竞赛选题 深度学习 YOLO 实现车牌识别算法

news2024/12/22 19:11:00

文章目录

  • 0 前言
  • 1 课题介绍
  • 2 算法简介
    • 2.1网络架构
  • 3 数据准备
  • 4 模型训练
  • 5 实现效果
    • 5.1 图片识别效果
    • 5.2视频识别效果
  • 6 部分关键代码
  • 7 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 基于yolov5的深度学习车牌识别系统实现

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:4分
  • 工作量:4分
  • 创新点:3分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate


1 课题介绍

智能车牌识别是现代智能交通系统的重要组成部分, 广泛应用于高速公路、停车场、路口等场景。随着大数 据、人工智能的不断发展,智能车牌识别在数据处理、自
适应学习以及特殊场景训练等方面都有较大程度提升,具 有更强的容错性和鲁棒性。通过车牌号码的自动识别与跟 踪,能有效降低车辆自动化管理的成本,规范车辆不规范
行为,为社会稳定与居民便捷生活提供坚实保障。

2 算法简介

YOLOv5是一种单阶段目标检测算法,该算法在YOLOv4的基础上添加了一些新的改进思路,使其速度与精度都得到了极大的性能提升。主要的改进思路如下所示:

输入端:在模型训练阶段,提出了一些改进思路,主要包括Mosaic数据增强、自适应锚框计算、自适应图片缩放;
基准网络:融合其它检测算法中的一些新思路,主要包括:Focus结构与CSP结构;
Neck网络:目标检测网络在BackBone与最后的Head输出层之间往往会插入一些层,Yolov5中添加了FPN+PAN结构;
Head输出层:输出层的锚框机制与YOLOv4相同,主要改进的是训练时的损失函数GIOU_Loss,以及预测框筛选的DIOU_nms。

2.1网络架构

在这里插入图片描述

上图展示了YOLOv5目标检测算法的整体框图。对于一个目标检测算法而言,我们通常可以将其划分为4个通用的模块,具体包括:输入端、基准网络、Neck网络与Head输出端,对应于上图中的4个红色模块。YOLOv5算法具有4个版本,具体包括:YOLOv5s、YOLOv5m、YOLOv5l、YOLOv5x四种,本文重点讲解YOLOv5s,其它的版本都在该版本的基础上对网络进行加深与加宽。

  • 输入端-输入端表示输入的图片。该网络的输入图像大小为608*608,该阶段通常包含一个图像预处理阶段,即将输入图像缩放到网络的输入大小,并进行归一化等操作。在网络训练阶段,YOLOv5使用Mosaic数据增强操作提升模型的训练速度和网络的精度;并提出了一种自适应锚框计算与自适应图片缩放方法。
  • 基准网络-基准网络通常是一些性能优异的分类器种的网络,该模块用来提取一些通用的特征表示。YOLOv5中不仅使用了CSPDarknet53结构,而且使用了Focus结构作为基准网络。
  • Neck网络-Neck网络通常位于基准网络和头网络的中间位置,利用它可以进一步提升特征的多样性及鲁棒性。虽然YOLOv5同样用到了SPP模块、FPN+PAN模块,但是实现的细节有些不同。
  • Head输出端-Head用来完成目标检测结果的输出。针对不同的检测算法,输出端的分支个数不尽相同,通常包含一个分类分支和一个回归分支。YOLOv4利用GIOU_Loss来代替Smooth L1 Loss函数,从而进一步提升算法的检测精度。

3 数据准备

大家可选用公开的车牌识别数据集。如标注好的 CCPD 数据集, CCPD 数据集一共包含超多 25 万张图片,每种图片大小 720x1160x3,选取部分
CCPD 数据集作为本设计中的车牌检 测与识别的数据集,总共包含 9 项。

