NoSQL之Redis 主从复制配置详解及哨兵模式

news2024/11/24 11:52:39

 

目录

 

1 Redis 主从复制

1.1 主从复制的作用

1.2 主从复制流程

2 搭建Redis 主从复制

2.1 安装 Redis

2.2 修改 Redis 配置文件(Master节点操作)

2.3 修改 Redis 配置文件(Slave节点操作)

2.4 验证主从效果

3 Redis 哨兵模式

3.1 哨兵模式的作用

3.2 故障转移机制

3.3 主节点的选举

4 搭建Redis 哨兵模式

4.1 修改 Redis 哨兵模式的配置文件(所有节点操作)

4.2 启动哨兵模式

4.3 查看哨兵信息

4.4 故障模拟

4.4.1 杀死 Master 节点上redis-server的进程号

4.4.2 验证结果


 

Redis 集群

●主从复制:主从复制是高可用Redis的基础,哨兵和集群都是在主从复制基础上实现高可用的。主从复制主要实现了数据的多机备份,以及对于读操作的负载均衡和简单的故障恢复。缺陷:故障恢复无法自动化;写操作无法负载均衡;存储能力受到单机的限制。

●哨兵:在主从复制的基础上,哨兵实现了自动化的故障恢复。缺陷:写操作无法负载均衡;存储能力受到单机的限制;哨兵无法对从节点进行自动故障转移,在读写分离场景下,从节点故障会导致读服务不可用,需要对从节点做额外的监控、切换操作。

●集群:通过集群,Redis解决了写操作无法负载均衡,以及存储能力受到单机限制的问题,实现了较为完善的高可用方案。

 

1 Redis 主从复制

主从复制,是指将一台Redis服务器的数据,复制到其他的Redis服务器。前者称为主节点(Master),后者称为从节点(Slave);数据的复制是单向的,只能由主节点到从节点。

默认情况下,每台Redis服务器都是主节点;且一个主节点可以有多个从节点(或没有从节点),但一个从节点只能有一个主节点。

1.1 主从复制的作用

●数据冗余:主从复制实现了数据的热备份,是持久化之外的一种数据冗余方式。

●故障恢复:当主节点出现问题时,可以由从节点提供服务,实现快速的故障恢复;实际上是一种服务的冗余。

●负载均衡:在主从复制的基础上,配合读写分离,可以由主节点提供写服务,由从节点提供读服务(即写Redis数据时应用连接主节点,读Redis数据时应用连接从节点),分担服务器负载;尤其是在写少读多的场景下,通过多个从节点分担读负载,可以大大提高Redis服务器的并发量。

●高可用基石:除了上述作用以外,主从复制还是哨兵和集群能够实施的基础,因此说主从复制是Redis高可用的基础。

1.2 主从复制流程

(1)若启动一个Slave机器进程,则它会向Master机器发送一个“sync command”命令,请求同步连接。

(2)无论是第一次连接还是重新连接,Master机器都会启动一个后台进程,将数据快照保存到数据文件中(执行rdb操作),同时Master还会记录修改数据的所有命令并缓存在数据文件中。 (3)后台进程完成缓存操作之后,Master机器就会向Slave机器发送数据文件,Slave端机器将数据文件保存到硬盘上,然后将其加载到内存中,接着Master机器就会将修改数据的所有操作一并发送给Slave端机器。若Slave出现故障导致宕机,则恢复正常后会自动重新连接。

(4)Master机器收到Slave端机器的连接后,将其完整的数据文件发送给Slave端机器,如果Master同时收到多个Slave发来的同步请求,则Master会在后台启动一个进程以保存数据文件,然后将其发送给所有的Slave端机器,确保所有的Slave端机器都正常。

 

2 搭建Redis 主从复制

Master节点:192.168.30.106

Slave1节点:192.168.30.107

Slave2节点:192.168.30.108

2.1 安装 Redis

环境准备

systemctl stop firewalld
systemctl disable firewalld
setenforce 0
sed -i 's/enforcing/disabled/' /etc/selinux/config

修改内核参数

vim /etc/sysctl.conf
vm.overcommit_memory = 1
net.core.somaxconn = 2048

sysctl -p

安装redis

yum install -y gcc gcc-c++ make

tar zxvf /opt/redis-7.0.9.tar.gz -C /opt/
cd /opt/redis-7.0.9
make
make PREFIX=/usr/local/redis install

