微调codebert、unixcoder、grapghcodebert完成漏洞检测代码

news2024/9/24 21:19:01

文件结构如下所示: 

mode.py 

# Copyright (c) Microsoft Corporation.
# Licensed under the MIT License.
import torch
import torch.nn as nn
import torch
from torch.autograd import Variable
import copy
from torch.nn import CrossEntropyLoss, MSELoss

    
    
class Model(nn.Module):   
    def __init__(self, encoder,config,tokenizer,args):
        super(Model, self).__init__()
        self.encoder = encoder
        self.config=config
        self.tokenizer=tokenizer
        self.args=args
    
        # Define dropout layer, dropout_probability is taken from args.
        self.dropout = nn.Dropout(args.dropout_probability)

        
    def forward(self, input_ids=None,labels=None): 
        outputs=self.encoder(input_ids,attention_mask=input_ids.ne(1))[0]

        # Apply dropout
        outputs = self.dropout(outputs)

        logits=outputs
        prob=torch.sigmoid(logits)
        if labels is not None:
            labels=labels.float()
            loss=torch.log(prob[:,0]+1e-10)*labels+torch.log((1-prob)[:,0]+1e-10)*(1-labels)
            loss=-loss.mean()
            return loss,prob
        else:
            return prob
      
        
 

 run.py

# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Fine-tuning the library models for language modeling on a text file (GPT, GPT-2, BERT, RoBERTa).
GPT and GPT-2 are fine-tuned using a causal language modeling (CLM) loss while BERT and RoBERTa are fine-tuned
using a masked language modeling (MLM) loss.
"""

from __future__ import absolute_import, division, print_function

import argparse
import glob
import logging
import os
import pickle
import random
import re
import shutil
import time
import numpy as np
import torch
from torch.utils.data import DataLoader, Dataset, SequentialSampler, RandomSampler,TensorDataset
from torch.utils.data.distributed import DistributedSampler
import json
try:
    from torch.utils.tensorboard import SummaryWriter
except:
    from tensorboardX import SummaryWriter

from tqdm import tqdm, trange
import multiprocessing
from model import Model
from sklearn.metrics import precision_score, recall_score, f1_score,accuracy_score
cpu_cont = multiprocessing.cpu_count()
from transformers import (WEIGHTS_NAME, AdamW, get_linear_schedule_with_warmup,
                          BertConfig, BertForMaskedLM, BertTokenizer, BertForSequenceClassification,
                          GPT2Config, GPT2LMHeadModel, GPT2Tokenizer,
                          OpenAIGPTConfig, OpenAIGPTLMHeadModel, OpenAIGPTTokenizer,
                          RobertaConfig, RobertaForSequenceClassification, RobertaTokenizer,
                          DistilBertConfig, DistilBertForMaskedLM, DistilBertForSequenceClassification, DistilBertTokenizer)

logger = logging.getLogger(__name__)

MODEL_CLASSES = {
    'gpt2': (GPT2Config, GPT2LMHeadModel, GPT2Tokenizer),
    'openai-gpt': (OpenAIGPTConfig, OpenAIGPTLMHeadModel, OpenAIGPTTokenizer),
    'bert': (BertConfig, BertForSequenceClassification, BertTokenizer),
    'roberta': (RobertaConfig, RobertaForSequenceClassification, RobertaTokenizer),
    'distilbert': (DistilBertConfig, DistilBertForSequenceClassification, DistilBertTokenizer)
}



class InputFeatures(object):
    """A single training/test features for a example."""
    def __init__(self,
                 input_tokens,
                 input_ids,
                 idx,
                 label,

    ):
        self.input_tokens = input_tokens
        self.input_ids = input_ids
        self.idx=str(idx)
        self.label=label

        
def convert_examples_to_features(js,tokenizer,args):
    #source
    code=' '.join(js['func'].split())
    code_tokens=tokenizer.tokenize(code)[:args.block_size-2]
    source_tokens =[tokenizer.cls_token]+code_tokens+[tokenizer.sep_token]
    source_ids =  tokenizer.convert_tokens_to_ids(source_tokens)
    padding_length = args.block_size - len(source_ids)
    source_ids+=[tokenizer.pad_token_id]*padding_length
    return InputFeatures(source_tokens,source_ids,js['idx'],js['target'])