也可自己收集车牌图片标注数据集,数据标注这里推荐的软件是labelimg,通过pip指令即可安装。具体使用可上网查看教程。

在这里插入图片描述

4 模型训练

修改train.py中的weights、cfg、data、epochs、batch_size、imgsz、device、workers等参数

在这里插入图片描述

训练代码成功执行之后会在命令行中输出下列信息,接下来就是安心等待模型训练结束即可。

在这里插入图片描述

5 实现效果

来看看我们要实现的效果,我们将会通过数据来训练一个车牌识别的模型,并用pyqt5进行封装,实现图片车牌识别、视频车牌识别和摄像头实时车牌识别的功能。

if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('--weights', nargs='+', type=str, default='./weights/last.pt', help='model.pt path(s)')
    parser.add_argument('--source', type=str, default='./inference/images', help='source')  # file/folder, 0 for webcam
    parser.add_argument('--output', type=str, default='inference/output', help='output folder')  # output folder
    parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)')
    parser.add_argument('--conf-thres', type=float, default=0.8, help='object confidence threshold')
    parser.add_argument('--iou-thres', type=float, default=0.5, help='IOU threshold for NMS')
    parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
    parser.add_argument('--view-img', action='store_true', help='display results',default=True)
    parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
    parser.add_argument('--classes', nargs='+', type=int, help='filter by class')
    parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
    parser.add_argument('--augment', action='store_true', help='augmented inference')
    parser.add_argument('--update', action='store_true', help='update all models')
    opt = parser.parse_args()
    print(opt)

    with torch.no_grad():
        if opt.update:  # update all models (to fix SourceChangeWarning)
            for opt.weights in ['yolov5s.pt', 'yolov5m.pt', 'yolov5l.pt', 'yolov5x.pt', 'yolov3-spp.pt']:
                detect()
                create_pretrained(opt.weights, opt.weights)
        else:

5.1 图片识别效果

在这里插入图片描述

5.2视频识别效果

在这里插入图片描述

6 部分关键代码

篇幅有限,仅展示部分代码



    class Detect(nn.Module):
        stride = None  # strides computed during build
        onnx_dynamic = False  # ONNX export parameter
    
        def __init__(self, nc=80, anchors=(), ch=(), inplace=True):  # detection layer
            super().__init__()
            self.nc = nc  # number of classes
            self.no = nc + 5  # number of outputs per anchor
            self.nl = len(anchors)  # number of detection layers
            self.na = len(anchors[0]) // 2  # number of anchors
            self.grid = [torch.zeros(1)] * self.nl  # init grid
            self.anchor_grid = [torch.zeros(1)] * self.nl  # init anchor grid
            self.register_buffer('anchors', torch.tensor(anchors).float().view(self.nl, -1, 2))  # shape(nl,na,2)
            self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch)  # output conv
            self.inplace = inplace  # use in-place ops (e.g. slice assignment)
    
        def forward(self, x):
            z = []  # inference output
            for i in range(self.nl):
                x[i] = self.m[i](x[i])  # conv
                bs, _, ny, nx = x[i].shape  # x(bs,255,20,20) to x(bs,3,20,20,85)
                x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
    
                if not self.training:  # inference
                    if self.onnx_dynamic or self.grid[i].shape[2:4] != x[i].shape[2:4]:
                        self.grid[i], self.anchor_grid[i] = self._make_grid(nx, ny, i)
    
                    y = x[i].sigmoid()
                    if self.inplace:
                        y[..., 0:2] = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i]  # xy
                        y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]  # wh
                    else:  # for YOLOv5 on AWS Inferentia https://github.com/ultralytics/yolov5/pull/2953
                        xy = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i]  # xy
                        wh = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]  # wh
                        y = torch.cat((xy, wh, y[..., 4:]), -1)
                    z.append(y.view(bs, -1, self.no))
    
            return x if self.training else (torch.cat(z, 1), x)
    