#由于Redis源码包中直接提供了 Makefile 文件,所以在解压完软件包后,不用先执行 ./configure 进行配置,可直接执行 make 与 make install 命令进行安装。

#由于Redis源码包中直接提供了 Makefile 文件,所以在解压完软件包后,不用先执行 ./configure 进行配置,可直接执行 make 与 make install 命令进行安装。

 

创建redis工作目录

mkdir /usr/local/redis/{conf,log,data}

cp /opt/redis-7.0.9/redis.conf /usr/local/redis/conf/

useradd -M -s /sbin/nologin redis
chown -R redis.redis /usr/local/redis/

环境变量

vim /etc/profile 
PATH=$PATH:/usr/local/redis/bin	 #增加一行

source /etc/profile

定义systemd服务管理脚本

vim /usr/lib/systemd/system/redis-server.service
[Unit]
Description=Redis Server
After=network.target

[Service]
User=redis
Group=redis
Type=forking
TimeoutSec=0
PIDFile=/usr/local/redis/log/redis_6379.pid
ExecStart=/usr/local/redis/bin/redis-server /usr/local/redis/conf/redis.conf
ExecReload=/bin/kill -s HUP $MAINPID
ExecStop=/bin/kill -s QUIT $MAINPID
PrivateTmp=true

[Install]
WantedBy=multi-user.target

 

2.2 修改 Redis 配置文件(Master节点操作

vim /usr/local/redis/conf/redis.conf
bind 0.0.0.0									#87行,修改监听地址为0.0.0.0
protected-mode no								#111行,将本机访问保护模式设置no
port 6379										#138行,Redis默认的监听6379端口
daemonize yes									#309行,设置为守护进程,后台启动
pidfile /usr/local/redis/log/redis_6379.pid		#341行,指定 PID 文件
logfile "/usr/local/redis/log/redis_6379.log"	#354行,指定日志文件
dir /usr/local/redis/data						#504行,指定持久化文件所在目录
#requirepass abc123								#1037行,可选,设置redis密码
appendonly yes									#1380行,开启AOF


systemctl restart redis-server.service

394f192586ea491181490d4c45f6d449.png

d3431055d06c46a69b8829753920c8bd.png

e2560ae6bc04474b86a82735e0b80268.png

e4ccc80784eb4f9cb4c36dd3cff59b1d.png

7bfafb7a88734f2da3e8f09f4d8c6a60.png

ff2219fab11042e1bf6e813467ec294b.png

48c73a9670bb49c2b65bca2260363c04.png

 

2.3 修改 Redis 配置文件(Slave节点操作)

49a544bd230744068c50b0ac65f86135.png

36892ebe7cba42c98defe66a148fe885.png

0f6cf5fa966e48f9aa92a6b3e5d893b0.png

05c5613668ae49919c96729518c1e921.png

f881eb248f6741258dc78030496944b5.png

285e3ce84d2b48818a29183d2ec528fb.png

228a3f7b59fd4798ae86e0192a533db6.png

8511f66444de4d03b2e3d3433dd7efa1.png

1a3800acd582494e8c85ae705778eb8d.png

 

2.4 验证主从效果

在Master节点上看日志

tail -f /usr/local/redis/log/redis_6379.log 
Replica 192.168.30.107:6379 asks for synchronization
Replica 192.168.30.108:6379 asks for synchronization
Synchronization with replica 192.168.30.107:6379 succeeded
Synchronization with replica 192.168.30.108:6379 succeeded

ebb4e11808ed44dea7a5bbe9bcf0e2ff.png

 

在Master节点上验证从节点

redis-cli info replication

Replication

role:master
connected_slaves:2
slave0:ip=192.168.30.107,port=6379,state=online,offset=1246,lag=0
slave1:ip=192.168.30.108,port=6379,state=online,offset=1246,lag=1

256659761b3945da8d74959985f81a51.png

 

3 Redis 哨兵模式

主从切换技术的方法是:当服务器宕机后,需要手动一台从机切换为主机,这需要人工干预,不仅费时费力而且还会造成一段时间内服务不可用。为了解决主从复制的缺点,就有了哨兵机制。

