科研上新 | 第2期:可驱动3D肖像生成;阅读文本密集图像的大模型;文本控制音色;基于大模型的推荐智能体

news2025/2/27 14:02:11

编者按:欢迎阅读“科研上新”栏目!“科研上新”汇聚了微软亚洲研究院最新的创新成果与科研动态。在这里,你可以快速浏览研究院的亮点资讯,保持对前沿领域的敏锐嗅觉,同时也能找到先进实用的开源工具。

本期内容速览

01. AniPortraitGAN:可驱动的真实感3D肖像生成

02. KOSMOS-2.5:阅读文本密集图像的多模态大型语言模型

03. PromptTTS 2:利用文本描述创造语音合成的音色和风格

04. InteRecAgent:基于大型语言模型的交互式推荐智能体

arXiv精选

AniPortraitGAN:可驱动的真实感3D肖像生成

new-arrival-in-research-2-1

论文链接:https://arxiv.org/pdf/2309.02186.pdf

项目链接:https://yuewuhkust.github.io/AniPortraitGAN/

自动创建可驱动的 3D 人物角色已经成为一个越来越重要的话题,其应用范围涵盖视频会议、电影制作和游戏等等。近年来,一些方法基于对抗网络进行了真实感三维人像的生成与驱动,但这些方法主要关注头部或全身生成。然而,仅生成头部类的方法在实际场景中的适用性较低,生成全身类的方法则难以取得较好的面部区域生成质量。为此,研究员们提出了一种专注于人类头部和肩部的真实感 3D 肖像生成方法。该方法利用多人 2D 图像集进行无监督对抗学习训练,无需三维数据、多视角图片或者视频。生成的 3D 肖像逼真且可进行相机视角、头部姿态、肩膀姿态、以及面部表情的驱动,更适合于视频会议、虚拟演示等实际应用。

针对这个新任务,研究员们提出了利用 3D 参数模型提供先验神经辐射场的生成方法。该方法基于 3D 感知生成对抗网络框架,以 GRAM 为基础三维表达,分别利用 3D 可形变模型(3DMMs)和 SMPL 人体参数模型为先验,指导人脸表情控制和头部肩部运动学习。为了处理由于头部位置变化和人体朝向变化而造成的复杂图像分布,研究员们提出了基于双相机渲染的对抗学习方案,来提高面部渲染质量。此外,仅简单使用 SMPL 线性混合蒙皮策略指导头部形变学习,在头部旋转时,头发区域会出现锐利的不连续性,导致明显的伪影。针对这一问题,研究员们进一步提出了姿态变形处理模块来学习更合理的形变场,稳定生成对抗训练,从而产生视觉上合理的结果。

图1:AniPortraitGAN 3D 肖像生成结果

图1:AniPortraitGAN 3D 肖像生成结果

实验结果表明,AniPortraitGAN 可以生成具有灵活控制的多样化和高质量 3D 肖像图像,可以实现对面部表情和头肩姿势等不同属性的细粒度控制。研究员们相信在该项研究向着自动创建适用于实际应用的视频化身,迈出了坚实一步。

KOSMOS-2.5:阅读文本密集图像的多模态大型语言模型

new-arrival-in-research-2-3

论文链接:https://arxiv.org/abs/2309.11419

现有的大型语言模型(LLMs)主要集中在文本信息上,无法理解视觉信息。而多模态大型语言模型(MLLMs)领域的进展旨在解决这一限制,MLLMs 可以将视觉和文本信息融合到一个基于 Transformer 的单一模型中,使该模型能够根据这两种模态学习和生成内容。不过,现有的 MLLMs 主要关注分辨率较低的自然图像,对于文本密集图像的 MLLM 研究还不多见,因此充分利用大规模多模态预训练来处理文本图像是 MLLM 研究的一个重要的研究方向。本篇论文介绍了将文本图像纳入训练过程并开发基于文本和视觉信息的模型 KOSMOS-2.5,开辟了涉及高分辨率文本密集图像的多模态应用的新可能性。

KOSMOS-2.5 是微软亚洲研究院的研究员们开发的一个基于文本密集图像的多模态大型语言模型,它在 KOSMOS-2 的基础上发展而来,突出了对于文本密集图像的多模态阅读和理解能力(Multimodal Literate Model)。KOSMOS-2.5 的目标是在文本丰富的图像中实现无缝的视觉和文本数据处理,以便理解图像内容并生成结构化的文本描述。