        def _make_grid(self, nx=20, ny=20, i=0):
            d = self.anchors[i].device
            if check_version(torch.__version__, '1.10.0'):  # torch>=1.10.0 meshgrid workaround for torch>=0.7 compatibility
                yv, xv = torch.meshgrid([torch.arange(ny).to(d), torch.arange(nx).to(d)], indexing='ij')
            else:
                yv, xv = torch.meshgrid([torch.arange(ny).to(d), torch.arange(nx).to(d)])
            grid = torch.stack((xv, yv), 2).expand((1, self.na, ny, nx, 2)).float()
            anchor_grid = (self.anchors[i].clone() * self.stride[i]) \
                .view((1, self.na, 1, 1, 2)).expand((1, self.na, ny, nx, 2)).float()
            return grid, anchor_grid


    class Model(nn.Module):
        def __init__(self, cfg='yolov5s.yaml', ch=3, nc=None, anchors=None):  # model, input channels, number of classes
            super().__init__()
            if isinstance(cfg, dict):
                self.yaml = cfg  # model dict
            else:  # is *.yaml
                import yaml  # for torch hub
                self.yaml_file = Path(cfg).name
                with open(cfg, encoding='ascii', errors='ignore') as f:
                    self.yaml = yaml.safe_load(f)  # model dict
    
            # Define model
            ch = self.yaml['ch'] = self.yaml.get('ch', ch)  # input channels
            if nc and nc != self.yaml['nc']:
                LOGGER.info(f"Overriding model.yaml nc={self.yaml['nc']} with nc={nc}")
                self.yaml['nc'] = nc  # override yaml value
            if anchors:
                LOGGER.info(f'Overriding model.yaml anchors with anchors={anchors}')
                self.yaml['anchors'] = round(anchors)  # override yaml value
            self.model, self.save = parse_model(deepcopy(self.yaml), ch=[ch])  # model, savelist
            self.names = [str(i) for i in range(self.yaml['nc'])]  # default names
            self.inplace = self.yaml.get('inplace', True)
    
            # Build strides, anchors
            m = self.model[-1]  # Detect()
            if isinstance(m, Detect):
                s = 256  # 2x min stride
                m.inplace = self.inplace
                m.stride = torch.tensor([s / x.shape[-2] for x in self.forward(torch.zeros(1, ch, s, s))])  # forward
                m.anchors /= m.stride.view(-1, 1, 1)
                check_anchor_order(m)
                self.stride = m.stride
                self._initialize_biases()  # only run once
    
            # Init weights, biases
            initialize_weights(self)
            self.info()
            LOGGER.info('')
    
        def forward(self, x, augment=False, profile=False, visualize=False):
            if augment:
                return self._forward_augment(x)  # augmented inference, None
            return self._forward_once(x, profile, visualize)  # single-scale inference, train
    
        def _forward_augment(self, x):
            img_size = x.shape[-2:]  # height, width
            s = [1, 0.83, 0.67]  # scales
            f = [None, 3, None]  # flips (2-ud, 3-lr)
            y = []  # outputs
            for si, fi in zip(s, f):
                xi = scale_img(x.flip(fi) if fi else x, si, gs=int(self.stride.max()))
                yi = self._forward_once(xi)[0]  # forward
                # cv2.imwrite(f'img_{si}.jpg', 255 * xi[0].cpu().numpy().transpose((1, 2, 0))[:, :, ::-1])  # save
                yi = self._descale_pred(yi, fi, si, img_size)
                y.append(yi)
            y = self._clip_augmented(y)  # clip augmented tails
            return torch.cat(y, 1), None  # augmented inference, train
    
        def _forward_once(self, x, profile=False, visualize=False):
            y, dt = [], []  # outputs
            for m in self.model:
                if m.f != -1:  # if not from previous layer
                    x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f]  # from earlier layers
                if profile:
                    self._profile_one_layer(m, x, dt)
                x = m(x)  # run
                y.append(x if m.i in self.save else None)  # save output
                if visualize:
                    feature_visualization(x, m.type, m.i, save_dir=visualize)
            return x
    
