计算机竞赛 : 题目:基于深度学习的水果识别 设计 开题 技术

news2024/11/18 16:26:01

1 前言

Hi,大家好,这里是丹成学长,今天做一个 基于深度学习的水果识别demo

这是一个较为新颖的竞赛课题方向,学长非常推荐!

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

2 开发简介

深度学习作为机器学习领域内新兴并且蓬勃发展的一门学科, 它不仅改变着传统的机器学习方法, 也影响着我们对人类感知的理解,
已经在图像识别和语音识别等领域取得广泛的应用。 因此, 本文在深入研究深度学习理论的基础上, 将深度学习应用到水果图像识别中,
以此来提高了水果图像的识别性能。

3 识别原理

3.1 传统图像识别原理

传统的水果图像识别系统的一般过程如下图所示,主要工作集中在图像预处理和特征提取阶段。

在大多数的识别任务中, 实验所用图像往往是在严格限定的环境中采集的, 消除了外界环境对图像的影响。 但是实际环境中图像易受到光照变化、 水果反光、
遮挡等因素的影响, 这在不同程度上影响着水果图像的识别准确率。

在传统的水果图像识别系统中, 通常是对水果的纹理、 颜色、 形状等特征进行提取和识别。

在这里插入图片描述

3.2 深度学习水果识别

CNN 是一种专门为识别二维特征而设计的多层神经网络, 它的结构如下图所示,这种结构对平移、 缩放、 旋转等变形具有高度的不变性。

在这里插入图片描述

学长本次采用的 CNN 架构如图:
在这里插入图片描述

4 数据集

  • 数据库分为训练集(train)和测试集(test)两部分

  • 训练集包含四类apple,orange,banana,mixed(多种水果混合)四类237张图片;测试集包含每类图片各两张。图片集如下图所示。

  • 图片类别可由图片名称中提取。

训练集图片预览

在这里插入图片描述

测试集预览
在这里插入图片描述

数据集目录结构
在这里插入图片描述

5 部分关键代码

5.1 处理训练集的数据结构

import os
import pandas as pd    

train_dir = './Training/'
test_dir = './Test/'
fruits = []
fruits_image = []

for i in os.listdir(train_dir):
    for image_filename in os.listdir(train_dir + i):
        fruits.append(i) # name of the fruit
        fruits_image.append(i + '/' + image_filename)
train_fruits = pd.DataFrame(fruits, columns=["Fruits"])
train_fruits["Fruits Image"] = fruits_image

print(train_fruits)

5.2 模型网络结构

import matplotlib.pyplot as plt
​    import seaborn as sns
​    from keras.preprocessing.image import ImageDataGenerator, img_to_array, load_img
​    from glob import glob
​    from keras.models import Sequential
​    from keras.layers import Conv2D, MaxPooling2D, Activation, Dropout, Flatten, Dense
​    img = load_img(train_dir + "Cantaloupe 1/r_234_100.jpg")
​    plt.imshow(img)
​    plt.axis("off")
​    plt.show()
​    

    array_image = img_to_array(img)
    
    # shape (100,100)
    print("Image Shape --> ", array_image.shape)
    
    # 131个类目
    fruitCountUnique = glob(train_dir + '/*' )
    numberOfClass = len(fruitCountUnique)
    print("How many different fruits are there --> ",numberOfClass)
    
    # 构建模型
    model = Sequential()
    model.add(Conv2D(32,(3,3),input_shape = array_image.shape))
    model.add(Activation("relu"))
    model.add(MaxPooling2D())
    model.add(Conv2D(32,(3,3)))
    model.add(Activation("relu"))
    model.add(MaxPooling2D())
    model.add(Conv2D(64,(3,3)))
    model.add(Activation("relu"))
    model.add(MaxPooling2D())
    model.add(Flatten())
    model.add(Dense(1024))
    model.add(Activation("relu"))
    model.add(Dropout(0.5))
    
    # 区分131类
    model.add(Dense(numberOfClass)) # output
    model.add(Activation("softmax"))
    model.compile(loss = "categorical_crossentropy",
    
                  optimizer = "rmsprop",
    
                  metrics = ["accuracy"])
    
    print("Target Size --> ", array_image.shape[:2])


