对音频切分成小音频(机器学习用)

news2025/1/11 5:52:49

我是把so-vits中小工具,分析源码然后提取出来了。以后可以写在自己的程序里。

-------流程(这是我做的流程,你可以不用看)

从开源代码中快速获取自己需要的东西

如果有界面f12看他里面的接口,然后在源码中全局搜索,没有接口比如socket,看他的消息字段,然后推测。然后提取补齐代码就行了

-------

你需要看的

提取出来有3个类

run.py是我自己写的

其他是我提取的源码,首先你得install一些包

numpy,librosa,soundfile

slicer2.py

import numpy as np


# This function is obtained from librosa.
def get_rms(
    y,
    *,
    frame_length=2048,
    hop_length=512,
    pad_mode="constant",
):
    padding = (int(frame_length // 2), int(frame_length // 2))
    y = np.pad(y, padding, mode=pad_mode)

    axis = -1
    # put our new within-frame axis at the end for now
    out_strides = y.strides + tuple([y.strides[axis]])
    # Reduce the shape on the framing axis
    x_shape_trimmed = list(y.shape)
    x_shape_trimmed[axis] -= frame_length - 1
    out_shape = tuple(x_shape_trimmed) + tuple([frame_length])
    xw = np.lib.stride_tricks.as_strided(
        y, shape=out_shape, strides=out_strides
    )
    if axis < 0:
        target_axis = axis - 1
    else:
        target_axis = axis + 1
    xw = np.moveaxis(xw, -1, target_axis)
    # Downsample along the target axis
    slices = [slice(None)] * xw.ndim
    slices[axis] = slice(0, None, hop_length)
    x = xw[tuple(slices)]

    # Calculate power
    power = np.mean(np.abs(x) ** 2, axis=-2, keepdims=True)

    return np.sqrt(power)


class Slicer:
    def __init__(self,
                 sr: int,
                 threshold: float = -40.,
                 min_length: int = 5000,
                 min_interval: int = 300,
                 hop_size: int = 20,
                 max_sil_kept: int = 5000):
        if not min_length >= min_interval >= hop_size:
            raise ValueError('The following condition must be satisfied: min_length >= min_interval >= hop_size')
        if not max_sil_kept >= hop_size:
            raise ValueError('The following condition must be satisfied: max_sil_kept >= hop_size')
        min_interval = sr * min_interval / 1000
        self.threshold = 10 ** (threshold / 20.)
        self.hop_size = round(sr * hop_size / 1000)
        self.win_size = min(round(min_interval), 4 * self.hop_size)
        self.min_length = round(sr * min_length / 1000 / self.hop_size)
        self.min_interval = round(min_interval / self.hop_size)
        self.max_sil_kept = round(sr * max_sil_kept / 1000 / self.hop_size)

    def _apply_slice(self, waveform, begin, end):
        if len(waveform.shape) > 1:
            return waveform[:, begin * self.hop_size: min(waveform.shape[1], end * self.hop_size)]
        else:
            return waveform[begin * self.hop_size: min(waveform.shape[0], end * self.hop_size)]