class TextDataset(Dataset):
    def __init__(self, tokenizer, args, file_path=None):
        self.examples = []
        with open(file_path) as f:
            for line in f:
                js=json.loads(line.strip())
                self.examples.append(convert_examples_to_features(js,tokenizer,args))
        if 'train' in file_path:
            for idx, example in enumerate(self.examples[:3]):
                    logger.info("*** Example ***")
                    logger.info("idx: {}".format(idx))
                    logger.info("label: {}".format(example.label))
                    logger.info("input_tokens: {}".format([x.replace('\u0120','_') for x in example.input_tokens]))
                    logger.info("input_ids: {}".format(' '.join(map(str, example.input_ids))))

    def __len__(self):
        return len(self.examples)

    def __getitem__(self, i):       
        return torch.tensor(self.examples[i].input_ids),torch.tensor(self.examples[i].label)
            

def set_seed(seed=42):
    random.seed(seed)
    os.environ['PYHTONHASHSEED'] = str(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
    torch.cuda.manual_seed(seed)
    torch.backends.cudnn.deterministic = True


def train(args, train_dataset, model, tokenizer):

    """ Train the model """ 
    args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu)
    train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset)
    
    train_dataloader = DataLoader(train_dataset, sampler=train_sampler, 
                                  batch_size=args.train_batch_size,num_workers=4,pin_memory=True)
    args.max_steps=args.epoch*len( train_dataloader)
    args.save_steps=len( train_dataloader)
    args.warmup_steps=len( train_dataloader)
    args.logging_steps=len( train_dataloader)
    args.num_train_epochs=args.epoch
    model.to(args.device)
    # Prepare optimizer and schedule (linear warmup and decay)
    no_decay = ['bias', 'LayerNorm.weight']
    optimizer_grouped_parameters = [
        {'params': [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
         'weight_decay': args.weight_decay},
        {'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
    ]
    num_params = sum(p.numel() for p in model.parameters())
    trainable_param = sum(p.numel() for p in model.parameters() if p.requires_grad )
    logger.info(f"Number of model parameters: {num_params}")
    logger.info(f"Number of model trainable_param: {trainable_param}")


    optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
    scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=args.max_steps*0.1,
                                                num_training_steps=args.max_steps)
    if args.fp16:
        try:
            from apex import amp
        except ImportError:
            raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
        model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)

    # multi-gpu training (should be after apex fp16 initialization)
    if args.n_gpu > 1:
        model = torch.nn.DataParallel(model)

    # Distributed training (should be after apex fp16 initialization)
    if args.local_rank != -1:
        model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank],
                                                          output_device=args.local_rank,
                                                          find_unused_parameters=True)

    checkpoint_last = os.path.join(args.output_dir, 'checkpoint-last')
    scheduler_last = os.path.join(checkpoint_last, 'scheduler.pt')
    optimizer_last = os.path.join(checkpoint_last, 'optimizer.pt')
    if os.path.exists(scheduler_last):
        scheduler.load_state_dict(torch.load(scheduler_last))
    if os.path.exists(optimizer_last):
        optimizer.load_state_dict(torch.load(optimizer_last))
    # Train!
    logger.info("***** Running training *****")
    logger.info("  Num examples = %d", len(train_dataset))
    logger.info("  Num Epochs = %d", args.num_train_epochs)
    logger.info("  Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size)
    logger.info("  Total train batch size (w. parallel, distributed & accumulation) = %d",
                args.train_batch_size * args.gradient_accumulation_steps * (
                    torch.distributed.get_world_size() if args.local_rank != -1 else 1))
    logger.info("  Gradient Accumulation steps = %d", args.gradient_accumulation_steps)
    logger.info("  Total optimization steps = %d", args.max_steps)
    
    global_step = args.start_step
    tr_loss, logging_loss,avg_loss,tr_nb,tr_num,train_loss = 0.0, 0.0,0.0,0,0,0
    best_mrr=0.0
    best_acc=0.0
    # model.resize_token_embeddings(len(tokenizer))
    model.zero_grad()