        def _descale_pred(self, p, flips, scale, img_size):
            # de-scale predictions following augmented inference (inverse operation)
            if self.inplace:
                p[..., :4] /= scale  # de-scale
                if flips == 2:
                    p[..., 1] = img_size[0] - p[..., 1]  # de-flip ud
                elif flips == 3:
                    p[..., 0] = img_size[1] - p[..., 0]  # de-flip lr
            else:
                x, y, wh = p[..., 0:1] / scale, p[..., 1:2] / scale, p[..., 2:4] / scale  # de-scale
                if flips == 2:
                    y = img_size[0] - y  # de-flip ud
                elif flips == 3:
                    x = img_size[1] - x  # de-flip lr
                p = torch.cat((x, y, wh, p[..., 4:]), -1)
            return p
    
        def _clip_augmented(self, y):
            # Clip YOLOv5 augmented inference tails
            nl = self.model[-1].nl  # number of detection layers (P3-P5)
            g = sum(4 ** x for x in range(nl))  # grid points
            e = 1  # exclude layer count
            i = (y[0].shape[1] // g) * sum(4 ** x for x in range(e))  # indices
            y[0] = y[0][:, :-i]  # large
            i = (y[-1].shape[1] // g) * sum(4 ** (nl - 1 - x) for x in range(e))  # indices
            y[-1] = y[-1][:, i:]  # small
            return y
    
        def _profile_one_layer(self, m, x, dt):
            c = isinstance(m, Detect)  # is final layer, copy input as inplace fix
            o = thop.profile(m, inputs=(x.copy() if c else x,), verbose=False)[0] / 1E9 * 2 if thop else 0  # FLOPs
            t = time_sync()
            for _ in range(10):
                m(x.copy() if c else x)
            dt.append((time_sync() - t) * 100)
            if m == self.model[0]:
                LOGGER.info(f"{'time (ms)':>10s} {'GFLOPs':>10s} {'params':>10s}  {'module'}")
            LOGGER.info(f'{dt[-1]:10.2f} {o:10.2f} {m.np:10.0f}  {m.type}')
            if c:
                LOGGER.info(f"{sum(dt):10.2f} {'-':>10s} {'-':>10s}  Total")
    
        def _initialize_biases(self, cf=None):  # initialize biases into Detect(), cf is class frequency
            # https://arxiv.org/abs/1708.02002 section 3.3
            # cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1.
            m = self.model[-1]  # Detect() module
            for mi, s in zip(m.m, m.stride):  # from
                b = mi.bias.view(m.na, -1)  # conv.bias(255) to (3,85)
                b.data[:, 4] += math.log(8 / (640 / s) ** 2)  # obj (8 objects per 640 image)
                b.data[:, 5:] += math.log(0.6 / (m.nc - 0.999999)) if cf is None else torch.log(cf / cf.sum())  # cls
                mi.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
    
        def _print_biases(self):
            m = self.model[-1]  # Detect() module
            for mi in m.m:  # from
                b = mi.bias.detach().view(m.na, -1).T  # conv.bias(255) to (3,85)
                LOGGER.info(
                    ('%6g Conv2d.bias:' + '%10.3g' * 6) % (mi.weight.shape[1], *b[:5].mean(1).tolist(), b[5:].mean()))
    
        # def _print_weights(self):
        #     for m in self.model.modules():
        #         if type(m) is Bottleneck:
        #             LOGGER.info('%10.3g' % (m.w.detach().sigmoid() * 2))  # shortcut weights
    
        def fuse(self):  # fuse model Conv2d() + BatchNorm2d() layers
            LOGGER.info('Fusing layers... ')
            for m in self.model.modules():
                if isinstance(m, (Conv, DWConv)) and hasattr(m, 'bn'):
                    m.conv = fuse_conv_and_bn(m.conv, m.bn)  # update conv
                    delattr(m, 'bn')  # remove batchnorm
                    m.forward = m.forward_fuse  # update forward
            self.info()
            return self
    