    # @timeit
    def slice(self, waveform):
        if len(waveform.shape) > 1:
            samples = waveform.mean(axis=0)
        else:
            samples = waveform
        if samples.shape[0] <= self.min_length:
            return [waveform]
        rms_list = get_rms(y=samples, frame_length=self.win_size, hop_length=self.hop_size).squeeze(0)
        sil_tags = []
        silence_start = None
        clip_start = 0
        for i, rms in enumerate(rms_list):
            # Keep looping while frame is silent.
            if rms < self.threshold:
                # Record start of silent frames.
                if silence_start is None:
                    silence_start = i
                continue
            # Keep looping while frame is not silent and silence start has not been recorded.
            if silence_start is None:
                continue
            # Clear recorded silence start if interval is not enough or clip is too short
            is_leading_silence = silence_start == 0 and i > self.max_sil_kept
            need_slice_middle = i - silence_start >= self.min_interval and i - clip_start >= self.min_length
            if not is_leading_silence and not need_slice_middle:
                silence_start = None
                continue
            # Need slicing. Record the range of silent frames to be removed.
            if i - silence_start <= self.max_sil_kept:
                pos = rms_list[silence_start: i + 1].argmin() + silence_start
                if silence_start == 0:
                    sil_tags.append((0, pos))
                else:
                    sil_tags.append((pos, pos))
                clip_start = pos
            elif i - silence_start <= self.max_sil_kept * 2:
                pos = rms_list[i - self.max_sil_kept: silence_start + self.max_sil_kept + 1].argmin()
                pos += i - self.max_sil_kept
                pos_l = rms_list[silence_start: silence_start + self.max_sil_kept + 1].argmin() + silence_start
                pos_r = rms_list[i - self.max_sil_kept: i + 1].argmin() + i - self.max_sil_kept
                if silence_start == 0:
                    sil_tags.append((0, pos_r))
                    clip_start = pos_r
                else:
                    sil_tags.append((min(pos_l, pos), max(pos_r, pos)))
                    clip_start = max(pos_r, pos)
            else:
                pos_l = rms_list[silence_start: silence_start + self.max_sil_kept + 1].argmin() + silence_start
                pos_r = rms_list[i - self.max_sil_kept: i + 1].argmin() + i - self.max_sil_kept
                if silence_start == 0:
                    sil_tags.append((0, pos_r))
                else:
                    sil_tags.append((pos_l, pos_r))
                clip_start = pos_r
            silence_start = None
        # Deal with trailing silence.
        total_frames = rms_list.shape[0]
        if silence_start is not None and total_frames - silence_start >= self.min_interval:
            silence_end = min(total_frames, silence_start + self.max_sil_kept)
            pos = rms_list[silence_start: silence_end + 1].argmin() + silence_start
            sil_tags.append((pos, total_frames + 1))
        # Apply and return slices.
        if len(sil_tags) == 0:
            return [waveform]
        else:
            chunks = []
            if sil_tags[0][0] > 0:
                chunks.append(self._apply_slice(waveform, 0, sil_tags[0][0]))
            for i in range(len(sil_tags) - 1):
                chunks.append(self._apply_slice(waveform, sil_tags[i][1], sil_tags[i + 1][0]))
            if sil_tags[-1][1] < total_frames:
                chunks.append(self._apply_slice(waveform, sil_tags[-1][1], total_frames))
            return chunks


def main():
    import os.path
    from argparse import ArgumentParser

    import librosa
    import soundfile

    parser = ArgumentParser()
    parser.add_argument('audio', type=str, help='The audio to be sliced')
    parser.add_argument('--out', type=str, help='Output directory of the sliced audio clips')
    parser.add_argument('--db_thresh', type=float, required=False, default=-40,
                        help='The dB threshold for silence detection')
    parser.add_argument('--min_length', type=int, required=False, default=5000,
                        help='The minimum milliseconds required for each sliced audio clip')
    parser.add_argument('--min_interval', type=int, required=False, default=300,
                        help='The minimum milliseconds for a silence part to be sliced')
    parser.add_argument('--hop_size', type=int, required=False, default=10,
                        help='Frame length in milliseconds')
    parser.add_argument('--max_sil_kept', type=int, required=False, default=500,
                        help='The maximum silence length kept around the sliced clip, presented in milliseconds')
    args = parser.parse_args()
    out = args.out
    if out is None:
        out = os.path.dirname(os.path.abspath(args.audio))
    audio, sr = librosa.load(args.audio, sr=None, mono=False)
    slicer = Slicer(
        sr=sr,
        threshold=args.db_thresh,
        min_length=args.min_length,
        min_interval=args.min_interval,
        hop_size=args.hop_size,
        max_sil_kept=args.max_sil_kept
    )
    chunks = slicer.slice(audio)
    if not os.path.exists(out):
        os.makedirs(out)
    for i, chunk in enumerate(chunks):
        if len(chunk.shape) > 1:
            chunk = chunk.T
        soundfile.write(os.path.join(out, f'%s_%d.wav' % (os.path.basename(args.audio).rsplit('.', maxsplit=1)[0], i)), chunk, sr)


