器件集成了多种保护功能&#xff0c;包括线路过…

【git篇】git的使用

文章目录 1. Git介绍与安装1. Git简介2. 下载安装程序3. 设置用户名和邮箱 2. Git的基本使用1. 创建版本库2. 文件管理1. 提交文件2. 查看状态3. 查看提交日志4. 版本回退 3. 原理解析1. Git区的划分2. 撤销修改3. 删除文件 4. 分支管理1. 基本原理2. 创建分支3. 合并分支4. 删…

处理死锁策略2

一、避免死锁-动态策略 1.概述 安全序列-能使每个进程才能顺利完成的分配资源的序列&#xff0c;可有多种&#xff0c;此时系统处于安全状态下&#xff0c;系统一定不会发生死锁。 不安全状态-找不到一个安全序列时&#xff0c;系统处于不安全状态下&#xff0c;系统可能会发…

BuyVM 挂载存储块

发布于 2023-07-13 on https://chenhaotian.top/linux/buyvm-mount-block-storage/ BuyVM 挂载存储块 参考&#xff1a; https://zhujitips.com/2653https://www.pigji.com/898.html 1 控制台操作 存储块购买完毕后&#xff0c;进入后台管理界面&#xff0c;进入对应 VPS …

Qt工具开发,该不该跳槽?

Qt工具开发&#xff0c;该不该跳槽? 就这样吧&#xff0c;我怕你跳不动。 嵌入式UI&#xff0c;目前趋势是向着LVGL发展。QT已经在淘汰期了。很多项目还在用&#xff0c;但技术上已经落后。QT短期内不会全面淘汰&#xff0c;但退位让贤的大趋势已经很清楚了。 最近很多小伙伴…

整理了六大类兼职平台,看看有适合你的吗

现代人已经不再仅仅依赖于一份全职工作&#xff0c;他们通过兼职来为自己赚取额外的收入&#xff0c;同时也能更加自由地安排自己的时间。而如今&#xff0c;互联网兼职平台应运而生&#xff0c;为我们创造了更多的选择。今天我将为你介绍六大类兼职平台&#xff0c;相信其中一…

多输入多输出 | MATLAB实现PSO-RBF粒子群优化径向基神经网络多输入多输出预测

多输入多输出 | MATLAB实现PSO-RBF粒子群优化径向基神经网络多输入多输出预测 目录 多输入多输出 | MATLAB实现PSO-RBF粒子群优化径向基神经网络多输入多输出预测预测效果基本介绍程序设计往期精彩参考资料 预测效果 基本介绍 Matlab实现PSO-RBF粒子群优化径向基神经网络多输入…

二维码怎么做列表?点击可跳转其他内容

最近很多小伙伴在问&#xff0c;在用二维码展示内容时&#xff0c;怎么设置一个列表&#xff0c;点击每条内容或者单个图片&#xff0c;就可以跳转到对应的详情页面查看内容&#xff0c;而且二维码内容还能够随时编辑或者修改。那么想要做到上面的这种效果&#xff0c;可以用二…

EEPROM、FLASH电路设计

ROM是一种掉电不丢失数据的存储器&#xff0c;EEPROM是ROM的升级版&#xff0c;他支持带电擦除&#xff0c;可以修改存储器内的内容。 而我们还会提到FLASH&#xff0c;是EEPROM的升级&#xff0c;他们二者的区别在于FLASH按扇区操作&#xff0c;EEPROM则按字节操作&#xff0…

【Rust笔记】浅聊 Rust 程序内存布局

浅聊Rust程序内存布局 内存布局看似是底层和距离应用程序开发比较遥远的概念集合&#xff0c;但其对前端应用的功能实现颇具现实意义。从WASM业务模块至Nodejs N-API插件&#xff0c;无处不涉及到FFI跨语言互操作。甚至&#xff0c;做个文本数据的字符集转换也得FFI调用操作系统…

Studio One6.5中文版本版下载及功能介绍

Studio One是一款专业的音乐制作软件&#xff0c;由美国PreSonus公司开发。该软件提供了全面的音频编辑和混音功能&#xff0c;包括录制、编曲、合成、采样等多种工具&#xff0c;可用于制作各种类型的音乐&#xff0c;如流行音乐、电子音乐、摇滚乐等。 Studio One的主要特点…

说明书MS2721A频谱分析仪7.1GHz

安立Anritsu MS2721A 频谱分析仪 MS2721A 是 Anritsu 的 7.1 GHz 频谱分析仪。频谱分析仪测量已知和未知信号的频谱功率。频谱分析仪收集信息&#xff0c;例如输入信号与其频率相比的幅度。作为频率分析仪&#xff0c;频谱分析仪的主要用途是记录和分析电输入信号以及其他信号的…