哨兵的核心功能:在主从复制的基础上,哨兵引入了主节点的自动故障转移。

3.1 哨兵模式的作用

●监控:哨兵会不断地检查主节点和从节点是否运作正常。

●自动故障转移:当主节点不能正常工作时,哨兵会开始自动故障转移操作,它会将失效主节点的其中一个从节点升级为新的主节点,并让其它从节点改为复制新的主节点。

●通知(提醒):哨兵可以将故障转移的结果发送给客户端。

哨兵结构由两部分组成,哨兵节点和数据节点: ●哨兵节点:哨兵系统由一个或多个哨兵节点组成,哨兵节点是特殊的redis节点,不存储数据。 ●数据节点:主节点和从节点都是数据节点。

3.2 故障转移机制

1.由哨兵节点定期监控发现主节点是否出现了故障 每个哨兵节点每隔1秒会向主节点、从节点及其它哨兵节点发送一次ping命令做一次心跳检测。如果主节点在一定时间范围内不回复或者是回复一个错误消息,那么这个哨兵就会认为这个主节点主观下线了(单方面的)。当超过半数哨兵节点认为该主节点主观下线了,这样就客观下线了。

2.当主节点出现故障,此时哨兵节点会通过Raft算法(选举算法)实现选举机制共同选举出一个哨兵节点为leader,来负责处理主节点的故障转移和通知。所以整个运行哨兵的集群的数量不得少于3个节点。

3.由leader哨兵节点执行故障转移,过程如下:

   ●将某一个从节点升级为新的主节点,让其它从节点指向新的主节点;

   ●若原主节点恢复也变成从节点,并指向新的主节点;

   ●通知客户端主节点已经更换。

需要特别注意的是,客观下线是主节点才有的概念;如果从节点和哨兵节点发生故障,被哨兵主观下线后,不会再有后续的客观下线和故障转移操作。

3.3 主节点的选举

1.过滤掉不健康的(已下线的),没有回复哨兵 ping 响应的从节点。

2.选择配置文件中从节点优先级配置最高的。(replica-priority,默认值为100)

3.选择复制偏移量最大,也就是复制最完整的从节点。

哨兵的启动依赖于主从模式,所以须把主从模式安装好的情况下再去做哨兵模式

 

4 搭建Redis 哨兵模式

Master节点:192.168.30.106

Slave1节点:192.168.30.108

Slave2节点:192.168.30.109

systemctl stop firewalld
setenforce 0

4.1 修改 Redis 哨兵模式的配置文件(所有节点操作)

cp /opt/redis-7.0.9/sentinel.conf /usr/local/redis/conf/
chown redis.redis /usr/local/redis/conf/sentinel.conf

ac14320727e0494cb69e1ccd6559ac17.png

 

vim /usr/local/redis/conf/sentinel.conf
protected-mode no									#6行,关闭保护模式
port 26379											#10行,Redis哨兵默认的监听端口
daemonize yes										#15行,指定sentinel为后台启动
pidfile /usr/local/redis/log/redis-sentinel.pid		#20行,指定 PID 文件
logfile "/usr/local/redis/log/sentinel.log"			#25行,指定日志存放路径
dir /usr/local/redis/data							#54行,指定数据库存放路径
sentinel monitor mymaster 192.168.30.106 6379 2		#73行,修改 指定该哨兵节点监控192.168.30.106:6379这个主节点,该主节点的名称是mymaster,最后的2的含义与主节点的故障判定有关:至少需要2个哨兵节点同意,才能判定主节点故障并进行故障转移
#sentinel auth-pass mymaster abc123					#76行,可选,指定Master节点的密码,仅在Master节点设置了requirepass
sentinel down-after-milliseconds mymaster 3000		#114行,判定服务器down掉的时间周期,默认30000毫秒(30秒)
sentinel failover-timeout mymaster 180000			#214行,同一个sentinel对同一个master两次failover之间的间隔时间(180秒)

1c823d821b0247f5af6204f8eb43e61c.png

7919ee74cc744cd0b8d32bc25590826d.png

75766ce5b3ef4fd6850d80c5c0f5de60.png

5fc16dbd23414ce4bca1067cf0992457.png

 

4.2 启动哨兵模式

先启master,再启slave

cd /usr/local/redis/conf/
redis-sentinel sentinel.conf &

 

