python+深度学习+opencv实现植物识别算法系统 计算机竞赛

news2024/11/23 2:22:56

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 基于深度学习的植物识别算法研究与实现

在这里插入图片描述

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:4分
  • 工作量:4分
  • 创新点:4分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate


2 相关技术

2.1 VGG-Net模型

Google DeepMind公司研究员与牛津大学计算机视觉组在2014年共同研发出了一种全新的卷积神经网络–VGG-
Net。在同年举办的ILSVRC比赛中,该网络结构模型在分类项目中取得了十分出色的成绩,由于其简洁性和实用性,使得其在当时迅速,飞快地成为了最受欢迎的卷积神经网络模型。VGG-
Net卷积神经网络在近年来衍生出了A-
E七种不同的层次结构,本次研究使用其中的D结构,也就是VGG-16Net结构,该结构中包含了13个卷积层,5个池化层和3个全连接层。针对所有的卷积层,使用相同的5x5大小的卷积核,针对所有的池化层,使用相同的3x3大小的池化核。VGG-
Net结构如图所示。

在这里插入图片描述

2.2 VGG-Net在植物识别的优势

在针对植物识别问题上,VGG-Net有着一些相较于其他神经网络的优势,主要包括以下几点:

(1) 卷积核,池化核大小固定

网络中所有的卷积核大小固定为3x3,所有的池化核大小固定为5x5。这样在进行卷积和池化操作的时候,从数据中提取到的特征更加明显,同时在层与层的连接时,信息的丢失会更少,更加方便后续对于重要特征的提取和处理。

(2) 特征提取更全面

VGG-
Net网络模型中包含了13个卷积层。卷积层数目越多,对于特征的提取更加的全面。由于需要对于植物的姿态、颜色等进行判定,植物的特征较多,需要在提取时更加的全面,细致,才有可能得到一个更加准确的判定。VGG-
Net符合条件。

在这里插入图片描述

(3) 网络训练误差收敛速度较快

VGG-
Net网络在训练时收敛速度相对较快,能够较快地得到预期的结果。具有这一特点的原因有两个,一个是网络中每一个卷积层和池化层中的卷积核大小与池化核大小固定,另一个就是对于各个隐藏层的参数初始化方法使用专门针对ReLU激活函数的Kaiming正态初始化方法。

3 VGG-Net的搭建

本次研究基于Pytorch深度学习框架进行网络的搭建,利用模块化的设计思想,构建一个类,来对于整个的网络进行结构上的封装。这样搭建的好处是可以隐藏实现的内部细节,提高代码的安全性,增强代码的复用效率,并且对于一些方法,通过在内部集成,可以方便之后对于其中方法的调用,提升代码的简洁性。
在网络搭建完成后,将数据集传入网络中进行训练,经过一段时间后即可得到植物识别的分类识别结果。

3.1 Tornado简介

Tornado全称Tornado Web
Server,是一个用Python语言写成的Web服务器兼Web应用框架,由FriendFeed公司在自己的网站FriendFeed中使用,被Facebook收购以后框架在2009年9月以开源软件形式开放给大众。

(1) 优势

  • 轻量级web框架
  • 异步非阻塞IO处理方式
  • 出色的抗负载能力
  • 优异的处理性能,不依赖多进程/多线程,一定程度上解决C10K问题
  • WSGI全栈替代产品,推荐同时使用其web框架和HTTP服务器

(2) 关键代码

class MainHandler(tornado.web.RequestHandler):def get(self):
​            self.render("index.html")def post(self):
            keras.backend.clear_session()
            img = Image.open(BytesIO(self.request.files['image'][0]['body']))
            img = img
            b_img = Image.new('RGB', (224, 224), (255, 255, 255))
            size = img.size
            if size[0] >= size[1]:
                rate = 224 / size[0]
                new_size = (224, int(size[1] * rate))
                img = img.resize(new_size, Image.ANTIALIAS
                                 ).convert("RGB")
                b_img.paste(img, (0, random.randint(0, 224 - new_size[1])))
    
            else:
                rate = 224 / size[1]
                new_size = (int(size[0] * rate), 224)
                img = img.resize(new_size, Image.ANTIALIAS
                                 ).convert("RGB")
                b_img.paste(img, (random.randint(0, 224 - new_size[0]), 0))
    
            if self.get_argument("method", "mymodel") == "VGG16":
                Model = load_model("VGG16.h5")
            else:
                Model = load_model("InceptionV3.h5")
    
            data = orc_img(Model,b_img)
            self.write(json.dumps(
                {"code": 200, "data": data
                 }))
            
            def make_app():
        template_path = "templates/"
        static_path = "./static/"
    
        return tornado.web.Application([
    
            (r"/", MainHandler),
    
        ], template_path=template_path, static_path=static_path, debug=True)