## 

5.3 训练模型

    
​    train_datagen = ImageDataGenerator(rescale= 1./255,
​                                       shear_range = 0.3,
​                                       horizontal_flip=True,
​                                       zoom_range = 0.3)
​    

    test_datagen = ImageDataGenerator(rescale= 1./255)
    epochs = 100
    batch_size = 32
    train_generator = train_datagen.flow_from_directory(
                    train_dir,
                    target_size= array_image.shape[:2],
                    batch_size = batch_size,
                    color_mode= "rgb",
                    class_mode= "categorical")
    
    test_generator = test_datagen.flow_from_directory(
                    test_dir,
                    target_size= array_image.shape[:2],
                    batch_size = batch_size,
                    color_mode= "rgb",
                    class_mode= "categorical")
    
    for data_batch, labels_batch in train_generator:
        print("data_batch shape --> ",data_batch.shape)
        print("labels_batch shape --> ",labels_batch.shape)
        break
    
    hist = model.fit_generator(
            generator = train_generator,
            steps_per_epoch = 1600 // batch_size,
            epochs=epochs,
            validation_data = test_generator,
            validation_steps = 800 // batch_size)
    
    #保存模型 model_fruits.h5
    model.save('model_fruits.h5')


顺便输出训练曲线

    #展示损失模型结果
​    plt.figure()
​    plt.plot(hist.history["loss"],label = "Train Loss", color = "black")
​    plt.plot(hist.history["val_loss"],label = "Validation Loss", color = "darkred", linestyle="dashed",markeredgecolor = "purple", markeredgewidth = 2)
​    plt.title("Model Loss", color = "darkred", size = 13)
​    plt.legend()
​    plt.show()#展示精确模型结果
    plt.figure()
    plt.plot(hist.history["accuracy"],label = "Train Accuracy", color = "black")
    plt.plot(hist.history["val_accuracy"],label = "Validation Accuracy", color = "darkred", linestyle="dashed",markeredgecolor = "purple", markeredgewidth = 2)
    plt.title("Model Accuracy", color = "darkred", size = 13)
    plt.legend()
    plt.show()


![在这里插入图片描述](https://img-blog.csdnimg.cn/686ace7db27c4145837ec2e09e8ad917.png?x-oss-process=image/watermark,type_ZHJvaWRzYW5zZmFsbGJhY2s,shadow_50,text_Q1NETiBARGFuQ2hlbmctc3R1ZGlv,size_17,color_FFFFFF,t_70,g_se,x_16)

在这里插入图片描述

6 识别效果

from tensorflow.keras.models import load_model
import os
import pandas as pd
from keras.preprocessing.image import ImageDataGenerator,img_to_array, load_img
import cv2,matplotlib.pyplot as plt,numpy as np
from keras.preprocessing import image

train_datagen = ImageDataGenerator(rescale= 1./255,
                                    shear_range = 0.3,
                                    horizontal_flip=True,
                                    zoom_range = 0.3)

model = load_model('model_fruits.h5')
batch_size = 32
img = load_img("./Test/Apricot/3_100.jpg",target_size=(100,100))
plt.imshow(img)
plt.show()

array_image = img_to_array(img)
array_image = array_image * 1./255
x = np.expand_dims(array_image, axis=0)
images = np.vstack([x])
classes = model.predict_classes(images, batch_size=10)
print(classes)
train_dir = './Training/'

train_generator = train_datagen.flow_from_directory(
        train_dir,
        target_size= array_image.shape[:2],
        batch_size = batch_size,
        color_mode= "rgb",
        class_mode= "categorical”)
print(train_generator.class_indices)

在这里插入图片描述

    fig = plt.figure(figsize=(16, 16))
    axes = []
    files = []
    predictions = []
    true_labels = []
    rows = 5
    cols = 2
# 随机选择几个图片
def getRandomImage(path, img_width, img_height):
    """function loads a random image from a random folder in our test path"""
    folders = list(filter(lambda x: os.path.isdir(os.path.join(path, x)), os.listdir(path)))
    random_directory = np.random.randint(0, len(folders))
    path_class = folders[random_directory]
    file_path = os.path.join(path, path_class)
    file_names = [f for f in os.listdir(file_path) if os.path.isfile(os.path.join(file_path, f))]
    random_file_index = np.random.randint(0, len(file_names))
    image_name = file_names[random_file_index]
    final_path = os.path.join(file_path, image_name)
    return image.load_img(final_path, target_size = (img_width, img_height)), final_path, path_class

def draw_test(name, pred, im, true_label):
    BLACK = [0, 0, 0]
    expanded_image = cv2.copyMakeBorder(im, 160, 0, 0, 300, cv2.BORDER_CONSTANT, value=BLACK)
    cv2.putText(expanded_image, "predicted: " + pred, (20, 60), cv2.FONT_HERSHEY_SIMPLEX,
        0.85, (255, 0, 0), 2)
    cv2.putText(expanded_image, "true: " + true_label, (20, 120), cv2.FONT_HERSHEY_SIMPLEX,
        0.85, (0, 255, 0), 2)
    return expanded_image
IMG_ROWS, IMG_COLS = 100, 100