4.3 查看哨兵信息

redis-cli -p 26379 info Sentinel

Sentinel

sentinel_masters:1
sentinel_tilt:0
sentinel_running_scripts:0
sentinel_scripts_queue_length:0
sentinel_simulate_failure_flags:0
master0:name=mymaster,status=ok,address=192.168.30.106:6379,slaves=2,sentinels=3

468e855325844ed899e601b7afe226a5.png

 

4.4 故障模拟

查看redis-server进程号

ps -ef | grep redis

96532d3572e94b11970a722ba10c5d8d.png

4.4.1 杀死 Master 节点上redis-server的进程号

kill -9 88920			#Master节点上redis-server的进程号

28bb618e853a4c1e991aa8e93426454c.png

4.4.2 验证结果

tail -f /usr/local/redis/log/sentinel.log

33ed325774c241f5a108d2da60e4736d.png

redis-cli -p 26379 INFO Sentinel

b8851994e5f04ae48cc7ee45e6077f77.png

 

 

 

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1071444.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

自动拟人对话机器人在客户服务方面起了什么作用?

在当今数字时代,企业不断寻求创新的方法来提升客户服务体验。随着科技的不断进步和消费者期望的提升,传统的客户服务方式逐渐无法满足现代消费者的需求。因此,许多企业正在积极探索利用新兴技术来改进客户服务,自动拟人对话机器人…

javaScript关于闭包的理解

首先在了解闭包之前,我们要了解一下环境和作用域 1.环境和作用域 日常生活中我们生活的环境由周边建设如公园,小区,超市构成的。这就构成了环境 在计算机当中环境就是一块内存的数据。 环境是有作用范围的,eg:武汉周边的建设一…

YOLOv8 Tensorrt部署详细介绍(小白从0到1,不会你砍我)

下载YOLOv8项目和Tensorrt部署项目 git clone https://github.com/xiaocao-tian/yolov8_tensorrt.git git clone https://github.com/ultralytics/ultralytics.git 下载yolov8s模型 在YOLOv8项目中新建weights文件夹,将yolov8s.pt放入 运行tensorrt项目中gen_wts…

RabbitMQ 介绍与 SpringBootAMQP使用

一、MQ概述 异步通信的优点: 耦合度低吞吐量提升故障隔离流量削峰 异步通信的缺点: 依赖于Broker的可靠性、安全性、吞吐能力架构复杂,业务么有明显的流程线,不方便追踪管理 什么是的MQ MQ(Message Queue&#xf…

选择适合建筑公司的企业网盘平台

随着城市化进程的加速,越来越多的人开始关注乡村生活品质。Z公司以其标准化产品和优质资源整合,为回乡建房人群提供了一种全新的、高品质的整体解决方案。 Z公司深入调研了10W的回乡建房人群需求,组建了设计、工艺、供应链方面的专家团队&…

KUKA机器人通过直接输入法设定负载数据和附加负载数据的具体操作

KUKA机器人通过直接输入法设定负载数据和附加负载数据的具体操作 设置背景色: 工具负载数据 工具负载的定义: 工具负载数据是指所有装在机器人法兰上的负载。它是另外装在机器人上并由机器人一起移动的质量。需要输入的值有质量、重心位置、质量转动惯量以及所属的主惯性轴。…

边坡安全监测系统:守护边坡稳定的重要工具

在工程建设中,边坡安全监测系统一直被认为是掌握边坡安全及其支护结构维护决策系统的关键支撑条件。这一系统的主要目的在于确定边坡结构的稳定性,监控支护结构的承载能力、运营状态和耐久性能,并对边坡稳定性进行实时监控。 一、边坡安全监测…

CTF学习笔记——PWN(入门)

文章目录 [toc] CTF学习笔记——PWN(入门)PWN基础概念NC题[HGAME 2023 week1]test_nc 栈溢出[HNCTF 2022 Week1]easyoverflow 伪随机数[SWPUCTF 2022 新生赛]Darling 待补充待补充 CTF学习笔记——PWN(入门) 🚀&#x…

python常用库之数据库orm框架之SQLAlchemy

文章目录 python常用库之数据库orm框架之SQLAlchemy一、什么是SQLAlchemySQLAlchemy 使用场景 二、SQLAlchemy使用SQLAlchemy根据模型查询SQLAlchemy SQL 格式化的方式db_session.query和 db_session.execute区别实测demo 总结:让我们留意一下SQLAlchemy 的 lazy lo…

