【Zookeeper专题】Zookeeper经典应用场景实战(一)

news2025/1/12 12:11:15

目录

  • 前置知识
  • 课程内容
    • 一、Zookeeper Java客户端实战
      • 1.1 Zookeeper 原生Java客户端使用
      • 1.2 Curator开源客户端使用
        • 快速开始
        • 使用示例
    • 二、Zookeeper在分布式命名服务中的实战
      • 2.1 分布式API目录
      • 2.2 分布式节点的命名
      • 2.3 分布式的ID生成器
    • 三、zookeeper实现分布式队列
      • 3.1 设计思路
      • 3.2 使用Apache Curator实现分布式队列
  • 学习总结
  • 感谢

前置知识

在学习本节课之前,至少需要掌握Zookeeper的节点特性,以及基本操作。
《【Zookeeper专题】Zookeeper特性与节点数据类型详解》

课程内容

一、Zookeeper Java客户端实战

Zookeeper的客户端有很多,这边主要介绍的是两种:

  1. Zookeeper官方的Java客户端API
  2. 第三方的Java客户端API,Curator

ZooKeeper官方的客户端API提供了基本的操作,例如:创建会话、增删查改节点等(就是对原有命令交互式客户端的封装)。不过,Zookeeper官方客户端封装度比较低,使用起来不是很方便。这种不方便体现在:

  • ZooKeeper的Watcher监测是一次性的,每次触发之后都需要重新进行注册
  • 会话超时之后没有实现重连机制
  • 异常处理烦琐,ZooKeeper提供了很多异常,对于开发人员来说可能根本不知道应该如何处理这些抛出的异常
  • 仅提供了简单的byte[]数组类型的接口,没有提供Java POJO级别的序列化数据处理接口
  • 创建节点时如果抛出异常,需要自行检查节点是否存在
  • 无法实现级联删除

当然不便之处不止这些,不管怎样,在实际开发中,我们通常不是很建议使用官方API的。

1.1 Zookeeper 原生Java客户端使用

使用前,先引入客户端的依赖:

<!-- zookeeper client -->
<dependency>
    <groupId>org.apache.zookeeper</groupId>
    <artifactId>zookeeper</artifactId>
    <version>3.8.0</version>
</dependency>

然后是代码示例:

public class ZkClientDemo {

    private static final  String  CONNECT_STR="localhost:2181";
    private final static  String CLUSTER_CONNECT_STR="192.168.65.156:2181,192.168.65.190:2181,192.168.65.200:2181";

    public static void main(String[] args) throws Exception {

        final CountDownLatch countDownLatch=new CountDownLatch(1);
        ZooKeeper zooKeeper = new ZooKeeper(CLUSTER_CONNECT_STR,
                4000, new Watcher() {
            @Override
            public void process(WatchedEvent event) {
                if(Event.KeeperState.SyncConnected==event.getState() 
                        && event.getType()== Event.EventType.None){
                    //如果收到了服务端的响应事件,连接成功
                    countDownLatch.countDown();
                    System.out.println("连接建立");
                }
            }
        });
        System.out.printf("连接中");
        countDownLatch.await();
        //CONNECTED
        System.out.println(zooKeeper.getState());

        //创建持久节点
        zooKeeper.create("/user","fox".getBytes(),
                ZooDefs.Ids.OPEN_ACL_UNSAFE, CreateMode.PERSISTENT);
    }
}

客户端主要的API有:

create(path, data, acl,createMode):创建一个给定路径的 znode,并在 znode 保存 data[]的数据,createMode指定 znode 的类型。
delete(path, version):如果给定 path上的znode的版本和给定的version匹配,删除znode。
exists(path, watch):判断给定 path 上的 znode 是否存在,并在 znode 设置一个 watch。
getData(path, watch):返回给定 path 上的 znode 数据,并在 znode 设置一个 watch。
setData(path, data, version):如果给定 path 上的 znode 的版本和给定的 version 匹配,设置 znode 数据。
getChildren(path, watch):返回给定 path 上的 znode 的孩子 znode 名字,并在 znode 设置一个 watch。
sync(path):把客户端 session 连接节点和 leader 节点进行同步

以上这些API主要的特点如下:

  1. 所有获取 znode 数据的 API 都可以设置一个 watch 用来监控 znode 的变化
  2. 所有更新 znode 数据的 API 都有两个版本,即:无条件更新版本和条件更新版本。如果 version 为 -1,更新为无条件更新。否则只有给定的 version 和 znode 当前的 version 一样,才会进行更新,这样的更新是条件更新。
  3. 所有的方法都有同步和异步两个版本。同步版本的方法发送请求给 ZooKeeper 并等待服务器的响应。异步版本把请求放入客户端的请求队列,然后马上返回。异步版本通过 callback 来接受来自服务端的响应(不过ZK有一点不好的是,对于同步异步方法没有在方法名上显示注明sync/async,而是体现在请求参数callback上)