        def autoshape(self):  # add AutoShape module
            LOGGER.info('Adding AutoShape... ')
            m = AutoShape(self)  # wrap model
            copy_attr(m, self, include=('yaml', 'nc', 'hyp', 'names', 'stride'), exclude=())  # copy attributes
            return m
    
        def info(self, verbose=False, img_size=640):  # print model information
            model_info(self, verbose, img_size)
    
        def _apply(self, fn):
            # Apply to(), cpu(), cuda(), half() to model tensors that are not parameters or registered buffers
            self = super()._apply(fn)
            m = self.model[-1]  # Detect()
            if isinstance(m, Detect):
                m.stride = fn(m.stride)
                m.grid = list(map(fn, m.grid))
                if isinstance(m.anchor_grid, list):
                    m.anchor_grid = list(map(fn, m.anchor_grid))
            return self


    def parse_model(d, ch):  # model_dict, input_channels(3)
        LOGGER.info(f"\n{'':>3}{'from':>18}{'n':>3}{'params':>10}  {'module':<40}{'arguments':<30}")
        anchors, nc, gd, gw = d['anchors'], d['nc'], d['depth_multiple'], d['width_multiple']
        na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors  # number of anchors
        no = na * (nc + 5)  # number of outputs = anchors * (classes + 5)
    
        layers, save, c2 = [], [], ch[-1]  # layers, savelist, ch out
        for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']):  # from, number, module, args
            m = eval(m) if isinstance(m, str) else m  # eval strings
            for j, a in enumerate(args):
                try:
                    args[j] = eval(a) if isinstance(a, str) else a  # eval strings
                except NameError:
                    pass
    
            n = n_ = max(round(n * gd), 1) if n > 1 else n  # depth gain
            if m in [Conv, GhostConv, Bottleneck, GhostBottleneck, SPP, SPPF, DWConv, MixConv2d, Focus, CrossConv,
                     BottleneckCSP, C3, C3TR, C3SPP, C3Ghost]:
                c1, c2 = ch[f], args[0]
                if c2 != no:  # if not output
                    c2 = make_divisible(c2 * gw, 8)
    
                args = [c1, c2, *args[1:]]
                if m in [BottleneckCSP, C3, C3TR, C3Ghost]:
                    args.insert(2, n)  # number of repeats
                    n = 1
            elif m is nn.BatchNorm2d:
                args = [ch[f]]
            elif m is Concat:
                c2 = sum(ch[x] for x in f)
            elif m is Detect:
                args.append([ch[x] for x in f])
                if isinstance(args[1], int):  # number of anchors
                    args[1] = [list(range(args[1] * 2))] * len(f)
            elif m is Contract:
                c2 = ch[f] * args[0] ** 2
            elif m is Expand:
                c2 = ch[f] // args[0] ** 2
            else:
                c2 = ch[f]
    
            m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args)  # module
            t = str(m)[8:-2].replace('__main__.', '')  # module type
            np = sum(x.numel() for x in m_.parameters())  # number params
            m_.i, m_.f, m_.type, m_.np = i, f, t, np  # attach index, 'from' index, type, number params
            LOGGER.info(f'{i:>3}{str(f):>18}{n_:>3}{np:10.0f}  {t:<40}{str(args):<30}')  # print
            save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1)  # append to savelist
            layers.append(m_)
            if i == 0:
                ch = []
            ch.append(c2)
        return nn.Sequential(*layers), sorted(save)


7 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1074099.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

聊聊僵尸进程

文章目录 1. 前言1.1 什么是僵尸进程1.2 为什么需要关注僵尸进程 2. 僵尸进程的产生2.2 为什么会产生僵尸进程2.3 举个栗子 3. 僵尸进程的影响3.1 僵尸进程为何会占用系统资源3.2 操作系统如何知道哪个资源需要被释放3.3 什么是进程表3.4 什么是PCB 5. 如何处理僵尸进程4.1 识别…