# predicting images
for i in range(0, 10):
    path = "./Test"
    img, final_path, true_label = getRandomImage(path, IMG_ROWS, IMG_COLS)
    files.append(final_path)
    true_labels.append(true_label)
    x = image.img_to_array(img)
    x = x * 1./255
    x = np.expand_dims(x, axis=0)
    images = np.vstack([x])
    classes = model.predict_classes(images, batch_size=10)
    predictions.append(classes)

class_labels = train_generator.class_indices
class_labels = {v: k for k, v in class_labels.items()}
class_list = list(class_labels.values())

for i in range(0, len(files)):
    image = cv2.imread(files[i])
    image = draw_test("Prediction", class_labels[predictions[i][0]], image, true_labels[i])
    axes.append(fig.add_subplot(rows, cols, i+1))
    plt.imshow(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
    plt.grid(False)
    plt.axis('off')
plt.show()

在这里插入图片描述

7 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1072769.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

访问Apache Tomcat的虚拟主机管理页面

介绍 通过Tomcat Host Manager应用可以创建、删除、管理Tomcat内的虚拟主机&#xff08;virtual hosts&#xff09;。该应用是Tomcat安装的一部分&#xff0c;默认在<Tomcat安装目录>/webapps/host-manager&#xff1a; 配置用户名、密码、角色 要访问Host Manager应…

MySQL-1(12000字详解)

一&#xff1a;数据库的引入 数据库在我们以后工作中是一个非常常用的知识&#xff0c;数据库用来存储数据&#xff0c;但是有些同学可能就会疑惑了&#xff0c;存储数据用文件就可以了&#xff0c;为什么还要弄个数据库呢&#xff1f; 文件保存数据有以下几个缺点&#xff1…

Mainflux IoT:Go语言轻量级开源物联网平台,支持HTTP、MQTT、WebSocket、CoAP协议

Mainflux是一个由法国的创业公司开发并维护的安全、可扩展的开源物联网平台&#xff0c;使用 Go语言开发、采用微服务的框架。Mainflux支持多种接入设备&#xff0c;包括设备、用户、APP&#xff1b;支持多种协议&#xff0c;包括HTTP、MQTT、WebSocket、CoAP&#xff0c;并支持…

vue实现echarts中 9种 折线图图例

let datas [{ DivideScore: 7, UserScore: 7.2, Name: 目标制定 },{ DivideScore: 7, UserScore: 7, Name: 具体性 },{ DivideScore: 7, UserScore: 7.5, Name: 可衡量性 },{ DivideScore: 7, UserScore: 7, Name: 可实现性 },{ DivideScore: 7, UserScore: 7, Name: 时间限定…

【软件测试】一份合格的软件测试简历长什么样?

你可以写一篇出众的软件测试简历并且这篇测试用例能够为你带来面试电话么&#xff1f;如果没有&#xff0c;请继续阅读。我敢肯定&#xff0c;读完这篇文章&#xff0c;你将能够写出一个完美的杀手级别的软件测试和质量保证的简历&#xff0c;这将为你带来面试电话。 你的简历是…

图片调色盘

图片预览 配置安装 Color-Thief 安装包使用文档 yarn add colorthief -S // npm install colorthief --save代码 <template><div class"img-thief"><div class"container"><div class"thief-item" v-for"(item, in…

邮件误操作删除,如何找回?这里有救援方法!

用户遇到的问题 ​“邮件不慎删除&#xff0c;要如何找回呢&#xff1f;今天我在查阅邮件的过程中&#xff0c;我注意到一封带附件的邮件&#xff0c;原本是打算将其另存到其他位置&#xff0c;却无意间点击了删除&#xff0c;这之后就再也无法找回了。现在我应该怎么办&am…

java生成带logo的二维码和下方带内容的条形码

一、导入zxing包 <!-- zxing --><dependency><groupId>com.google.zxing</groupId><artifactId>core</artifactId><version>3.5.2</version></dependency><dependency><groupId>com.google.zxing</group…

【数据结构】归并排序和计数排序(排序的总结)

目录 一&#xff0c;归并排序的递归 二&#xff0c;归并排序的非递归 三&#xff0c;计数排序 四&#xff0c;排序算法的综合分析 一&#xff0c;归并排序的递归 基本思想&#xff1a; 归并采用的是分治思想&#xff0c;是分治法的一个经典的运用。该算法先将原数据进行拆…

what?es数据偏移了8小时...

