Day4:Linux系统编程1-60P

news2025/1/16 12:56:41

我的学习方法是:Linux系统编程(看pdf笔记) + Linux网络编程 + WebServer

01P-17P Linux相关命令及操作

  • cp -a dirname1 dirname2 复制目录

    cp -r dirname1 dirname2 递归复制目录 1 到目录 2

    这里-a 和-r 的差别在于,-a 是完全复制,文件权限,改动时间什么的也完全相同。

  • more filenamecat 差不多,但是对于大文件查看很强势

  • head -n filename 查看文件前 n 行

  • tail -n filename 查看文件后 n 行

  • ln -s file file.s 创建一个软链接(相当于win的快捷方式),最好使用绝对路径

  • ln file file.h 创建一个硬链接,文件和硬链接的 Inode 是相同的,每个文件都有唯一的 Inode(硬链接一改都改,类似于cpp的引用)

  • find命令 -type按种类,-name按名字

  • grep 命令:找文件内容 ,与ps配合使用ps aux | grep 'cupsd'

  • gzip 和 bzip2 都是压缩命令,配合tar使用,rar压缩需要安装rar。

  • ifconfig查看网卡信息

18P - 24P Vim相关(一刷不看)

25P-27P gcc相关

  • gcc中间文件及步骤:

image

28P-37P 动态库和静态库

  • 静态和动态的优劣:静态库在文件中静态展开,所以有多少文件就展开多少次,非常吃内存,但是这样的好处就是静态加载的速度快;使用动态库会将动态库加载到内存,10 个文件也只需要加载一次,然后这些文件用到库的时候临时去加载,速度慢一些,但是很省内存。如何理解动态和静态:静态的写在源代码里的函数,相对 main 函数偏移是一定的,链接时,回填 main 函数地址之后,其他源代码 里的函数也就得到了地址,动态则用plt代替,之后加载的时候再替换掉 )
  • 编译器只能隐式声明返回值为 int 的函数形式:int add(int ,int ); 如果函数不是返回的 int,则隐式声明失效,会报错:在使用自己编写的静态库时,需要在Main中加入函数声明 。但这个方法需要库的使用者知道库里的函数,完事儿一个一个加到代码里,不太行,解决方法:使用头文件加载静态库:这样防止多次展开静态库带来额外开销。

image

38P-40P GDB调试(跳过)

41P-46P Makefile(跳过)

47P-51P 系统调用open

  • 系统调用是内核提供的函数,库调用是程序库中的函数;
  • open() 函数出错时,程序会自动设置 errno,可以通过 strerror(errno)来查看报错数字的含义 以打开不存在文件为例(如果成功fd会返回打开文件所得到对应的 文件描述符)

image

52P-53P 系统调用read/write(复制命令)

  • 系统调用(write/read)和库函数调用(fgetc/fputc)的区别:read每次写n个字节,会疯狂进行内核态和用户态的切换,所以非常耗时。fgetc/fputc,有个缓冲区,预读入缓输出机制。

54P 文件描述符

  • 文件描述符是指向一个文件结构体的指针
  • 在Linux中,文件描述符是一个非负整数,用于标识一个进程正在使用的文件或者其他输入/输出资源。每个进程都有一个文件描述符表,其中存储了该进程打开的文件描述符。标准输入、标准输出和标准错误输出分别使用文件描述符0、1和2。其他文件描述符从3开始递增。文件描述符可以用于读取、写入、关闭文件以及进行其他文件操作。标准输入输出一般指的就是键盘输入/输出;

55P 阻塞和非阻塞

  • 阻塞/非阻塞是设备文件、网络文件的属性(常规文件没有阻塞的概念)。
  • 比如读取dev/tty (这也是个文件),如下写法就是阻塞的:
/* 使用阻塞的read读取终端(标准输入输出)*/
#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>

int main(){
    char buf[10];
    int n;
     
    n = read(STDIN_FILENO, buf, 10);
    if(n < 0){
        perror("read STDIN_FILENO");
        exit(1);
    }
    write(STDOUT_FILENO, buf, n);

    return 0;
}

56P-57P 系统调用fcntl

  • fcntl(file control)是一个系统调用,用来改变一个【已经打开】的文件的访问控制属性
  • 函数声明int fcntl(int fd, int cmd, ... /* arg */ ); cmd表示命令,比如下面这句代码将阻塞改为非阻塞:其中F_SETFL设置,F_GETFL获取
    flags = fcntl(STDIN_FILENO, F_GETFL); //获取 stdin 属性信息
    if(flags == -1){
        perror("fcntl error");
        exit(1);
    }
    flags |= O_NONBLOCK;
    int ret = fcntl(STDIN_FILENO, F_SETFL, flags);
    if(ret == -1){
        perror("fcntl error");
        exit(1);
    }

58P 系统调用lseek

  • lseek函数通常用于随机访问文件,例如读取文件中的某个特定位置的数据。
  • 函数声明:
#include <unistd.h>

off_t lseek(int fd, off_t offset, int whence);

fd是文件描述符,offset是偏移量,whence是偏移量的起始位置。whence可以取以下三个值之一:

- `SEEK_SET`:偏移量相对于文件开头。
- `SEEK_CUR`:偏移量相对于当前位置。
- `SEEK_END`:偏移量相对于文件末尾。

返回值是新的文件偏移量(-1表示错误)

  • 常用作用:使用lseek 获取文件大小、配合truncate拓展文件大小
  • 使用lseek获取文件大小的例子:
#include <unistd.h>
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>

int main(int argc, char *argv[]) {
    if (argc != 2) {
        fprintf(stderr, "Usage: %s <filename>\n", argv[0]);
        exit(1);
    }

    int fd = open(argv[1], O_RDONLY);
    if (fd == -1) {
        perror("open error");
        exit(1);
    }

    off_t size = lseek(fd, 0, SEEK_END);
    if (size == -1) {
        perror("lseek error");
        exit(1);
    }

    printf("File size: %ld bytes\n", size);

    close(fd);
    return 0;
}

59P 传入传出参数

传入参数: 1. 指针作为函数参数。 2. 同常有 const 关键字修饰。 3. 指针指向有效区域, 在函数内部做读操作。

传出参数: 1. 指针作为函数参数。 2. 在函数调用之前,指针指向的空间可以无意义,但必须有效。 3. 在函数内部,做写操作。 4。函数调用结束后,充当函数返回值。

传入传出参数: 1. 指针作为函数参数。 2. 在函数调用之前,指针指向的空间有实际意义。 3. 在函数内部,先做读操作,后做写操作。 4. 函数调用结束后,充当函数返回值。

60P 目录和inode

  • inode:它是文件系统中的一个数据结构,用于存储文件的元数据信息。每个文件在文件系统中都有一个唯一的inode号码,通过这个号码可以访问文件的元数据信息,例如文件的权限、所有者、大小、创建时间、修改时间等等。
  • 在Linux文件系统中,文件名和inode号码是分开存储的。文件名存储在目录中,而inode号码存储在文件系统的inode表中。
  • 一个文件主要由两部分组成,dentry(目录项)和 inode。所谓的删除文件,就是删除 inode,但是数据其实还是在硬盘上,以后会覆盖掉。(参考某些数据恢复措施)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1070575.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

深入了解 GMP

视频链接地址:Golang深入理解GPM模型_哔哩哔哩_bilibili 一、Golang“调度器”的由来? (1) 单进程时代不需要调度器 我们知道,一切的软件都是跑在操作系统上,真正用来干活(计算)的是CPU。早期的操作系统每个程序就是一个进程,直到一个程序运行完,才能进行下一个进程,就是…

大数据Doris(七):Doris安装与部署规划

文章目录 Doris安装与部署规划 一、软硬件需求 二、​​​​​​​资源规划

[Java] 服务端消息推送汇总

前言&#xff1a;当构建实时消息推送功能时&#xff0c;选择适合的方案对于开发高效的实时应用至关重要。消息的推送无非就推、拉两种数据模型。本文将介绍四种常见的消息实时推送方案&#xff1a;短轮询&#xff08;拉&#xff09;、长轮训&#xff08;拉&#xff09;、SSE&am…

详解C语言指针(二)

文章目录 1. 字符指针2. 指针数组3. 数组指针3.1 什么是数组指针&#xff1f;3.2 &数组名 VS 数组名 4. 数组参数4.1 一维数组传参4.2 二维数组传参 5. 函数指针6. 函数指针数组7. 指向函数指针数组的指针8. 回调函数 1. 字符指针 字符指针是指针类型的变量&#xff0c;其…

文本自动输入/删除的加载动画效果

效果展示 CSS 知识点 绕矩形四周跑的光柱动画实现animation 属性的 steps 属性值运用 页面基础结构实现 <div class"loader"><!-- span 标签是围绕矩形四周的光柱 --><span></span><span></span><span></span>&l…

Git 学习笔记 | 使用码云

Git 学习笔记 | 使用码云 Git 学习笔记 | 使用码云注册登录码云&#xff0c;完善个人信息设置本机绑定SSH公钥&#xff0c;实现免密码登录创建远程仓库 Git 学习笔记 | 使用码云 注册登录码云&#xff0c;完善个人信息 网址&#xff1a;https://gitee.com/ 可以使用微信&…

SpringBoot结合dev-tool 实现IDEA项目热部署

什么是热部署&#xff1f; 应用正在运行的时候升级功能, 不需要重新启动应用对于Java应用程序来说, 热部署就是在运行时更新Java类文件 通俗的来讲&#xff0c;应用在运行状态下&#xff0c;修改项目源码后&#xff0c;不用重启应用&#xff0c;会把编译的内容部署到服务器上…