    # Initialize early stopping parameters at the start of training
    early_stopping_counter = 0
    best_loss = None
 
    for idx in range(args.start_epoch, int(args.num_train_epochs)):

        bar = tqdm(train_dataloader,total=len(train_dataloader))
        tr_num=0
        train_loss=0
        for step, batch in enumerate(bar):

            inputs = batch[0].to(args.device)        
            labels=batch[1].to(args.device) 
            model.train()
            loss,logits = model(inputs,labels)
            preds = logits[:, 0] > 0.5


            if args.n_gpu > 1:
                loss = loss.mean()  # mean() to average on multi-gpu parallel training
            if args.gradient_accumulation_steps > 1:
                loss = loss / args.gradient_accumulation_steps

            if args.fp16:
                with amp.scale_loss(loss, optimizer) as scaled_loss:
                    scaled_loss.backward()
                torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm)
            else:
                loss.backward()
                torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)

            tr_loss += loss.item()
            tr_num+=1
            train_loss+=loss.item()
            if avg_loss==0:
                avg_loss=tr_loss
            avg_loss=round(train_loss/tr_num,5)
            bar.set_description("epoch {} loss {}".format(idx,avg_loss))

                
            if (step + 1) % args.gradient_accumulation_steps == 0:
                optimizer.step()
                optimizer.zero_grad()
                scheduler.step()  
                global_step += 1
                output_flag=True
                avg_loss=round(np.exp((tr_loss - logging_loss) /(global_step- tr_nb)),4)
                if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0:
                    logging_loss = tr_loss
                    tr_nb=global_step

                if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0:
                    
                    if args.local_rank == -1 and args.evaluate_during_training:  # Only evaluate when single GPU otherwise metrics may not average well
                        results = evaluate(args, model, tokenizer,eval_when_training=True)
                        for key, value in results.items():
                            logger.info("  %s = %s", key, round(value,4))                    
                        # Save model checkpoint
                        
                    if results['eval_acc']>best_acc:
                        best_acc=results['eval_acc']
                        logger.info("  "+"*"*20)  
                        logger.info("  Best acc:%s",round(best_acc,4))
                        logger.info("  "+"*"*20)                          
                        
                        checkpoint_prefix = 'checkpoint-best-acc'
                        output_dir = os.path.join(args.output_dir, '{}'.format(checkpoint_prefix))                        
                        if not os.path.exists(output_dir):
                            os.makedirs(output_dir)                        
                        model_to_save = model.module if hasattr(model,'module') else model
                        output_dir = os.path.join(output_dir, '{}'.format('model.bin')) 
                        torch.save(model_to_save.state_dict(), output_dir)
                        logger.info("Saving model checkpoint to %s", output_dir)



        # Calculate average loss for the epoch
        avg_loss = train_loss / tr_num

        # Check for early stopping condition
        if args.early_stopping_patience is not None:
            if best_loss is None or avg_loss < best_loss - args.min_loss_delta:
                best_loss = avg_loss
                early_stopping_counter = 0
            else:
                early_stopping_counter += 1
                if early_stopping_counter >= args.early_stopping_patience:
                    logger.info("Early stopping")
                    break  # Exit the loop early
                        



def evaluate(args, model, tokenizer,eval_when_training=False):
    # Loop to handle MNLI double evaluation (matched, mis-matched)
    eval_output_dir = args.output_dir

    eval_dataset = TextDataset(tokenizer, args,args.eval_data_file)

    if not os.path.exists(eval_output_dir) and args.local_rank in [-1, 0]:
        os.makedirs(eval_output_dir)

    args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
    # Note that DistributedSampler samples randomly
    eval_sampler = SequentialSampler(eval_dataset) if args.local_rank == -1 else DistributedSampler(eval_dataset)
    eval_dataloader = DataLoader(eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size,num_workers=4,pin_memory=True)

    # multi-gpu evaluate
    if args.n_gpu > 1 and eval_when_training is False:
        model = torch.nn.DataParallel(model)

    # Eval!
    logger.info("***** Running evaluation *****")
    logger.info("  Num examples = %d", len(eval_dataset))
    logger.info("  Batch size = %d", args.eval_batch_size)
    eval_loss = 0.0
    nb_eval_steps = 0
    model.eval()
    logits=[]
    labels=[]
    for batch in eval_dataloader:
        inputs = batch[0].to(args.device)
        label=batch[1].to(args.device)
        with torch.no_grad():
            lm_loss,logit = model(inputs,label)
            eval_loss += lm_loss.mean().item()
            logits.append(logit.cpu().numpy())
            labels.append(label.cpu().numpy())
        nb_eval_steps += 1
    logits=np.concatenate(logits,0)
    labels=np.concatenate(labels,0)
    preds=logits[:,0]>0.5