作为一个多模态模型,KOSMOS-2.5 使用了统一的框架处理两个紧密相关的任务。第一个任务涉及生成具有空间感知的文本块,即同时生成文本块的内容与坐标框。第二个任务涉及以Markdown格式生成结构化的文本输出,同时捕捉各种样式和结构。两个任务利用共享的Transformer架构与任务特定的提示。KOSMOS-2.5 将基于 ViT(Vision Transformer)的视觉编码器与基于 Transformer 架构的解码器相结合,通过一个重采样模块连接起来。

图2:KOSMOS-2.5 架构图

图2:KOSMOS-2.5 架构图

为了训练这个模型,研究员们准备了一个庞大的共3.2亿的数据集进行预训练。该数据集包含各种类型的文本密集图像,其中包括带有边界框的文本行和纯文本的 Markdown 格式。

KOSMOS-2.5 在两个任务上进行了评估:端到端的文档级文本识别和从图像中生成的 Markdown 格式文本。实验结果展示了 KOSMOS-2.5 在理解文本密集的图像任务方面的出色表现。此外,KOSMOS-2.5 在少样本学习和零样本学习的场景中也展现了有前景的能力,使其成为处理文本丰富图像的实际应用的多功能工具。研究员们希望该研究最终可以开发出一种能有效解释视觉和文本数据的模型,并在更多文本密集型多模态任务中进行推广。

PromptTTS 2:利用文本描述创造语音合成的音色和风格

new-arrival-in-research-2-5

论文链接:https://arxiv.org/abs/2309.02285

Demo链接:https://speechresearch.github.io/prompttts2

语音合成系统近年来在可识别度和自然度方面都取得了巨大进展,除了语音合成的内容,还能通过模仿参考语音的风格和音色,生成与其风格一致的语音。然而,获得合适的参考语音并不容易,因此使用文本描述(Text Prompt)来控制音色是一种更加便捷的方法,可用于语音助手、虚拟主持和有声书籍等领域。

基于文本描述控制语音合成的音色和风格目前主要面临两个挑战:第一个挑战是一对多的问题,因为描述文本无法涵盖所有语音细节,这就导致训练集中对应同一个文本描述的语音可能在音色和风格上有差异,会影响模型训练;第二个挑战是数据量,对语音的音色和风格描述的数据非常稀少,需要大量人工编写文本描述,增加成本。

为了解决这些问题,微软亚洲研究院的研究员们提出了 PromptTTS 2。它包含一个变异网络(variation network)来预测文本描述中缺失的细节变化性信息,从而支持生成多个符合文本描述但在音色和风格上不同的声音。为了解决数据量问题,PromptTTS 2 还包括自动文本描述生成工具,通过语音理解模型和大型语言模型(LLMs)自动产生文本描述,提高语音合成质量。

图3:PromptTTS 2 中的 TTS 系统

图3:PromptTTS 2 中的 TTS 系统

图3展示了 PromptTTS 2 中的 TTS 系统。图3(a)是一个用于合成语音的 TTS 模块,合成结果的风格和音色由一个风格模块(style module)控制。图3(b)详细介绍了风格模块的结构。它包含两个编码器,可以从文本描述和参考语音中提取控制特征。虽然在训练的时候研究员们使用参考语音补充了文本描述中不存在的细节信息,解决了一对多问题,但是在测试时,参考语音是不存在的。因此研究员们训练了一个变异网络来根据文本描述特征预测细节的变化性特征,如图3(c)所示。通过利用扩散模型,变异网络可以采样出多个不同的细节特征,从而产生出更有变化性的声音供用户使用。

除了语音合成系统,PromptTTS 2 还包括一个自动化的文本描述生成工具,整个工具由语音理解模型(SLU)部分和大型语言模型(LLM)部分组成:SLU 部分通过识别语音中的属性(例如性别、情感等)来给语音打标签;而 LLM 部分则根据这些标签引导 LLM 编写高质量的文本描述。

验证实验表明,相比于基线系统,PromptTTS 2 可以在所有属性上以更高的准确度合成语音;自动化的文本描述生成工具可以生成质量略高于人工撰写的文本表述。在未来,PromptTTS 2 将会被扩展到更多的维度和模态,从而合成更加有创造力的声音和实现多模态(语音、文本描述、面部图像等)对声音的控制。

InteRecAgent:基于大型语言模型的交互式推荐智能体

new-arrival-in-research-2-7

论文链接:https://arxiv.org/pdf/2308.16505.pdf

项目链接:https://aka.ms/recagent

大型语言模型已经表现出了强大的语言表达能力,人类指令遵循能力,以及推理和解释的能力。相关的技术很可能使得推荐系统从传统的用户被动接收推荐信息,转变到可对话、可控制的智能交互方式。但是已有研究表明直接应用大型语言模型做交互式推荐存在许多弊端,例如缺乏新加入的知识;无法知晓领域内的物品条目;存在一定的幻觉,即推荐给用户不存在的物品等。