电流,功率监控芯片INA226应用(基于STM32工程)

一芯片介绍 INA226是具有I2C™或SMBUS兼容接口的电流分流器和功率监控器。该设备同时监视并联电压降和总线电源电压。可编程的校准值,转换时间和平均值与内部乘法器结合使用,可以直接读取以安培为单位的电流和以瓦特为单位的功率。INA226感应共模总线电…

Spring【@Resource、@Autowired+lombook+Bean的生命周期】

Resource 和 Autowired 的区别 在Spring中找Bean的两种方式:①先根据类型查找②再根据名称查找 Autowired先根据类型查找,再根据名称查找【根据上述查找结果不唯一,再添加一个 Qualifier(value“”),就可以查找】 Resource先根据名…

Spring Cloud Gateway2之断言Predicate详解

文章目录 1. 前言2. Spring Cloud Gateway断言的种类及各自功能2.1. Path断言 PathRoutePredicateFactory2.2.Method断言 MethodRoutePredicateFactory2.3.Header断言 HeaderRoutePredicateFactory2.4.Host断言 HostRoutePredicateFactory2.5.Query断言 QueryRoutePredicateFac…

【C++】unordered_set和unordered_map介绍及使用【附OJ题】

目录 一、unordered_set和unordered_map的介绍和使用 1、介绍 2、使用及与set和map的区别 3、O(logN)和 O(1)的效率对比 二、力扣OJ题 1、重复N次的元素 2、两个数组的交集 一、unordered_set和unordered_map的介绍和使用…

AI+Social Power,开创营销新纪元 | 2023数说故事年度社媒营销盛会,10月13日邀您共同见证

尊敬的嘉宾: AIGC成为2023年最热门的关键词之一,且以惊人的速度赢得了“圈层共识”,各行业都在探索如何利用AI技术创造更多可能性。尤其在社媒营销领域,AIGC的应用已成为势不可挡的趋势:品牌们用AI造新品,…

OpenHarmony嵌套类对象属性变化:@Observed装饰器和@ObjectLink装饰器

上文所述的装饰器仅能观察到第一层的变化,但是在实际应用开发中,应用会根据开发需要,封装自己的数据模型。对于多层嵌套的情况,比如二维数组,或者数组项class,或者class的属性是class,他们的第二…

子组件跳转父组件

描述:父组件Form.vue 点击关联,弹出子组件importForm.vue 选中一条数据之后,点击确定按钮,关闭子组件importForm.vue,将子组件的内容显示在父组件Form.vue中 选中第一条数据,点击确定 父组件对应的工作内容…

Java源码分析(三)ArrayList

ArrayList是我们经常用到的一个集合类&#xff0c;那么本篇我们一起学习下ArrayList的源码。 一、创建ArrayList 首先&#xff0c;我们从创建ArrayList开始。如下代码&#xff0c;创建一个空的ArrayList&#xff1a; List<String> list new ArrayList<>(); 看下…

Java中的锁与锁优化技术

文章目录 自旋锁与自适应自旋锁消除锁粗化轻量级锁偏向锁重量级锁 自旋锁与自适应自旋 自旋锁是一种锁的实现机制&#xff0c;其核心思想是当一个线程尝试获取锁时&#xff0c;如果锁已经被其他线程持有&#xff0c;那么这个线程会在一个循环中不断地检查锁是否被释放&#xf…

长效和短效HTTP:哪个适合爬虫的代理类型?

在进行网络爬虫任务时&#xff0c;选择适合的代理类型对爬虫的效率和稳定性至关重要。长效和短效HTTP代理是两种常见的代理类型&#xff0c;它们各具特点和适用场景。本文将为您分享长效和短效HTTP代理的区别以及选择适合爬虫的代理类型的实用技巧&#xff0c;帮助您提升爬虫效…

Linux Ftrace介绍

文章目录 一、简介二、内核函数调用跟踪参考链接&#xff1a; 一、简介 Ftrace 是 Linux 官方提供的跟踪工具&#xff0c;在 Linux 2.6.27 版本中引入。Ftrace 可在不引入任何前端工具的情况下使用&#xff0c;让其可以适合在任何系统环境中使用。 Ftrace 可用来快速排查以下相…