    eval_acc=np.mean(labels==preds)
    precision = precision_score(labels, preds)
    recall = recall_score(labels, preds)
    f1 = f1_score(labels, preds)



    eval_loss = eval_loss / nb_eval_steps
    perplexity = torch.tensor(eval_loss)
    logger.info(f"test_Evaluation Accuracy: {eval_acc}\n")
    logger.info(f"test_Precision: {precision}")
    logger.info(f"test_Recall: {recall}")
    logger.info(f"test_F1 Score: {f1}")
    result = {
        "eval_loss": float(perplexity),
        "eval_acc":round(eval_acc,4),
    }
    end_time = time.time()
    elapsed_time = end_time - start_time

    # Log timing information
    logger.info(f"{ elapsed_time:.2f}")

    return result

def test(args, model, tokenizer):
    # Loop to handle MNLI double evaluation (matched, mis-matched)
    eval_dataset = TextDataset(tokenizer, args,args.test_data_file)


    args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
    # Note that DistributedSampler samples randomly
    eval_sampler = SequentialSampler(eval_dataset) if args.local_rank == -1 else DistributedSampler(eval_dataset)
    eval_dataloader = DataLoader(eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size)

    # multi-gpu evaluate
    if args.n_gpu > 1:
        model = torch.nn.DataParallel(model)

    # Eval!
    logger.info("***** Running Test *****")
    logger.info("  Num examples = %d", len(eval_dataset))
    logger.info("  Batch size = %d", args.eval_batch_size)
    eval_loss = 0.0
    nb_eval_steps = 0
    model.eval()
    logits=[]   
    labels=[]
    for batch in tqdm(eval_dataloader,total=len(eval_dataloader)):
        inputs = batch[0].to(args.device)        
        label=batch[1].to(args.device) 
        with torch.no_grad():
            logit = model(inputs)
            logits.append(logit.cpu().numpy())
            labels.append(label.cpu().numpy())

    logits=np.concatenate(logits,0)
    labels=np.concatenate(labels,0)
    preds=logits[:,0]>0.5
    with open(os.path.join(args.output_dir,"predictions.txt"),'w') as f:
        for example,pred in zip(eval_dataset.examples,preds):
            if pred:
                f.write(example.idx+'\t1\n')
            else:
                f.write(example.idx+'\t0\n')    
    
                        
                        
def main():
    parser = argparse.ArgumentParser()

    ## Required parameters
    parser.add_argument("--train_data_file", default=None, type=str, required=True,
                        help="The input training data file (a text file).")
    parser.add_argument("--output_dir", default=None, type=str, required=True,
                        help="The output directory where the model predictions and checkpoints will be written.")

    ## Other parameters
    parser.add_argument("--eval_data_file", default=None, type=str,
                        help="An optional input evaluation data file to evaluate the perplexity on (a text file).")
    parser.add_argument("--test_data_file", default=None, type=str,
                        help="An optional input evaluation data file to evaluate the perplexity on (a text file).")
                    
    parser.add_argument("--model_type", default="bert", type=str,
                        help="The model architecture to be fine-tuned.")
    parser.add_argument("--model_name_or_path", default=None, type=str,
                        help="The model checkpoint for weights initialization.")

    parser.add_argument("--mlm", action='store_true',
                        help="Train with masked-language modeling loss instead of language modeling.")
    parser.add_argument("--mlm_probability", type=float, default=0.15,
                        help="Ratio of tokens to mask for masked language modeling loss")

    parser.add_argument("--config_name", default="", type=str,
                        help="Optional pretrained config name or path if not the same as model_name_or_path")
    parser.add_argument("--tokenizer_name", default="", type=str,
                        help="Optional pretrained tokenizer name or path if not the same as model_name_or_path")
    parser.add_argument("--cache_dir", default="", type=str,
                        help="Optional directory to store the pre-trained models downloaded from s3 (instread of the default one)")
    parser.add_argument("--block_size", default=-1, type=int,
                        help="Optional input sequence length after tokenization."
                             "The training dataset will be truncated in block of this size for training."
                             "Default to the model max input length for single sentence inputs (take into account special tokens).")
    parser.add_argument("--do_train", action='store_true',
                        help="Whether to run training.")
    parser.add_argument("--do_eval", action='store_true',
                        help="Whether to run eval on the dev set.")
    parser.add_argument("--do_test", action='store_true',
                        help="Whether to run eval on the dev set.")    
    parser.add_argument("--evaluate_during_training", action='store_true',
                        help="Run evaluation during training at each logging step.")
    parser.add_argument("--do_lower_case", action='store_true',
                        help="Set this flag if you are using an uncased model.")