为了解决这些问题,研究员们提出了一种基于“大型语言模型+工具”方案的交互式推荐智能体:InteRecAgent。其由两部分构成,即作为大脑的大型语言模型和作为工具的推荐模型。大型语言模型负责解析用户意图并产生工具调用方案,以及根据工具执行结果生成回答。推荐工具则由查询、召回、排序三大类工具构成,负责执行用户的各类查询和产生需要的推荐。

图4:InteRecAgent 整体框架示意图

图4:InteRecAgent 整体框架示意图

InteRecAgent 从离线样本库中动态选择样本作为示例,构成提示词中语境学习的部分。大模型会根据当前用户的意图,拟出完整的推荐工具调用方案,然后各个工具依次执行对应的任务。在执行完成后,为了保障推荐的质量,InteRecAgent 使用了反思机制,一旦检测到执行过程中出现问题,就将重新制定计划并执行。最终推荐工具得到的物品将被大型语言模型生成回复推荐给用户。

实验结果表明,在多个数据集上 InteRecAgent 的推荐准确度相比于现有的大型语言模型都有所提升;并且由于推荐结果均来自于领域内的条目,所以不会推荐出不存在的物品,改善了大型语言模型在推荐任务上的幻觉现象。InteRecAgent 只是微软亚洲研究院社会计算组关于如何将大型语言模型引入推荐系统研究工作中的一部分,未来研究员们还将继续在这方面进行深入的探索。

随着人工智能技术的快速发展,确保相关技术能被人们信赖是一个需要攻坚的问题。微软主动采取了一系列措施来预判和降低人工智能技术所带来的风险。微软致力于依照以人为本的伦理原则推进人工智能的发展,早在2018年就发布了“公平、包容、可靠与安全、透明、隐私与保障、负责”六个负责任的人工智能原则(Responsible AI Principles),随后又发布了负责任的人工智能标准(Responsible AI Standards)将各项原则实施落地,并设置了治理架构确保各团队把各项原则和标准落实到日常工作中。微软也持续与全球的研究人员和学术机构合作,不断推进负责任的人工智能的实践和技术。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1087389.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

minio桶命名规则

一、背景 今天做项目需要上传图片到minio,上传失败,查看错误是桶未创建成功。 minio桶的创建具有自己的命名规则,不符合则无法创建。 二、命名规则 1、存储桶名称的长度必须介于 3(最小)到 63(最大&…

KBL610-ASEMI内置4颗84MIL芯片KBL610

编辑:ll KBL610-ASEMI内置4颗84MIL芯片KBL610 型号:KBL610 品牌:ASEMI 封装:KBL-4 恢复时间:>50ns 正向电流:6A 反向耐压:1000V 芯片个数:4 引脚数量&#xff1…

将C盘中的文件夹迁移到其他盘符

目录 1 微信文件 2 移动系统自带文件夹 3 清除软件的缓存 1 微信文件 微信文件默认存储在C盘中,放任不管可能会占用很大的空间 更改后文件会自动挪过去,在C盘中只保留较小的空间 2 移动系统自带文件夹 像文档,图片这种文件夹&#…

数据治理是一个怎样的体系化的过程?_光点科技

数据治理是一个复杂而系统化的过程,旨在确保企业能够有效地管理、维护和利用其日益增长的数据资产。这一过程涉及多个层面和步骤,需要有明确的框架和战略规划。 数据治理的体系化始于明确定义的目标和愿景。企业需要明确意识到数据对于业务成功的重要性&…

华泰证券:京东营收增长或短期承压

来源:猛兽财经 作者:猛兽财经 猛兽财经获悉,华泰证券近期发布研报称京东营收增长或短期承压。华泰证券主要观点如下:营收增长或短期承压,聚焦长期内生能力建设 考虑到消费情绪的恢复仍需一定时间,我们预计…

免疫球蛋白介绍

免疫球蛋白(Immunoglobulin,Ig)是广泛存在于哺乳动物血清、淋巴液、组织液和外分泌液中的一种具有抗体活性或化学结构与抗体相似的球蛋白,在机体防御疾病的重要成分在疾病研究、药物研发、疫苗评价中具有重要作用。抗体&#xff0…

PLL的环路滤波器

本篇文章仅为分享PLL学习过程及一些公式推导,如有错误,还请批评指正! 文章目录 1、一阶RC低通滤波器(II类锁相环)2、二阶RC低通滤波器A、加电容型B、加RC低通滤波器型 3、三阶低通滤波器 锁相环3大组成部分&#xff1…

