Go 语言中 panic 和 recover 搭配使用

news2025/1/12 12:22:25

本次主要聊聊 Go 语言中关于 panic 和 recover 搭配使用 ,以及 panic 的基本原理

最近工作中审查代码的时候发现一段代码,类似于如下这样,将 recover 放到一个子协程里面,期望去捕获主协程的程序异常

看到此处,是否会想这段代码在项目中是想当然写出来的吧,然而平日中,大多问题是出现在认知偏差上,那么本次,我们就来消除一下这个认知偏差

关于 Go 语言中显示的使用 panic 的地方不多,一般 panic ,基本上会出现在咱们程序出现异常退出的时候

例如访问了空指针里面的值,则会 panic 报错无效的内存地址,又例如访问量数组中不存在的数组所索引,或者切片索引,那么会报错 panic 数组越界等等

可是碰到这些 panic 的时候,实际上我们并不期望当前的服务直接挂掉,而是期望这个异常能够被识别,且不影响程序其他部分的模块运行

正常捕获异常

在 Go 中可以将 defer 和 recover 进行搭配使用,可以捕获和处理大部分的异常情况,例如可以这样

这里可以看到,recover 捕获异常和发生异常的部分是在同一个协程中,实验证明是可以正常捕获并且处理异常

并没有捕获到异常

  1. 直接不做显示的 recover,自然 panic 程序崩溃会如期而至,此处我们显示的使用 panic 函数来制造恐慌
func main() {
   log.SetFlags(log.Lshortfile)

   panic("panic coming...")

}

  1. 不使用 defer 来进行处理
func main() {
   log.SetFlags(log.Lshortfile)
    if err := recover(); err != nil {
     log.Println("recover panic : ", err)
    }
   panic("panic coming...")

}

自然 recover 函数是在 panic 调用之前就已经执行,此时是还没有异常需要捕获和恢复的,待程序运行到 panic 处的时候,实际上并没有没有处理程序崩溃的异常

结果,仍然是程序崩溃

  1. 当然,还有文章开头提到的出现 panic 的位置和捕获和处理程序崩溃异常的位置不在同一个协程,自然也是没法捕获到的,这一点需要注意,其他的语言可能不是这样,但是 Go 中是这样的

panic 基本原理

看了上述现象,实际上还是对知识点理解得不够,使用的时候想当然了,就像使用 defer 一样,如果对他不够了解的话,使用的时候,确实会出现一些奇奇怪怪的现象,对于 defer 的使用可以查看文末的文章地址

  1. panic 函数和 recover 函数,Go 源码builtin\builtin.go中可以看到注释

注释中有说关于 panic 和 recover 的使用是作用于当前协程的,因此我们使用的时候,如果跨协程教程使用,自然不会达到我们期望的效果

  1. 继续查看关于 panic 的源码,实际上是一个结构,放到 defer 结构里面的一个指针,源码位置:runtime\runtime2.go

_panic 的结构如下:

type _panic struct {
   argp      unsafe.Pointer
   arg       interface{}
   link      *_panic
   pc        uintptr
   sp        unsafe.Pointer
   recovered bool
   aborted   bool
   goexit    bool
}

上述两个结构表达的意思是,程序中出现 panic 的时候,实际上都会创建一个 _panic 结构,这个 _panic 结构里面存储了当前程序崩溃的一些必要信息,如下:

  1. argp

是一个 unsafe.Pointer 类型的成员,指向 defer 调用参数的指针

  1. arg

出现 panic 的原因,如果我们显示调用 panic,那么就是我们填入 panic 函数中的参数,例如上述的 panic coming ...