if __name__ == '__main__':
    main()

auto_slicer.py

import os
import numpy as np
import librosa
import soundfile as sf
from slicer2 import Slicer

class AutoSlicer:
    def __init__(self):
        self.slicer_params = {
            "threshold": -40,
            "min_length": 5000,
            "min_interval": 300,
            "hop_size": 10,
            "max_sil_kept": 500,
        }
        self.original_min_interval = self.slicer_params["min_interval"]

    def auto_slice(self, filename, input_dir, output_dir, max_sec):
        audio, sr = librosa.load(os.path.join(input_dir, filename), sr=None, mono=False)
        slicer = Slicer(sr=sr, **self.slicer_params)
        chunks = slicer.slice(audio)
        files_to_delete = []
        for i, chunk in enumerate(chunks):
            if len(chunk.shape) > 1:
                chunk = chunk.T
            output_filename = f"{os.path.splitext(filename)[0]}_{i}"
            output_filename = "".join(c for c in output_filename if c.isascii() or c == "_") + ".wav"
            output_filepath = os.path.join(output_dir, output_filename)
            sf.write(output_filepath, chunk, sr)
            #Check and re-slice audio that more than max_sec.
            while True:
                new_audio, sr = librosa.load(output_filepath, sr=None, mono=False)
                if librosa.get_duration(y=new_audio, sr=sr) <= max_sec:
                    break
                self.slicer_params["min_interval"] = self.slicer_params["min_interval"] // 2
                if self.slicer_params["min_interval"] >= self.slicer_params["hop_size"]:
                    new_chunks = Slicer(sr=sr, **self.slicer_params).slice(new_audio)
                    for j, new_chunk in enumerate(new_chunks):
                        if len(new_chunk.shape) > 1:
                            new_chunk = new_chunk.T
                        new_output_filename = f"{os.path.splitext(output_filename)[0]}_{j}.wav"
                        sf.write(os.path.join(output_dir, new_output_filename), new_chunk, sr)
                    files_to_delete.append(output_filepath)
                else:
                    break
            self.slicer_params["min_interval"] = self.original_min_interval
        for file_path in files_to_delete:
            if os.path.exists(file_path):
                os.remove(file_path)

    def merge_short(self, output_dir, max_sec, min_sec):
        short_files = []
        for filename in os.listdir(output_dir):
            filepath = os.path.join(output_dir, filename)
            if filename.endswith(".wav"):
                audio, sr = librosa.load(filepath, sr=None, mono=False)
                duration = librosa.get_duration(y=audio, sr=sr)
                if duration < min_sec:
                    short_files.append((filepath, audio, duration))
        short_files.sort(key=lambda x: x[2], reverse=True)
        merged_audio = []
        current_duration = 0
        for filepath, audio, duration in short_files:
            if current_duration + duration <= max_sec:
                merged_audio.append(audio)
                current_duration += duration
                os.remove(filepath)
            else:
                if merged_audio:
                    output_audio = np.concatenate(merged_audio, axis=-1)
                    if len(output_audio.shape) > 1:
                        output_audio = output_audio.T
                    output_filename = f"merged_{len(os.listdir(output_dir))}.wav"
                    sf.write(os.path.join(output_dir, output_filename), output_audio, sr)
                    merged_audio = [audio]
                    current_duration = duration
                    os.remove(filepath)
        if merged_audio and current_duration >= min_sec:
            output_audio = np.concatenate(merged_audio, axis=-1)
            if len(output_audio.shape) > 1:
                output_audio = output_audio.T
            output_filename = f"merged_{len(os.listdir(output_dir))}.wav"
            sf.write(os.path.join(output_dir, output_filename), output_audio, sr)
    