    parser.add_argument("--train_batch_size", default=4, type=int,
                        help="Batch size per GPU/CPU for training.")
    parser.add_argument("--eval_batch_size", default=4, type=int,
                        help="Batch size per GPU/CPU for evaluation.")
    parser.add_argument('--gradient_accumulation_steps', type=int, default=1,
                        help="Number of updates steps to accumulate before performing a backward/update pass.")
    parser.add_argument("--learning_rate", default=5e-5, type=float,
                        help="The initial learning rate for Adam.")
    parser.add_argument("--weight_decay", default=0.0, type=float,
                        help="Weight deay if we apply some.")
    parser.add_argument("--adam_epsilon", default=1e-8, type=float,
                        help="Epsilon for Adam optimizer.")
    parser.add_argument("--max_grad_norm", default=1.0, type=float,
                        help="Max gradient norm.")
    parser.add_argument("--num_train_epochs", default=1.0, type=float,
                        help="Total number of training epochs to perform.")
    parser.add_argument("--max_steps", default=-1, type=int,
                        help="If > 0: set total number of training steps to perform. Override num_train_epochs.")
    parser.add_argument("--warmup_steps", default=0, type=int,
                        help="Linear warmup over warmup_steps.")

    parser.add_argument('--logging_steps', type=int, default=50,
                        help="Log every X updates steps.")
    parser.add_argument('--save_steps', type=int, default=50,
                        help="Save checkpoint every X updates steps.")
    parser.add_argument('--save_total_limit', type=int, default=None,
                        help='Limit the total amount of checkpoints, delete the older checkpoints in the output_dir, does not delete by default')
    parser.add_argument("--eval_all_checkpoints", action='store_true',
                        help="Evaluate all checkpoints starting with the same prefix as model_name_or_path ending and ending with step number")
    parser.add_argument("--no_cuda", action='store_true',
                        help="Avoid using CUDA when available")
    parser.add_argument('--overwrite_output_dir', action='store_true',
                        help="Overwrite the content of the output directory")
    parser.add_argument('--overwrite_cache', action='store_true',
                        help="Overwrite the cached training and evaluation sets")
    parser.add_argument('--seed', type=int, default=42,
                        help="random seed for initialization")
    parser.add_argument('--epoch', type=int, default=42,
                        help="random seed for initialization")
    parser.add_argument('--fp16', action='store_true',
                        help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit")
    parser.add_argument('--fp16_opt_level', type=str, default='O1',
                        help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
                             "See details at https://nvidia.github.io/apex/amp.html")
    parser.add_argument("--local_rank", type=int, default=-1,
                        help="For distributed training: local_rank")
    parser.add_argument('--server_ip', type=str, default='', help="For distant debugging.")
    parser.add_argument('--server_port', type=str, default='', help="For distant debugging.")

    # Add early stopping parameters and dropout probability parameters
    parser.add_argument("--early_stopping_patience", type=int, default=None,
                        help="Number of epochs with no improvement after which training will be stopped.")
    parser.add_argument("--min_loss_delta", type=float, default=0.001,
                        help="Minimum change in the loss required to qualify as an improvement.")
    parser.add_argument('--dropout_probability', type=float, default=0, help='dropout probability')


    

    args = parser.parse_args()

    # Setup distant debugging if needed
    if args.server_ip and args.server_port:
        # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
        import ptvsd
        print("Waiting for debugger attach")
        ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
        ptvsd.wait_for_attach()

    # Setup CUDA, GPU & distributed training
    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
        args.n_gpu = torch.cuda.device_count()
    else:  # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        torch.distributed.init_process_group(backend='nccl')
        args.n_gpu = 1
    args.device = device
    args.per_gpu_train_batch_size=args.train_batch_size//args.n_gpu
    args.per_gpu_eval_batch_size=args.eval_batch_size//args.n_gpu
    # Setup logging
    logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s -   %(message)s',
                        datefmt='%m/%d/%Y %H:%M:%S',
                        level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN)
    logger.warning("Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
                   args.local_rank, device, args.n_gpu, bool(args.local_rank != -1), args.fp16)