【算法设计与分析】— —实现活动安排问题的贪心算法。

&#x1f383;欢迎大家前去观看我的算法设计与分析专栏&#xff1a; 算法设计与分析_IT闫的博客-CSDN博客 希望对大家有所帮助&#xff01; &#x1f383;个人专栏&#xff1a; &#x1f42c; 算法设计与分析&#xff1a;算法设计与分析_IT闫的博客-CSDN博客 &#x1f433;Java…

现场大屏互动游戏微信上墙“摇一摇”全攻略

随着科技的发展&#xff0c;现场活动越来越依赖数字互动来提升参与度和气氛。其中&#xff0c;现场大屏互动游戏微信上墙“摇一摇”是一种非常受欢迎的方式&#xff0c;它能有效地提升现场观众的参与度和活跃度。本文将为您提供从准备到实施的全程攻略&#xff0c;帮助您轻松掌…

打印字节流和字符流

打印字节流和字符流 printStream/ printWriter的构造器和方法都是一样的 package printfile;import java.io.FileOutputStream; import java.io.OutputStream; import java.io.PrintStream; import java.io.PrintWriter; import java.nio.charset.Charset;public class Prin…

如何使用potplayer在公网访问群晖webdav?

把potplayer变成netflix需要几步&#xff1f; ​ 国内流媒体平台的内容让人一言难尽&#xff0c;就算是购买了国外的优秀作品&#xff0c;也总是在关键剧情上删删减减&#xff0c;就算是充了会员&#xff0c;效果如何&#xff1f; 广大网友不得不选择自己找资源下到本地&#x…

戏剧影视设计制作虚拟仿真培训课件提升学生的参与感

说起影视制作&#xff0c;知名的影视制片人寥寥无几&#xff0c;大多数人还在依靠摄影机拍摄实景或搭建实体场景来不断精进场景布局和导演效果&#xff0c;成本高、投入人员多且周期长&#xff0c;随着VR虚拟现实技术的不断发展&#xff0c;利用VR模拟仿真技术进行影视制作实操…

【FreeRTOS】【STM32】01从零开始的freertos之旅 浏览源码下的文件夹

基于野火以及正点原子 在打开正点原子的资料pdf时&#xff0c;我遇到了pdf无法复制粘贴的问题&#xff0c;这里有个pdf解锁文字复制功能的网址&#xff0c;mark一下。超级pdf 参考资料《STM32F429FreeRTOS开发手册_V1.2》 官方资料 FreeRTOS 的源码和相应的官方书籍均可从官…

【AI】深度学习——人工智能、深度学习与神经网络

文章目录 0.1 如何开发一个AI系统0.2 表示学习(特征处理)0.2.1 传统特征学习特征选择过滤式包裹式 L 1 L_1 L1​ 正则化 特征抽取监督的特征学习无监督的特征学习 特征工程作用 0.2.2 语义鸿沟0.2.3 表示方式关联 0.2.4 表示学习对比 0.3 深度学习0.3.1 表示学习与深度学习0.3.…

vue2踩坑之项目:Swiper轮播图使用

首先安装swiper插件 npm i swiper5 安装出现错误&#xff1a;npm ERR npm ERR! code ERESOLVE npm ERR! ERESOLVE could not resolve npm ERR! npm ERR! While resolving: vue/eslint-config-standard6.1.0 npm ERR! Found: eslint-plugin-vue8.7.1 npm ERR! node_modules/esl…

数据结构与算法(七):搜索算法

参考引用 Hello 算法 Github&#xff1a;hello-algo 1. 二分查找 二分查找&#xff08;binary search&#xff09;是一种基于分治策略的高效搜索算法。它利用数据的有序性&#xff0c;每轮减少一半搜索范围&#xff0c;直至找到目标元素或搜索区间为空为止 给定一个长度为 n 的…