    def slice_count(self, input_dir, output_dir):
        orig_duration = final_duration = 0
        for file in os.listdir(input_dir):
            if file.endswith(".wav"):
                _audio, _sr = librosa.load(os.path.join(input_dir, file), sr=None, mono=False)
                orig_duration += librosa.get_duration(y=_audio, sr=_sr)
        wav_files = [file for file in os.listdir(output_dir) if file.endswith(".wav")]
        num_files = len(wav_files)
        max_duration = -1
        min_duration = float("inf")
        for file in wav_files:
            file_path = os.path.join(output_dir, file)
            audio, sr = librosa.load(file_path, sr=None, mono=False)
            duration = librosa.get_duration(y=audio, sr=sr)
            final_duration += float(duration)
            if duration > max_duration:
                max_duration = float(duration)
            if duration < min_duration:
                min_duration = float(duration)
        return num_files, max_duration, min_duration, orig_duration, final_duration


run.py

import os
from auto_slicer import AutoSlicer
import librosa
def slicer_fn(input_dir, output_dir, process_method, max_sec, min_sec):
    if output_dir == "":
        return "请先选择输出的文件夹"
    if output_dir == input_dir:
        return "输出目录不能和输入目录相同"
    slicer = AutoSlicer()
    if os.path.exists(output_dir) is not True:
        os.makedirs(output_dir)
    for filename in os.listdir(input_dir):
        if filename.lower().endswith(".wav"):
            slicer.auto_slice(filename, input_dir, output_dir, max_sec)
    if process_method == "丢弃":
        for filename in os.listdir(output_dir):
            if filename.endswith(".wav"):
                filepath = os.path.join(output_dir, filename)
                audio, sr = librosa.load(filepath, sr=None, mono=False)
                if librosa.get_duration(y=audio, sr=sr) < min_sec:
                    os.remove(filepath)
    elif process_method == "将过短音频整合为长音频":
        slicer.merge_short(output_dir, max_sec, min_sec)
    file_count, max_duration, min_duration, orig_duration, final_duration = slicer.slice_count(input_dir, output_dir)
    hrs = int(final_duration / 3600)
    mins = int((final_duration % 3600) / 60)
    sec = format(float(final_duration % 60), '.2f')
    rate = format(100 * (final_duration / orig_duration), '.2f') if orig_duration != 0 else 0
    rate_msg = f"为原始音频时长的{rate}%" if rate != 0 else "因未知问题,无法计算切片时长的占比"
    return f"成功将音频切分为{file_count}条片段,其中最长{max_duration}秒,最短{min_duration}秒,切片后的音频总时长{hrs:02d}小时{mins:02d}分{sec}秒,{rate_msg}"

input_dir="F:\sliper\input"#输入文件夹(这里面可以放多个wav)
output_dir="F:\sliper\output"#输出文件夹
process_method="丢弃"#如果音频小于3就丢弃
max_sec=15#音频最长为15
min_sec=3#音频最小为3
slicer_fn(input_dir,output_dir,process_method,max_sec,min_sec)

测试输入

得到

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1073113.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

英国/法国/意大利/德国/西班牙,电动交通设备合规政策更新!