    # Set seed
    set_seed(args.seed)

    # Load pretrained model and tokenizer
    if args.local_rank not in [-1, 0]:
        torch.distributed.barrier()  # Barrier to make sure only the first process in distributed training download model & vocab

    args.start_epoch = 0
    args.start_step = 0
    checkpoint_last = os.path.join(args.output_dir, 'checkpoint-last')
    if os.path.exists(checkpoint_last) and os.listdir(checkpoint_last):
        args.model_name_or_path = os.path.join(checkpoint_last, 'pytorch_model.bin')
        args.config_name = os.path.join(checkpoint_last, 'config.json')
        idx_file = os.path.join(checkpoint_last, 'idx_file.txt')
        with open(idx_file, encoding='utf-8') as idxf:
            args.start_epoch = int(idxf.readlines()[0].strip()) + 1

        step_file = os.path.join(checkpoint_last, 'step_file.txt')
        if os.path.exists(step_file):
            with open(step_file, encoding='utf-8') as stepf:
                args.start_step = int(stepf.readlines()[0].strip())

        logger.info("reload model from {}, resume from {} epoch".format(checkpoint_last, args.start_epoch))

    config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
    config = config_class.from_pretrained(args.config_name if args.config_name else args.model_name_or_path,
                                          cache_dir=args.cache_dir if args.cache_dir else None)
    config.num_labels=1
    tokenizer = tokenizer_class.from_pretrained(args.tokenizer_name,
                                                do_lower_case=args.do_lower_case,
                                                cache_dir=args.cache_dir if args.cache_dir else None)
    if args.block_size <= 0:
        args.block_size = tokenizer.max_len_single_sentence  # Our input block size will be the max possible for the model
    args.block_size = min(args.block_size, tokenizer.max_len_single_sentence)
    if args.model_name_or_path:
        model = model_class.from_pretrained(args.model_name_or_path,
                                            from_tf=bool('.ckpt' in args.model_name_or_path),
                                            config=config,
                                            cache_dir=args.cache_dir if args.cache_dir else None)    
    else:
        model = model_class(config)

    model=Model(model,config,tokenizer,args)
    if args.local_rank == 0:
        torch.distributed.barrier()  # End of barrier to make sure only the first process in distributed training download model & vocab

    logger.info("Training/evaluation parameters %s", args)

    # Training
    if args.do_train:
        if args.local_rank not in [-1, 0]:
            torch.distributed.barrier()  # Barrier to make sure only the first process in distributed training process the dataset, and the others will use the cache

        train_dataset = TextDataset(tokenizer, args,args.train_data_file)
        if args.local_rank == 0:
            torch.distributed.barrier()

        train(args, train_dataset, model, tokenizer)



    # Evaluation
    results = {}
    if args.do_eval and args.local_rank in [-1, 0]:
            checkpoint_prefix = 'checkpoint-best-acc/model.bin'
            output_dir = os.path.join(args.output_dir, '{}'.format(checkpoint_prefix))  
            model.load_state_dict(torch.load(output_dir))      
            model.to(args.device)
            result=evaluate(args, model, tokenizer)
            logger.info("***** Eval results *****")
            for key in sorted(result.keys()):
                logger.info("  %s = %s", key, str(round(result[key],4)))
            
    if args.do_test and args.local_rank in [-1, 0]:
            checkpoint_prefix = 'checkpoint-best-acc/model.bin'
            output_dir = os.path.join(args.output_dir, '{}'.format(checkpoint_prefix))  
            model.load_state_dict(torch.load(output_dir))                  
            model.to(args.device)
            test(args, model, tokenizer)

    return results


if __name__ == "__main__":
    start_time = time.time()
    main()


run.sh

python run.pq \
	--output_dir=./saved_models \
	--model_type=roberta \
	--tokenizer_name=microsoft/unixcoder-base \
	--model_name_or_path=microsoft/unixcoder-base \
	--do_train \
	--train_data_file=/data/code/codebert/dataset/dataset/d2a/d2a_train.json \
	--eval_data_file=/data/code/codebert/dataset/dataset/d2a/d2a_test.json \
	--epoch 20  \
	--block_size 400 \
	--train_batch_size 4 \
	--eval_batch_size 8 \
	--learning_rate 2e-6 \
	--max_grad_norm 1.0 \
	--evaluate_during_training \
	--seed 123213  2>&1 | tee ada.log