  1. link

是一个指针,指向上一个,最近的一个 _panic 结构的地址,实际上此处就可以看到这个指针对应的是一个链表,一个又多个 _panic 结构组成的链表

  1. recovered

panic 是否已经处理完毕,即当前的这个 panic 是否是已经被 recover 了

  1. aborted

表示当前的 panic 是否被中止

  1. 对于 pc 和 sp 自然就是我们熟知的 pc 通用寄存器,在汇编中是指向当前运行指令的下一条指令,sp 则是栈指针 stack pointer,用于入栈和出栈的

我们知道运行函数的时候需要入栈,运行完毕之后需要出栈

源码中的 runtime.gopanic

那么我们继续来阅读源码,上述看到 sp 和 pc ,那么我们就简单写一个 panic 的代码来看看汇编到底是怎么执行的,不用担心看不懂,我们只需要看关键词就行

还是上面的程序

程序运行的时候可以执行 go tool compile -S main.go

可以看到汇编代码,可能其他的看不懂,但是我们可以看到如下关键词

  • log.(*Logger).SetFlags(SB) 即是执行到我们调用 log 去设置参数
  • 程序走到 panic 函数的时候,实际上是执行了 runtime.gopanic 函数,我们一起看看源码

代码中可以看到 p.recovered 逻辑下的关于 recover 的逻辑被删除掉了,在文章的后面会继续说到,当前我们先关注 panic 的事项

runtime.gopanic 程序的逻辑大体是这样的

  1. 获取当前 协程 的指针
  1. 初始化一个 _panic 结构 p,并将当前协程上对应的数据赋值给到 p 上,且将 当前协程 _panic 挂到 link 上
  1. 进入循环后,拿到当前协程的 _defer 数据
  1. 查看 _defer 指针数据 中是否有 defer 调用,如果有则执行
  1. 处理完基本逻辑之后,打印 panic 信息,例如我们 demo 中的 panic coming ... 信息
  1. 最终退出程序

Xdm 可以看上图,自己捋一捋逻辑就清晰了

接着,我们来看

fatalpanic

通过 runtime.gopanic 我们可以看到 fatalpanic 函数基本上就是做一个收尾工作了,如果上述程序处理完毕之后, fatalpanic 校验到 panic 是需要 recover 的,那么就打印 [recovered]

打印的这个信息是由 上图中 printpanics 完成的

这下知道 panic 是如何去执行的了,那么对于现在来研究 recover 是如何落实的

recover

还是同一个例子,咱们将 defer 部分的代码注打开,来继续看看效果

func main() {
   log.SetFlags(log.Lshortfile)

   defer func() {
      if err := recover(); err != nil {
         log.Println("recover panic : ", err)
      }
   }()

   panic("panic coming...")

}

自然效果是我们期望的,捕获到了异常,且处理了

继续打印汇编来查看一下关键词,是否有我们期望的函数出现

此处我们可以看到,实际 Go 中调用了多个函数

  1. runtime.gorecover
  1. main.main.opendefer
  1. log.(*Logger).SetFlags
  1. runtime.gopanic
  1. runtime.deferreturn

自然明眼人都看的出现,关键的函数实现自然是 runtime.gorecover ,那么我们来一探究竟

runtime.gorecover

查看源码我们可以知道, runtime.gorecover 实际上就是根据当前协程的 _panic 结构数据来判断是否需要恢复,如果需要则将 p.recovered = true

自然在这里将当前协程的数据修改掉,正是为了后续执行 runtime.gopanic 的时候提供保障, runtime.gopanic 执行的时候就会去判断和处理这个 p.recovered

前文中提到的关于 runtime.gopanic 中 处理 p.recovered 的逻辑是这样的

  1. 如上可以看到 runtime.gorecover 去对 p.recovered 设置是否恢复
  1. runtime.gopanic 中校验 p.recovered 已处理,则执行 recovery 函数
  1. recovery 函数中去处理对应的寄存器的值去维护上下文
  1. 最后我们可以看到最终调用 gogo 函数跳回原来调用的位置

因此,当我们在同一个协程中出现了 panic,且在同一个协程中去使用 defer 来配合 recover 来进行捕获异常和处理异常,就可以得以实现,看到这里,有没有觉得还是蛮简单的,不就是去对一个 p.recovered 进行配合处理吗