英国/法国/意大利/德国/西班牙&#xff0c;电动交通设备合规政策更新&#xff01; 产品安全 合规政策更新&#xff01;或加昵称咨询 NOTICE 尊敬的卖家&#xff1a; 您好&#xff01; 我们此次联系您是因为您正在销售需要审批流程的商品。为此&#xff0c;亚马逊正在实施审…

九大装修收纳空间的设计,收藏备用!福州中宅装饰,福州装修

如果房子面积不大&#xff0c;收纳设计就显得非常重要。其实装修房子中很多地方都可以做收纳&#xff0c;九大空间每一处都可以放下你的东西&#xff0c;让你摆脱收纳烦恼。 收纳空间少的话&#xff0c;装修完后住久了怕会乱成一窝&#xff0c;因此装修的时候&#xff0c;收纳…

google hack常用语法介绍

Google hacker (Google黑客)是利用GOOGLE提供的搜索功能查找黑客们想找到的信息.一般是查找网站后台,网管的个人信息,也可以用来查找某人在网络上的活动. Google hacker 一般是做为黑客在入侵时的一个手段.在入侵过程中有时需要查找后台的登陆口就需要用到GOOGLE HACKER.有…

在asp.net中,实现类似安卓界面toast的方法(附更多弹窗样式)

最近在以前的asp.net网页中&#xff0c;每次点击确定都弹窗&#xff0c;然后还要弹窗点击确认&#xff0c;太麻烦了&#xff0c;这次想升级一下&#xff0c;实现类似安卓toast的弹窗提示方式。于是百度了一下&#xff0c;目前看到有两种&#xff0c;sweetalert和toastr。 这里…

Python接口自动化测试实战详解,你想要的全都有

前言 接口自动化测试是当前软件开发中最重要的环节之一&#xff0c;可以提高代码质量、加速开发周期、减少手工测试成本等优点。Python语言在接口自动化测试方面应用广泛&#xff0c;因为它具有简单易学、开发效率高、库丰富等特点。 一、接口自动化测试概述 接口自动化测试…

六个交易日市值蒸发20亿港元,第四范式难逃AI大模型“魔咒”

AI独角兽第四范式终于敲钟了。 北京第四范式智能技术股份有限公司(06682.HK&#xff0c;下称“第四范式”)于9月28日正式挂牌港交所&#xff0c;发行价为55.60港元/股&#xff0c;IPO首日报收58.50港元/股。 上市后6个交易日&#xff0c;截至10月6日港股收盘&#xff0c;第四…

【无监控,不运维!这份监控建设总结太赞了!】

运维行业有句话&#xff1a;“无监控、不运维”&#xff0c;是的&#xff0c;一点也不夸张&#xff0c;监控俗称“第三只眼”。没了监控&#xff0c;什么基础运维&#xff0c;业务运维都是“瞎子”。所以说监控是运维这个职业的根本。 尤其是在现在DevOps这么火的时候&#xf…

【网络安全】网络安全的最后一道防线——“密码”

网络安全的最后一道防线——“密码” 前言超星学习通泄露1.7亿条信息事件武汉市地震监测中心遭境外网络攻击事件 一、密码起源1、 古代密码2、近代密码3、现代密码4、量子密码 二、商密专栏推荐三、如何利用密码保护账号安全&#xff1f;1、账号安全的三大危险&#xff1f;&…

LLaMA Adapter和LLaMA Adapter V2

LLaMA Adapter论文地址&#xff1a; https://arxiv.org/pdf/2303.16199.pdf LLaMA Adapter V2论文地址&#xff1a; https://arxiv.org/pdf/2304.15010.pdf LLaMA Adapter效果展示地址&#xff1a; LLaMA Adapter 双语多模态通用模型 为你写诗 - 知乎 LLaMA Adapter GitH…

PSN 两步验证解除2023.10.9经验贴

背景 本人10月1号收到Sony邮件&#xff0c;说是不规律登录&#xff0c;需修改密码后登录&#xff0c;然后我10月8日登录PS4的时候&#xff0c;提示两步验证。当时就想坏了&#xff0c;然后找B站相关经验贴&#xff0c;10月9号电话香港客服&#xff0c;解除了两步验证&#xff0…

IOT 围炉札记

文章目录 一、蓝牙二、PAN1080三、IOT OS四、通讯 一、蓝牙 树莓派上的蓝牙协议 BlueZ 官网 BlueZ 官方 Linux Bluetooth 栈 oschina 二、PAN1080 pan1080 文档 三、IOT OS Zephyr 官网 Zephyr oschina Zephyr github 第1章 Zephyr简介 第2章 Zephyr 编译环境搭建&#…

云管理平台基本功能有哪些?适配国产化平台吗?