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1074692.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

若依4.7.6 版本任意文件下载(CVE-2023-27025)

CVE-2023-27025 框架说明 若依/ruoyi 是使用java主流框架的一款优秀的国内开源cms&#xff0c; 基于SpringBoot、Shiro、Mybatis的权限后台管理系统。 环境搭建 查询最近的漏洞信息 https://cve.mitre.org/ 搜索ruoyi 代码审计感兴趣的漏洞&#xff1a;CVE-2023-27025 …

MyBatis-Plus 内置雪花算法主键重复问题

Mybatis-Plus 使用ID_WORKER生成主键id重复 问题描述 目前项目使用的id是mybatis-plus 内置的主键生成策略 ID_WORKER &#xff0c;最近测试在做性能压测&#xff0c;部署架构是单服务集群的部署方式&#xff0c;然后就发现了id重复的异常&#xff0c;异常如下 问题分析 首先分…

JSONUtil.parse将java对象转为json时,需要在java对象中设置get、set方法

想要使用JSONUtil.parse将java对象转为json格式&#xff0c;但是一直为空&#xff0c;代码如下 public class MyTest {public static void main(String[] args) {Test3<String> test3 new Test3<>("2","hhhhhhaaa");System.out.println(JSON…

Excel统计一列数据中某数字出现的频次函数COUNTIF

一、函数COUNTIF 要统计Excel中一列数据中各个元素出现的频次&#xff0c;可以使用Excel的函数COUNTIF。 假设要统计的数据位于A列&#xff0c;从A1到A10&#xff0c;可以在某小格子中使用以下公式来统计每个元素的频次&#xff1a; COUNTIF($A$1:$A$10, A1) 二、示例 下表…

前端笔记:Create React App 初始化项目的几个关键文件解读

1 介绍 Create React App 是一个官方支持的方式&#xff0c;用于创建单页应用的 React 设置用于构建用户界面的 JAVASCRIPT 库主要用于构建 UI 2 项目结构 一个典型的 Create React App 项目结构如下&#xff1a; ├── package.json ├── public # 这…

[ZJCTF 2019]NiZhuanSiWei - 伪协议+文件包含+反序列化

[ZJCTF 2019]NiZhuanSiWei 1 解题流程1.1 分析1.2 解题 题目源码&#xff1a; <?php $text $_GET["text"]; $file $_GET["file"]; $password $_GET["password"]; if(isset($text)&&(file_get_contents($text,r)"welcome t…

中国替代方案探索:替代谷歌企业邮箱的选择

“谷歌企业邮箱在中国有哪些替代方案&#xff1f;在中国市场上表现出色的企业邮箱有腾讯企业邮箱、网易企业邮箱、阿里企业邮箱以及适合外贸的Zoho Mail企业邮箱。” 在中国由于各种原因&#xff0c;包括网络安全、数据隐私保护以及与GFW(防火长城)等&#xff0c;谷歌企业邮箱并…

unity操作_刚体 c#

刚体Rigidbody 首先在场景中创建一个Plane 位置重置一下 再创建一个Cube 充值 y0.5 我们可以看出创建的Cube 和 Plane都自带碰撞器 Plane用的是网格碰撞器 我们可以通过网格世界看到不同的网格碰撞器 发生碰撞&#xff08;条件&#xff09;&#xff1a; 两个物体都有碰撞器 …

Windows环境下下载安装Elasticsearch和Kibana

Windows环境下下载安装Elasticsearch和Kibana 首先说明这里选择的版本都是7.17 &#xff0c;为什么不选择新版本&#xff0c;新版本有很多坑&#xff0c;要去踩&#xff0c;就用7就够了。 Elasticsearch下载 Elasticsearch是一个开源的分布式搜索和分析引擎&#xff0c;最初由…

C++ 初识STL

STL 1. 初识STL2. STL相关知识学习网站3. STL体系结构4. STL六大组件之间的关系5. STL六大组件使用例子6. 初识容器7. 初识分配器7.1 其他分配器7.2 为什么需要其他的分配器 1. 初识STL STL全称为标准模板库&#xff08;Standard Template Library&#xff09;。设计STL的初衷是…