自然,表面上是这样,其中对于寄存器的各种数据处理涉及的内容还是不少的,不过这不在我们今天聊的范畴中了

总结

至此,相信你已经知道了这些

  1. 为什么 panic 和 defer ,recover 配合使用的时候要在同一个协程中了吧
  1. 相信你还知道了 panic 和 recover 的处理流程

当然,如果文章对你有帮助的话,欢迎留言评论哦

感谢阅读,欢迎交流,点个赞,关注一波 再走吧

欢迎点赞,关注,收藏

朋友们,你的支持和鼓励,是我坚持分享,提高质量的动力

技术是开放的,我们的心态,更应是开放的。拥抱变化,向阳而生,努力向前行。

我是阿兵云原生,欢迎点赞关注收藏,下次见~

文中提到的技术点,感兴趣的可以查看这些文章:

  • GO 中 defer的实现原理
  • GO 中的 defer 有哪些注意事项?上
  • GO 中的 defer 有哪些注意事项?下
  • GO 中的指针?
  • GO 中优雅编码和降低圈复杂度

可以进入地址进行体验和学习:https://xxetb.xet.tech/s/3lucCI

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1071295.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

传输层TCP协议

前言 传输层的历史渊源可以追溯到计算机网络的早期阶段。在20世纪60年代和70年代,计算机网络主要是由一些简单的点对点连接组成的。这些连接通常使用专用的硬件和协议,例如串行线路和电话线路。在这种情况下,传输层的功能是由这些协议本身来提…

【SpringCloud】认识微服务

🐌个人主页: 🐌 叶落闲庭 💨我的专栏:💨 c语言 数据结构 javaEE 操作系统 Redis 石可破也,而不可夺坚;丹可磨也,而不可夺赤。 认识微服务 一、 服务架构演变1.1 单体架构…

Qt之进程通信-QProcess(含源码+注释)

文章目录 一、QProcess进程通信示例二、QProcess通信个人理解三、源码MainWindowProcessSenderMainWindowProcessSender.hMainWindowProcessSender.cppMainWindowProcessSender.ui MainWindowProcessRecvMainWindowProcessRecv.hMainWindowProcessRecv.cppMainWindowProcessRec…

【算法——双指针】LeetCode 18 四数之和

题目描述: 解题思路:双指针 四数之和与前面三数之和思路一样,排序后,枚举 nums[a]作为第一个数,枚举 nums[b]作为第二个数,那么问题变成找到另外两个数,使得这四个数的和等于 target&#xff0c…

吃鸡玩家必备神器!一站式提升战斗力、分享干货!

大家好,我是吃鸡玩家。在这个视频中,我要分享一个让你瞬间提高战斗力的神器,同时让你享受到顶级游戏作战干货的盛宴!让我们一起来了解吧! 首先,我们推荐绝地求生作图工具。通过这款工具,你可以轻…

用这些IDEA插件,让你早下班两小时

GenerateAllSetter:一键调用一个对象的所有setter方法 RestfulTool:自动显示所有URL接口,快速检索接口 SequenceDiagram:以图形界面形式显示方法调用链,方便阅读源码、梳理代码 CamelCase:变量下划线转驼峰命名 Rainbow Brackets:帮助程序员识别代码中括…

十五、异常(5)

本章概要 异常限制构造器 异常限制 当覆盖方法的时候,只能抛出在基类方法的异常说明里列出的那些异常。这个限制很有用,因为这意味着与基类一起工作的代码,也能和导出类一起正常工作(这是面向对象的基本概念)&#…

基于SSM的校园资讯推荐系统设计与实现

末尾获取源码 开发语言:Java Java开发工具:JDK1.8 后端框架:SSM 前端:采用JSP技术开发 数据库:MySQL5.7和Navicat管理工具结合 服务器:Tomcat8.5 开发软件:IDEA / Eclipse 是否Maven项目&#x…

关联规则挖掘:Apriori算法的深度探讨

目录 一、简介什么是关联规则挖掘?什么是频繁项集?什么是支持度与置信度?Apriori算法的重要性应用场景 二、理论基础项和项集支持度(Support)置信度(Confidence)提升度(Lift&#xf…