​    
​    def run_server(port=8000):
​        tornado.options.parse_command_line()
​        app = make_app()
​        app.listen(port)print("\n服务已启动 请打开 http://127.0.0.1:8000 ")
​        tornado.ioloop.IOLoop.current().start()


4 Inception V3 神经网络

GoogLeNet对网络中的传统卷积层进行了修改,提出了被称为 Inception
的结构,用于增加网络深度和宽度,提高深度神经网络性能。从Inception V1到Inception
V4有4个更新版本,每一版的网络在原来的基础上进行改进,提高网络性能。

4.1 网络结构

在这里插入图片描述

inception结构的作用(inception的结构和作用)

作用:代替人工确定卷积层中过滤器的类型或者确定是否需要创建卷积层或者池化层。即:不需要人为决定使用什么过滤器,是否需要创建池化层,由网络自己学习决定这些参数,可以给网络添加所有可能值,将输入连接起来,网络自己学习需要它需要什么样的参数。

inception主要思想

用密集成分来近似最优的局部稀疏解(如上图)

  • 采用不同大小的卷积核意味着有不同大小的感受野,最后的拼接意味着不同尺度特征的融合。
  • 之所以卷积核大小采用1x1、3x3和5x5,主要是为了方便对齐。设定卷积步长stride=1之后,只要分别设定padding = 0、1、2,采用same卷积可以得到相同维度的特征,然后这些特征直接拼接在一起。
  • 很多地方都表明pooling挺有效,所以Inception里面也嵌入了pooling。
  • 网络越到后面特征越抽象,且每个特征涉及的感受野也更大,随着层数的增加,3x3和5x5卷积的比例也要增加。
  • 最终版inception,加入了1x1 conv来降低feature map厚度。

5 开始训练

5.1 数据集

训练图像按照如下方式进行分类,共分为9文件夹。

在这里插入图片描述

5.2 关键代码

   from keras.utils import Sequence
    import math


​    class SequenceData(Sequence):def __init__(self, batch_size, target_size, data):

            # 初始化所需的参数

            self.batch_size = batch_size
            self.target_size = target_size
            self.x_filenames = data
    
        def __len__(self):
            # 让代码知道这个序列的长度
            num_imgs = len(self.x_filenames)
            return math.ceil(num_imgs / self.batch_size)
    
        def __getitem__(self, idx):
            # 迭代器部分
            batch_x = self.x_filenames[idx * self.batch_size: (idx + 1) * self.batch_size]
            imgs = []
            y = []
            for x in batch_x:
                img = Image.open(x)
                b_img = Image.new('RGB', self.target_size, (255, 255, 255))
                size = img.size
                if size[0] >= size[1]:
                    rate = self.target_size[0] / size[0]
                    new_size = (self.target_size[0], int(size[1] * rate))
                    img = img.resize(new_size, Image.ANTIALIAS).convert("RGB")
                    b_img.paste(img, (0, random.randint(0, self.target_size[0] - new_size[1])))
    
                else:
                    rate = self.target_size[0] / size[1]
                    new_size = (int(size[0] * rate), self.target_size[0])
                    img = img.resize(new_size, Image.ANTIALIAS).convert("RGB")
                    b_img.paste(img, (random.randint(0, self.target_size[0] - new_size[0]), 0))
    
                img = b_img
                if random.random() < 0.1:
                    img = img.convert("L").convert("RGB")
                if random.random() < 0.2:
                    img = img.rotate(random.randint(0, 20))  # 随机旋转一定角度
                if random.random() < 0.2:
                    img = img.rotate(random.randint(340, 360))  # 随 旋转一定角度
                imgs.append(img.convert("RGB"))
    
            x_arrays = 1 - np.array([np.array(i)  for i in imgs]).astype(
                float) / 255  # 读取一批图片
    
            batch_y = to_categorical(np.array([labels.index(x.split("/")[-2]) for x in batch_x]), len(labels))
    
            return x_arrays, batch_y


​    

5.3 模型预测

利用我们训练好的 vgg16.h5 模型进行预测,相关代码如下:

    def orc_img(model,image):
​        img =np.array(image)
​        img = np.array([1 - img.astype(float) / 255])
​        predict = model.predict(img)
​        index = predict.argmax()print("CNN预测", index)
​    

        target = target_name[index]
        index2 = np.argsort(predict)[0][-2]
        target2 = target_name[index2]
        index3 = np.argsort(predict)[0][-3]
        target3 = target_name[index3]
    
        return {"target": target,
                "predict": "%.2f" % (float(list(predict)[0][index]) * 64),
    