WebDAV之π-Disk派盘 + 咕咚云图

咕咚云图是一款强大的图床传图软件,它能够让您高效地对手机中的各种图片进行github传输,多个平台快速编码上传,支持远程删除不需要的图片,传输过程安全稳定,让您可以很好的进行玩机或者其他操作。 可帮你上传手机图片到图床上,并生成 markdown 链接,支持七牛云、阿里云…

SRM系统快速便捷退货的解决方案

一、SRM系统简介&#xff1a; SRM系统是一种基于互联网技术的供应链管理解决方案&#xff0c;旨在加强供应商与采购商之间的合作关系&#xff0c;优化供应链的效率和可靠性。它提供了一系列功能模块&#xff0c;包括采购管理、供应商管理、订单管理、物流管理等。其中&#xf…

平衡小车调车保姆式教程

前言 &#xff08;1&#xff09;硬件选型注意点&#xff1a;电机转速、轮子大小 &#xff08;2&#xff09;车模硬件结构注意点&#xff1a;车模整体的重量要分布均匀&#xff0c;利于平衡 &#xff08;3&#xff09;硬件主要模块&#xff1a;陀螺仪、编码器电机、显示屏、驱动…

ElasticSearch搜索引擎:数据的写入流程

一、ElasticSearch 写数据的总体流程&#xff1a; &#xff08;1&#xff09;ES 客户端选择一个节点 node 发送请求过去&#xff0c;这个节点就是协调节点 coordinating node &#xff08;2&#xff09;协调节点对 document 进行路由&#xff0c;通过 hash 算法计算出数据应该…

设计模式 - 结构型模式考点篇:适配器模式(类适配器、对象适配器、接口适配器)

目录 一、适配器模式 一句话概括结构式模式 1.1、适配器模式概述 1.2、案例 1.2.1、类适配器模式实现案例 1.2.2、对象适配器 1.2.3、接口适配器 1.3、优缺点&#xff08;对象适配器模式&#xff09; 1.4、应用场景 一、适配器模式 一句话概括结构式模式 教你将类和对…

剑指offer——JZ68 二叉搜索树的最近公共祖先 解题思路与具体代码【C++】

一、题目描述与要求 二叉搜索树的最近公共祖先_牛客题霸_牛客网 (nowcoder.com) 题目描述 给定一个二叉搜索树, 找到该树中两个指定节点的最近公共祖先。 1.对于该题的最近的公共祖先定义:对于有根树T的两个节点p、q&#xff0c;最近公共祖先LCA(T,p,q)表示一个节点x&#…

头戴式耳机哪个牌子音质好?Y2K的福音!Umelody轻律 U1头戴式耳机分享

作为一款国产头戴式蓝牙耳机&#xff0c;Umelody轻律 U1绝对是性价比之选&#xff0c;可以说是Y2K的福音&#xff0c;复古味十足的设计&#xff0c;快捷方便的蓝牙连接和多功能实用的操作方式&#xff0c;最关键的还是价格低&#xff0c;300元的价格不到就可以拿下。 创始团队…

在Remix中编写你的第一份智能合约

智能合约简单来讲就是&#xff1a;部署在去中心化区块链上的一个合约或者一组指令&#xff0c;当这个合约或者这组指令被部署以后&#xff0c;它就不能被改变了&#xff0c;并会自动执行&#xff0c;每个人都可以看到合约里面的条款。更深层次的理解就是&#xff1a;这些代码会…

vue实现自定义滚动条

vue实现自定义滚动条 具体效果如下&#xff0c;这边我用的rem单位&#xff0c;比例是1:40&#xff0c; 先写下页面布局&#xff0c;把原生的滚动条给隐藏掉&#xff0c;给自定义的滑块增加transition: marginLeft 1s linear;可以使左边距过度的更顺滑 .top-box-2::-webkit-scr…

基于spso算法的航线规划

matlab2020a GitHub - duongpm/SPSO: Spherical Vector-based Particle Swarm Optimization