SSM - Springboot - MyBatis-Plus 全栈体系(十八)

第四章 SpringMVC SpringMVC 实战:构建高效表述层框架 一、SpringMVC 简介和体验 1. 介绍 Spring Web MVC 是基于 Servlet API 构建的原始 Web 框架,从一开始就包含在 Spring Framework 中。正式名称“Spring Web MVC”来自其源模块的名称&#xff08…

OCR让点读笔如虎添翼

点读笔是一种智能学习工具,它可以通过识别文字来提供相应的语音或图像反馈。在实现文字识别功能时,点读笔通常会借助OCR(Optical Character Recognition,光学字符识别)技术。下面将详细介绍点读笔如何利用OCR技术实现文…

浅析人脸活体检测技术的两种方法

随着人脸识别技术日趋成熟,商业化应用愈加广泛,然而人脸极易用照片、视频等方式进行复制,因此对合法用户人脸的假冒是人脸识别与认证系统安全的重要威胁。目前基于动态视频人脸检测、人脸眨眼、热红外与可见光人脸关联等领先业界的人脸活体检测算法,已经取得了一定的…

Linux0.12内核源码解读(2)-Bootsect.S

作者:小牛呼噜噜 | https://xiaoniuhululu.com 计算机内功、源码解析、科技故事、项目实战、面试八股等更多硬核文章,首发于公众号「小牛呼噜噜」 文章目录 回顾计算机启动过程8086、80x86是什么意思?寄存器初始化CS:IPCPU是如何和ROM相连的?加载MBR到…

餐饮蛋糕鲜花便利店水果店外卖自提小程序开发

对于实体门店小微商家来说,做私域和复购永远是最划算的买卖。店里每天有新客到老客到,做好私域就可以零成本形成稳定客流而且还可以通过活动形成社交裂变和口碑效应。不做好私域和留存就是白白看着自己客户被同行一口一口吃掉。因此也就有了自提外卖小程…

制作婚礼邀请函只需三步,轻松制作走心请柬

制作自己的婚礼邀请函是一种流行的方式来传达你的婚礼信息给你的亲朋好友。在这个数字化的时代,你可以使用在线制作平台来创建自定义的婚礼邀请函。下面是一个简单的步骤指南,教你如何使用乔拓云网在线制作平台制作出超有感觉的婚礼请柬。 首先&#xff…

【Overload游戏引擎分析】从视图投影矩阵提取视锥体及overload对视锥体的封装

overoad代码中包含一段有意思的代码,可以从视图投影矩阵逆推出摄像机的视锥体,本文来分析一下原理 一、平面的方程 视锥体是用平面来表示的,所以先看看平面的数学表达。 平面方程可以由其法线N(A, B, C)和一个点Q(x0,…

【发表案例】计算机类SCIE,2区,2个月2天录用

计算机类SCIE 【期刊简介】IF:4.0-5.0,JCR2区,中科院3区 【检索情况】SCIE 在检,正刊 【征稿领域】提高安全性和隐私性的边缘/云的智能方法的研究,如数字孪生等 录用案例:2个月2天录用 2023.09.27 | A…

吃鸡玩家必备!提升战斗力,分享干货,保护账号安全!

你好!吃鸡玩家们的福利来了!在这里,我将为大家分享一些关于提高游戏战斗力、分享顶级游戏作战干货以及保护账号安全的实用技巧。 首先,让我们来谈提高游戏战斗力的技巧。绝地求生是一款战略性的游戏,而好的作图工具可以…

Java笔记八(instanceof,类型转换,static详解,抽象类,接口,内部类以及异常)

instanceof 引用类型,判断一个对象是什么类型 使用方法: System.out.println(X instanceof Y); 代码理解: public class Application {public static void main(String[] args) {//Obiect>String//…

如何成为合格的测试开发工程师?

是入职两年半的测试开发工程师小编,虽然目前很菜,但还是希望自己继续努力,早日成为一名合格的测试开发工程师,本篇文章也是通过对身边同事的了解,整理了几点对自己的要求,以及重新梳理了下今后的学习路径&a…