【Acwing1010】拦截导弹(LIS+贪心)题解

题目描述 思路分析 本题有两问&#xff0c;第一问直接用lis的模板即可&#xff0c;下面重点看第二问 思路是贪心&#xff1a; 贪心流程&#xff1a; 从前往后扫描每一个数&#xff0c;对于每个数&#xff1a; 情况一&#xff1a;如果现有的子序列的结尾都小于当前的数&…

stm32的GPIO寄存器操作以及GPIO外部中断,串口中断

一、学习参考资料 &#xff08;1&#xff09;正点原子的寄存器源码。 &#xff08;2&#xff09;STM32F103最小系统板开发指南-寄存器版本_V1.1&#xff08;正点&#xff09; &#xff08;3&#xff09;STM32F103最小系统板开发指南-库函数版本_V1.1&#xff08;正点&a…

【重拾C语言】七、指针(一)指针与变量、指针操作、指向指针的指针

目录 前言 七、指针 7.1 指针与变量 7.1.1 指针类型和指针变量 7.1.2 指针所指变量 7.1.3 空指针、无效指针 7.2 指针操作 7.2.1 指针的算术运算 7.2.2 指针的比较 7.2.3 指针的递增和递减 7.3 指向指针的指针 前言 指针是C语言中一个重要的概念正确灵活运用指针 可…

单元测试该怎么写

单元测试对于开发人员来说很熟悉&#xff0c;各种语言都提供了单元测试的框架&#xff0c;用于自动化执行单元测试并生成测试报告。它通常提供了一组API和工具&#xff0c;使开发人员能够编写和运行测试用例&#xff0c;比较预期行为和实际行为之间的差异&#xff0c;并准确地识…

Android Studio新建项目缓慢解决方案

关于Android Studio2022新建项目时下载依赖慢的解决方案 起因解决方案gradle下载慢解决方案kotlin依赖下载慢解决方案 结尾 起因 新建Android Studio项目时&#xff0c;常会因为网络问题导致部分依赖下载缓慢&#xff0c;其中gradle和kotlin最拖慢进度。 解决方案 gradle下载…

Spring源码解析——IOC属性填充

正文 doCreateBean() 主要用于完成 bean 的创建和初始化工作&#xff0c;我们可以将其分为四个过程&#xff1a; 最全面的Java面试网站 createBeanInstance() 实例化 beanpopulateBean() 属性填充循环依赖的处理initializeBean() 初始化 bean 第一个过程实例化 bean在前面一篇…

四位十进制数字频率计VHDL,仿真视频、代码

名称&#xff1a;四位十进制数字频率计VHDL&#xff0c;quartus仿真 软件&#xff1a;Quartus 语言&#xff1a;VHDL 代码功能&#xff1a; 使用直接测频法测量信号频率&#xff0c;测频范围为1~9999Hz&#xff0c;具有超量程报警功能 演示视频&#xff1a;四位十进制数字频…

5分钟理解什么是卷积的特征提取

大家好啊&#xff0c;我是董董灿。 卷积算法之所以重要&#xff0c;关键在于其提取特征的能力。 5分钟入门卷积算法中提到&#xff0c;卷积模仿的就是人眼识图的过程&#xff0c;以“感受野”的视角去扫描图片&#xff0c;从而获取不同区域的图片信息。 在这一过程中&#x…

Scratch3.0下载

通俗易懂&#xff0c;直接上链接 链接&#xff1a;https://pan.baidu.com/s/1n-QFEQWT8im8BHQu1wIjtg?pwd1016 提取码&#xff1a;1016

高级IO(Linux)

高级IO 五种IO模型高级IO重要概念同步通信 vs 异步通信阻塞 vs 非阻塞 非阻塞IOfcntl实现函数SetNoBlock轮询方式读取标准输入 I/O多路转接之select初识selectselect函数原型参数解释参数timeout取值关于fd_set结构关于timeval结构函数返回值三级目录 理解select执行过程socket…

多功能频率计周期/脉宽/占空比/频率测量verilog,视频/代码

名称&#xff1a;多功能频率计周期、脉宽、占空比、频率测量verilog 软件&#xff1a;Quartus 语言&#xff1a;Verilog 代码功能&#xff1a; 多功能频率计&#xff0c;可测量信号的周期、脉冲宽度、占空比、频率&#xff0c;语言为verilog&#xff0c;quartus软件设计仿真…

B (1089) : DS单链表--合并

Description 假定两个单链表是递增有序&#xff0c;定义并实现以下函数&#xff0c;完成两个单链表的合并&#xff0c;继续保持递增有序 int LL_merge(ListNode *La, ListNode *Lb) Input 第1行先输入n表示有n个数据&#xff0c;接着输入n个数据 第2行先输入m表示有M个数据…

扭线机控制

扭线机属于线缆加工设备&#xff0c;线缆加工设备种类非常多。有用于网线绞合的单绞&#xff0c;双绞机等&#xff0c;有关单绞机相关算法介绍&#xff0c;大家可以查看专栏相关文章&#xff0c;有详细介绍&#xff0c;常用链接如下&#xff1a; 线缆行业单绞机控制算法&#…