                "target2": target2,
                "predict2": "%.2f" % (float(list(predict)[0][index2]) * 64),
    
                }


6 效果展示

6.1 主页面展示

在这里插入图片描述

6.2 图片预测

在这里插入图片描述

6.3 三维模型可视化

学长在web页面上做了一个三维网络结构可视化功能,可以直观的看到网络模型结构

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

7 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1091425.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

js深拷贝与浅拷贝

1.浅拷贝概念 浅拷贝是其属性与拷贝源对象的属性共享相同引用&#xff0c;当你更改源或副本时&#xff0c;也可能&#xff08;可能说的是只针对引用数据类型&#xff09;导致其他对象也发生更改。 特性&#xff1a; 会新创建一个对象&#xff0c;即objobj2返回fasle&#xf…

【C++项目】高并发内存池第一讲(项目整体框架介绍、哈系统结构设计)

高并发内存池项目第一讲 一、高并内存池概念二、项目介绍三、项目细节四.哈系统结构设计 一、高并内存池概念 内存池(Memory Pool) 是一种动态内存分配与管理技术。 通常情况下&#xff0c;程序员习惯直接使用 new、delete、malloc、free 等API申请分配和释放内存&#xff0c;…

闭包及底层原理

1.闭包概念 定义&#xff1a;能够访问到其他函数作用域中的对象的函数&#xff0c;称为闭包 误区&#xff1a;闭包不是函数里面嵌套函数 2.闭包的两种写法 2.1函数嵌套写法 // 闭包写法1: 内部嵌套函数function fn(){var a 1;function fn2(){console.log(a1);}fn2();}fn()…

在线兴趣教学类线上学习APP应用开发部署程序组建研发团队需要准备什么?

哈哈哈&#xff0c;同学们&#xff0c;我又来了&#xff0c;这个问题最近问的人有点多&#xff0c;但是说实话我也不知道&#xff0c;但是我还是总结了一下&#xff0c;毕竟我懂点代码的皮毛&#xff0c;同时我检索内容的时候&#xff0c;都是一些没有很新鲜的文案&#xff0c;…

Vue中调用组件使用kebab-case(短横线)命名法和使用大驼峰的区别

文章目录 Vue中调用组件使用kebab-case&#xff08;短横线&#xff09;命名法和使用大驼峰的区别1.解析官网手册说明2.什么是“字符串模版”&#xff0c;什么是“dom模版” Vue中调用组件使用kebab-case&#xff08;短横线&#xff09;命名法和使用大驼峰的区别 1.解析官网手册…

SSM - Springboot - MyBatis-Plus 全栈体系(二十五)

第五章 SSM 三、《任务列表案例》前端程序搭建和运行 1. 整合案例介绍和接口分析 1.1 案例功能预览 1.2 接口分析 1.2.1 学习计划分页查询 /* 需求说明查询全部数据页数据 请求urischedule/{pageSize}/{currentPage} 请求方式get 响应的json{"code":200,"f…

git pull and git fetch 到底有什么区别?

大家好这里是tony4geek 。 今天给大家介绍git pull and git fetch 有什么区别&#xff1f; 开发过程中大家肯定很多人都用到过git。获取代码有很多的git命令&#xff0c;最长用的命令是pull和fetch。那么问题来了他们之间到底有什么区别&#xff0c;该怎么使用呢&#xff1f;…

C语言之文件操作篇(2)

目录 文件状态指针 文件流 文件的顺序读写 fgetc fputc fgets fputs fscanf fprintf fread fwrite 今天接下来我们讲解文件读写函数。&#x1f197;&#x1f197;&#x1f197; 文件状态指针 文件状态指针也就是文件指示器。&#xff08;可以理解为光标&#xff09…

【U-Boot笔记整理】U-Boot 完全分析与移植

1. 大纲 大概内容如下&#xff1a; u-boot功能概述 目的功能细分 u-boot源码结构u-boot的配置、编译、连接过程 Makefile深入练习分析u-boot的Makefileu-boot可执行程序的组成 u-boot源码分析 SPL与第1阶段第2阶段核心&#xff1a;命令让u-boot的使用更加便利&#xff1a;env…

python图像检索系统设计与实现 计算机竞赛

0 前言 &#x1f525; 优质竞赛项目系列&#xff0c;今天要分享的是 &#x1f6a9; python图像检索系统设计与实现 &#x1f947;学长这里给一个题目综合评分(每项满分5分) 难度系数&#xff1a;3分工作量&#xff1a;3分创新点&#xff1a;4分 该项目较为新颖&#xff0c…