今天搞监控大屏的时候&#xff0c;测试突然提出一个问题说&#xff0c;查一段时间的数据&#xff0c;时间曲线返回的日期有时候会比查询时间多&#xff0c;翻看代码后&#xff0c;初步定位为es的时区问题&#xff0c;后来将时间曲线的直方图聚合增加时区后&#xff0c;返回数据…

android studio 、JDK环境变量配置

1、adb.exe环境变量配置&#xff1a; 打开控制面板 >系统和安全>系统>高级系统设置 在系统变量中新建ANDROID_HOME变量&#xff0c;赋值路径&#xff1a;D:\install\androidSDK 在系统变量path中添加&#xff1a;%ANDROID_HOME%\platform-tools 校验是…

14:00面试,14:06就出来了,这面试问的过于变态了。。。

前言 刚从小厂出来&#xff0c;没想到在另一家公司我又寄了。 在这家公司上班&#xff0c;每天都要加班&#xff0c;但看在钱给的比较多的份上&#xff0c;也就不太计较了。但万万没想到十月一纸通知&#xff0c;所有人不准加班了&#xff0c;不仅加班费没有了&#xff0c;薪资…

什么是事件对象(event object)?如何使用它获取事件信息?

聚沙成塔每天进步一点点 ⭐ 专栏简介 前端入门之旅&#xff1a;探索Web开发的奇妙世界 欢迎来到前端入门之旅&#xff01;感兴趣的可以订阅本专栏哦&#xff01;这个专栏是为那些对Web开发感兴趣、刚刚踏入前端领域的朋友们量身打造的。无论你是完全的新手还是有一些基础的开发…

分类预测 | MATLAB实现KOA-CNN-LSTM开普勒算法优化卷积长短期记忆神经网络数据分类预测

分类预测 | MATLAB实现KOA-CNN-LSTM开普勒算法优化卷积长短期记忆神经网络数据分类预测 目录 分类预测 | MATLAB实现KOA-CNN-LSTM开普勒算法优化卷积长短期记忆神经网络数据分类预测分类效果基本描述程序设计参考资料 分类效果 基本描述 1.MATLAB实现KOA-CNN-LSTM开普勒算法优化…

NFTScan | 10.02~10.08 NFT 市场热点汇总

欢迎来到由 NFT 基础设施 NFTScan 出品的 NFT 生态热点事件每周汇总。 周期&#xff1a;2023.10.02~ 2023.10.08 NFT Hot News 01/ 9 月 OpenSea 交易额为 7300 万美元&#xff0c;创两年新低 10 月 2 日&#xff0c;数据显示 9 月 NFT 平台 OpenSea 的交易总额为 73,141,407…

Pyside6 QPushButton

Pyside6 QPushButton QPushButton使用QPushButton继承关系QPushButton的函数(Function)和信号(Signal)QPushButton信号 QPushButton例程界面设计clicked信号测试pressed信号测试released信号测试toggled信号测试按键长按测试按键长按间隔测试完整程序界面程序主程序 按键或命令…

2023年【陕西省安全员C证】新版试题及陕西省安全员C证考试试卷

题库来源&#xff1a;安全生产模拟考试一点通公众号小程序 陕西省安全员C证新版试题是安全生产模拟考试一点通总题库中生成的一套陕西省安全员C证考试试卷&#xff0c;安全生产模拟考试一点通上陕西省安全员C证作业手机同步练习。2023年【陕西省安全员C证】新版试题及陕西省安…

Idea本地跑flink任务时,总是重复消费kafka的数据(kafka->mysql)

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Idea中执行任务时&#xff0c;没法看到JobManager的错误&#xff0c;以至于我以为是什么特殊的原因导致任务总是反复消费。在close方法中&#xff0c;增加日志&#xff0c;发现jdbc连接被关闭了。 重新…

通讯网关软件019——利用CommGate X2OPCUA实现OPC UA访问Oracle服务器

本文介绍利用CommGate X2OPCUA实现OPC UA访问ORACLE数据库。CommGate X2OPCUA是宁波科安网信开发的网关软件&#xff0c;软件可以登录到网信智汇(http://wangxinzhihui.com)下载。 【案例】如下图所示&#xff0c;实现上位机通过OPC UA来获取ORACLE数据库的数据。 【解决方案】…

windows docker desktop配置加速地址

目录 为什么常见加速地址在docker desktop上配置 为什么 https://hub.docker.com 是官方的镜像仓库地址&#xff0c;但是它的服务器地址是在国外&#xff0c;有时候访问和下载的速度差强人意。不过好在&#xff0c;我们可以进行远程仓库的设置&#xff0c;将仓库镜像地址设置为…