关于VMware Workstation Pro中虚拟机无法连接外网问题解决

解决方案 1.虚拟机设置 打开虚拟机设置&#xff0c;将网络设备器修改为NAT模式。注意如果是克隆的多个虚拟机&#xff0c;需要将高级&#xff08;V&#xff09;里面的mac地址进行重新生成。 2.配置虚拟网络编辑器 进入虚拟网络编辑器后&#xff0c;将子网和子网掩码进行修…

安卓玩机----展讯芯片机型解锁 读写分区工具 操作步骤解析

国内机型大都使用高通和MTK芯片。展讯芯片使用的较少。相对来说高通和mtk机型解锁以及读取分区工具较多。展讯的几乎没有。目前有大佬开发出了一款展讯芯片解锁 与读写分区工具.开源的tools 官方分享说明&#xff1a; 是一款专为 Windows 计算机设计的免费、用户友好的工具&am…

性价比高的项目管理软件推荐:哪个更适合您?

如今&#xff0c;企业管理软件层出不穷&#xff0c;面对诸多企业管理软件&#xff0c;我们要如何去进行选择。产品的功能都大同小异&#xff0c;当面对如此之多的“衍生品”&#xff0c;我认为首先要考虑的就是性价比。当产品的功能要求都能够满足时&#xff0c;性价比无疑是最…

【Linux】Linux 之用户管理

Linux 之用户管理 1.Linux 下的用户2.配置文件3.用户管理3.1 useradd3.1.1 创建用户并指定用户 ID3.1.2 指定用户的主目录3.1.3 指定用户的主组 3.2 adduser3.3 userdel3.4 密码文件3.4.1 字段含义解释3.4.2 给用户添加密码 3.5 其他与用户相关的命令 4.修改用户的信息4.1 user…

2.6 方法

思维导图&#xff1a; 2.6.1 什么是方法 ### 2.6.1 什么是方法 **定义**: - 方法就是一段可以重复调用的代码&#xff0c;使得程序的可读性、可维护性都得以提高。 **示例**: - 假设有一个游戏中需要反复发射炮弹。而发射炮弹的代码有100行。为了避免在程序中多次写下这100…

Java架构师系统架构设计性能评估

目录 1 导论2 架构评估基础系统性能衡量的基本指标2.1 系统性能的指标2.2 数据库指标2.3 并发用户数2.4 网络延迟2.4 系统吞吐量2.5 资源性能指标3 架构评估基础服务端性能测试3.1基准测试3.2 负载测试3.3 压力测试3.4 疲劳强度测试3.5 容量测试1 导论 本章的主要内容是掌握架构…

【Java】微服务——RabbitMQ消息队列(SpringAMQP实现五种消息模型)

目录 1.初识MQ1.1.同步和异步通讯1.1.1.同步通讯1.1.2.异步通讯 1.2.技术对比&#xff1a; 2.快速入门2.1.RabbitMQ消息模型2.4.1.publisher实现2.4.2.consumer实现 2.5.总结 3.SpringAMQP3.1.Basic Queue 简单队列模型3.1.1.消息发送3.1.2.消息接收3.1.3.测试 3.2.WorkQueue3.…

【Linux升级之路】7_进程信号

目录 一、【Linux初阶】信号入门 | 信号基本概念信号产生核心转储二、【Linux初阶】信号入门2 | 信号阻塞、捕捉、保存 一、【Linux初阶】信号入门 | 信号基本概念信号产生核心转储 链接&#xff1a; 【Linux初阶】信号入门 | 信号基本概念信号产生核心转储 二、【Linux初阶】…

奖品定制经营商城小程序的作用是什么

奖品是激励人员团体很好的方式&#xff0c;也是荣誉象征&#xff0c;奖牌、奖杯、高端礼盒等&#xff0c;同时市场中团体非常多&#xff0c;其需求也是很多&#xff0c;尤其定制方面&#xff0c;就更是不用说。 对奖品定制企业来说&#xff0c;除了线下门店获客经营外&#xf…

使用BAPI_NETWORK_COMP_*实现生产订单组件的增删改查

1、文档说明 对于生产订单组件的增删改有多种办法&#xff0c;比较常用的有使用内部函数CO_XT_COMPONENT_*&#xff0c;有改造BAPI_ALM_ORDER_MAINTAIN来实现&#xff0c;各有千秋。 本文档介绍&#xff0c;通过PS的BAPI_NETWORK_COMP_*系列BAPI&#xff0c;来实现常见的组件…