拼多多历史价格数据接口,拼多多商品历史价格接口,拼多多API接口

采集拼多多商品历史价格接口可以采用以下方式&#xff1a; 使用价格监控工具。价格监控工具是一种可以自动监测商品价格变化的工具&#xff0c;它可以帮助消费者快速采集拼多多商品价格信息&#xff0c;还可以提供价格变动趋势的图表分析&#xff0c;使消费者更好地掌握商品价…

Apache_Log4j2查找功能JNDI注入_CVE-2021-44228

Apache_Log4j2查找功能JNDI注入_CVE-2021-44228 文章目录 Apache_Log4j2查找功能JNDI注入_CVE-2021-442281 在线漏洞解读:2 环境搭建3 影响版本&#xff1a;4 漏洞复现4.1 访问页面4.2 poc漏洞验证 4.3 在dnslog获取个域名4.4 使用bp抓包进行分析4.5 通信成功&#xff0c;此处可…

【TA 挖坑04】薄膜干涉 镭射材质 matcap

镭射材质&#xff0c;相对物理的实现&#xff1f; 万物皆可镭射&#xff0c;个性吸睛的材质渲染技术 - 知乎 (zhihu.com) 薄膜干涉材质&#xff0c;matcap更trick的方法&#xff1f;matcapremap&#xff0c; MatCap原理介绍及应用 - 知乎 (zhihu.com) 庄懂的某节课也做了mat…

红队打靶:Nyx: 1打靶思路详解(vulnhub)

目录 写在开头 第一步&#xff1a;主机发现和端口扫描 第二步&#xff1a;ssh私钥登录获取初始立足点 第三步&#xff1a;sudo gcc提权 番外篇&#xff1a;如何掉进web渗透的陷阱无法自拔 总结与思考 写在开头 我个人的打靶顺序是根据红队笔记大佬的视频顺序&#xff0…

最新最全Jmeter+InfluxDB1.8+Grafana可视化性能监控平台搭建(win11本地)

本文前置条件&#xff1a; 1.Jmeter自行部署好&#xff0c;且版本最好要5.4以上&#xff1b; 2.目前InfluxDB最新是V2版本&#xff0c;但与Grafana兼容不太好&#xff0c;且和V1版本的配置连接不一样&#xff0c;本文是InfluxDB1.8版本&#xff1b; 3.介绍的是WIN11本地部署…

《PyTorch深度学习实践》第二讲 线性模型 课后练习

《PyTorch深度学习实践》第二讲 线性模型 课后练习 问题描述代码实现实现效果 问题描述 代码实现 import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D# 假设函数为 y 2x 1 x_data [1.0, 2.0, 3.0] y_data [3.0, 5.0, 7.0]# 定义…

【100天精通Python】Day70:Python可视化_绘制不同类型的雷达图,示例+代码

目录 1. 基本雷达图 2. 多组数据的雷达图 3 交互式雷达地图 4 动态雷达图 0 雷达图概述 雷达图&#xff08;Radar Chart&#xff09;&#xff0c;也被称为蜘蛛图&#xff08;Spider Chart&#xff09;或星型图&#xff0c;是一种用于可视化多维数据的图表类型。雷达图通常由…

目标文件格式

目标文件里有什么 目标文件格式 目标文件就是源代码编译后但未进行链接的中间文件&#xff08;linux下的.o&#xff09;。 ELF文件&#xff1a;从广义上看&#xff0c;目标文件与可执行文件的格式其实几乎是一样的&#xff0c;可以将目标文件与可执行文件看成是一种类型的文…

【Vue面试题二十】、你有写过自定义指令吗?自定义指令的应用场景有哪些?

文章底部有个人公众号&#xff1a;热爱技术的小郑。主要分享开发知识、学习资料、毕业设计指导等。有兴趣的可以关注一下。为何分享&#xff1f; 踩过的坑没必要让别人在再踩&#xff0c;自己复盘也能加深记忆。利己利人、所谓双赢。 面试官&#xff1a;你有写过自定义指令吗&a…

相似性搜索:第 1 部分- kNN 和倒置文件索引

图片来源&#xff1a;维亚切斯拉夫叶菲莫夫 一、说明 SImilarity 搜索是一个问题&#xff0c;给定一个查询的目标是在所有数据库文档中找到与其最相似的文档。 在数据科学中&#xff0c;相似性搜索经常出现在NLP领域&#xff0c;搜索引擎或推荐系统中&#xff0c;其中需要检索最…