浅谈IT运维-服务目录

目录 服务目录的作用 服务目录常见的应用场景 服务目录是否必须有 服务目录的视图分类 用户视图 客户视图 服务提供者视图 服务目录的分类原则 为什么要分类 服务目录的分类方法 服务目录划分的颗粒度把握 服务详情 服务目录包括:服务目录、服务详情两大…

Redis cluster 集群

redis集群redis集群是一个提供在多个redis节点间共享数据的程序集,redis集群可以支持多个master Redis集群支持多个master,每个master又可以挂载多个slave 读写分离、支持数据的高可用、支持海量数据的读写存储操作由于Cluster自动Sentinel的故障转移机制&#xff…

ChatGLM流式输出的报错修复

ChatGLM中的openai_api.py中的代码如下: # codingutf-8 # Implements API for ChatGLM2-6B in OpenAIs format. (https://platform.openai.com/docs/api-reference/chat) # Usage: python openai_api.py # Visit http://localhost:8000/docs for documents.import …

为什么要学习python

Python 越来越火爆 Python 在诞生之初,因为其功能不好,运转功率低,不支持多核,根本没有并发性可言,在计算功能不那么好的年代,一直没有火爆起来,甚至很多人根本不知道有这门语言。 随着时代的…

MySQL常用命令02

今天主要总结下命令行模式下创建数据库、查看数据库以及删除的命令。 1.创建数据库的命令:CREATE DATABASE [IF NOT EXISTS] 数据库名称; 创建一个名为db_teaching的数据库 库已经创建成功,重复创建报错: 提示改数据库已经存在。 我们在创…

调整C / C ++编译器以在多核应用程序中获得最佳并行性能:第二部分

下面的图5.10 描述了此过程,该过程包括四个步骤:点击领取嵌入式物联网学习路线 1.表征应用程序。 2.优先进行编译器优化。 3.选择基准。 4.评估编译器优化的性能。 图5.10:编译器优化过程 使用编译器的优化始于 对应用程序的表征。此步骤…

Python 实训教学,更便捷的学生邀请及内容分发|ModelWhale 版本更新

中秋国庆假期结束,ModelWhale 又迎来了新一轮的版本更新,让我们调整好节奏,一起奔赴新的旅程! 本次更新中,ModelWhale 主要进行了以下功能迭代: 新增 一键邀请外部用户加入课程(团队版✓&#…

欢迎大家关注我的个人公众号-这个豆包有点粘

欢迎大家关注我的个人公众号-这个豆包有点粘 如果大家不嫌弃的话,可以帮忙关注一下公众号,谢谢大家,个人准备长期运营此账号,文章内容种类繁多,前端学习、时事新闻、心灵鸡汤、幽默段子,一定有一款适合你。…

【学习笔记】minIO分布式文件服务系统

MinIO 一、概述 1.1 minIO是什么? MinIO是专门为海量数据存储、人工智能、大数据分析而设计的对象存储系统。(早前流行的还有FastDFS) 据官方介绍,单个对象最大可存储5T,非常适合存储海量图片、视频、日志文件、备…

培训考试系统如何满足个性化学习需求?

随着科技的不断发展,培训考试系统逐渐成为满足个性化学习需求的重要工具。个性化学习强调根据每个学员的特点和需求,量身定制学习内容和方式,提高学习效果和学习兴趣。 培训考试系统通过个性化内容推荐满足学员的学习需求。系统会根据学员的…

SELECT COUNT(*)会不会导致全表扫描引起慢查询

SELECT COUNT(*)会不会导致全表扫描引起慢查询呢? SELECT COUNT(*) FROM SomeTable 网上有一种说法,针对无 where_clause 的 COUNT(*),MySQL 是有优化的,优化器会选择成本最小的辅助索引查询计数,其实反而性能最高&…

支付宝企业转账到个人账号[新接口版](php源码,亲测)

前言 之前专栏写过一篇企业支付宝转账到个人的文章,里面用的是老接口,官方已经不再维护。最近有人找到帮忙使用新接口实现这个功能,看了下文档以及官方的sdk,为了这一个接口,我还要去下载官方庞大的sdk,而且php低版本的还不支持composer,就很离谱,经过一天的研究,把单…

科技为饮食带来创新,看AI如何打造智能营养时代

在当今社会,快节奏的生活方式、便捷的食品选择以及现代科技的快速发展正深刻地重塑着我们对健康的认知和实践,它已经不再仅仅是一个话题,而是一个备受关注的社会焦点。在这个纷繁复杂的交汇点上,AI技术的介入为我们开辟了前所未有…