随着云计算的大力发展&#xff0c;越来越多的企业需要云管理平台了。但很多其他对于云管理平台不是很了解&#xff0c;有小伙伴问&#xff0c;云管理平台基本功能有哪些&#xff1f;适配国产化平台吗&#xff1f;这里我们小编就给大家解答一下。 云管理平台基本功能有哪些&am…

【Java】中小学智慧校园管理系统源码 SaaS模式+电子班牌系统

智慧校园电子班牌系统&#xff0c;主要针对中小学校园研发&#xff0c;为校园管理提供智慧管理方案&#xff0c;提供校园智慧管理平台&#xff0c;在大数据平台下&#xff0c;对应用系统进行统一、集中管理&#xff0c;囊括校园管理全方面&#xff0c;实现对校园、班级、教师、…

商城系统选型:Java商城系统还是PHP商城系统好?

电子商务的不断发展&#xff0c;商城系统成为了企业建设在线销售平台的重要组成部分。 可是在选择合适的商城系统时&#xff0c;许多企业面临着一个重要的决策&#xff1a;是选择Java商城系统还是PHP商城系统呢&#xff1f;下面就对这两种常见的商城系统进行比较&#xff0c;并…

jump server是什么

Jump Server&#xff08;跳板服务器&#xff09;是一种安全的中间服务器&#xff0c;用于管理和控制对其他服务器的访问。它提供了一种安全的方式&#xff0c;允许管理员通过跳板服务器来管理和连接其他服务器&#xff0c;而无需直接从外部网络访问内部服务器。 跳板服务器的主…

seata分布式事务理论概述

分布式事务产生的原因&#xff1a; 数据库分库分表 应用的SOA化。就是业务的服务化(面向服务架构) 分布式事务的解决方案&#xff1a; 1、两阶段提交协议2PC 这里的两阶段提交和redolog binlog的两阶段提交不是一个东西&#xff0c;redo log和bin log的两阶段提交保证的是…

vulnhub靶场 Kioptrix-level-1

简介&#xff1a; vulnhub是一个提供靶场环境的平台。而Kioptrix-level-1就是一个对新手比较友好的靶场。初学渗透的同学可以做做试试看&#xff0c;项目地址如下。 项目地址&#xff1a;Kioptrix: Level 1 (#1) ~ VulnHub 信息收集 查看本机IP&#xff0c;靶机跟kali都是使用…

sqli-lab靶场通关

文章目录 less-1less-2less-3less-4less-5less-6less-7less-8less-9less-10 less-1 1、提示输入参数id&#xff0c;且值为数字&#xff1b; 2、判断是否存在注入点 id1报错&#xff0c;说明存在 SQL注入漏洞。 3、判断字符型还是数字型 id1 and 11 --id1 and 12 --id1&quo…

C++中的对象切割(Object slicing)问题

在C中&#xff0c;当我们把派生类对象向上强制转型为基类对象时&#xff0c;会造成对象切割&#xff08;Object slicing&#xff09;问题。  请看下面示例代码&#xff1a; #include <iostream> using namespace std;class CBase { public:virtual ~CBase() default;v…

nginx交叉编译移植-基于nuc980开发板的笔记

目录 一、nginx的介绍 二、开发环境 三、交叉编译开发过程 四、开发板测试 五、问题 一、nginx的介绍 nginx是一个高性能的Web服务器软件&#xff0c;它可以作为反向代理服务器、负载均衡器、HTTP缓存和安全策略等多种用途。nginx的设计目标是高并发、高性能、高可靠性和低内存…