例如,这边简单演示一下同步跟异步创建节点方法。

// 同步创建,并且返回创建节点的路径信息
@Test
public void createTest() throws KeeperException, InterruptedException {
    String path = zooKeeper.create(ZK_NODE, "data".getBytes(), ZooDefs.Ids.OPEN_ACL_UNSAFE, CreateMode.PERSISTENT);
    log.info("created path: {}",path);
}

// 异步创建
// 看最后一个lambda表达式
@Test
public void createAsycTest() throws InterruptedException {
     zooKeeper.create(ZK_NODE, "data".getBytes(), ZooDefs.Ids.OPEN_ACL_UNSAFE,
             CreateMode.PERSISTENT,
             (rc, path, ctx, name) -> log.info("rc  {},path {},ctx {},name {}",rc,path,ctx,name),"context");
    TimeUnit.SECONDS.sleep(Integer.MAX_VALUE);
}

其余API这里就不演示了,大家伙感兴趣的可以回头去试试。

1.2 Curator开源客户端使用

Curator是Netflix公司开源的一套ZooKeeper客户端框架,和ZkClient一样它解决了非常底层的细节开发工作,包括连接、重连、反复注册Watcher的问题以及NodeExistsException异常等。Curator还为ZooKeeper客户端框架提供了一些比较普遍的、开箱即用的、分布式开发用的解决方案,例如Recipe、共享锁服务、Master选举机制和分布式计算器等,帮助开发者避免了“重复造轮子”的无效开发工作。

快速开始

引入maven依赖
Curator的使用包含了几个包:

  • curator-framework是对ZooKeeper的底层API的一些封装
  • curator-client提供了一些客户端的操作,例如重试策略等
  • curator-recipes封装了一些高级特性,如:Cache事件监听、选举、分布式锁、分布式计数器、分布式Barrier等
<!-- zookeeper client -->
<dependency>
    <groupId>org.apache.zookeeper</groupId>
    <artifactId>zookeeper</artifactId>
    <version>3.8.0</version>
</dependency>

<!--curator-->
<dependency>
    <groupId>org.apache.curator</groupId>
    <artifactId>curator-recipes</artifactId>
    <version>5.1.0</version>
    <exclusions>
        <exclusion>
            <groupId>org.apache.zookeeper</groupId>
            <artifactId>zookeeper</artifactId>
        </exclusion>
    </exclusions>
</dependency>

创建一个客户端
在使用curator-framework包操作ZooKeeper前,首先要创建一个客户端实例。这是一个CuratorFramework类型的对象,有两种方法:

  1. 使用工厂类CuratorFrameworkFactory的静态newClient()方法
// 重试策略 
RetryPolicy retryPolicy = new ExponentialBackoffRetry(1000, 3)
//创建客户端实例
CuratorFramework client = CuratorFrameworkFactory.newClient(zookeeperConnectionString, retryPolicy);
//启动客户端
client.start();
  1. 使用工厂类CuratorFrameworkFactory的静态builder构造者方法
//随着重试次数增加重试时间间隔变大,指数倍增长baseSleepTimeMs * Math.max(1, random.nextInt(1 << (retryCount + 1)))
RetryPolicy retryPolicy = new ExponentialBackoffRetry(1000, 3);

CuratorFramework client = CuratorFrameworkFactory.builder()
                .connectString("192.168.128.129:2181")
                .sessionTimeoutMs(5000)  // 会话超时时间
                .connectionTimeoutMs(5000) // 连接超时时间
                .retryPolicy(retryPolicy)
                .namespace("base") // 包含隔离名称
                .build();
client.start();

buidler调用链函数说明:

  • connectionString:服务器地址列表,在指定服务器地址列表的时候可以是一个地址,也可以是多个地址。如果是多个地址,那么每个服务器地址列表用逗号分隔, 如 host1:port1,host2:port2,host3;port3
  • retryPolicy:重试策略,当客户端异常退出或者与服务端失去连接的时候,可以通过设置客户端重新连接 ZooKeeper 服务端。而 Curator 提供了 一次重试、多次重试等不同种类的实现方式。在 Curator内部,可以通过判断服务器返回的 keeperException 的状态代码来判断是否进行重试处理,如果返回的是 OK 表示一切操作都没有问题,而 SYSTEMERROR 表示系统或服务端错误
    在这里插入图片描述
  • 超时时间:Curator 客户端创建过程中,有两个超时时间的设置。一个是 sessionTimeoutMs 会话超时时间,用来设置该条会话在 ZooKeeper 服务端的失效时间。另一个是 connectionTimeoutMs 客户端创建会话的超时时间,用来限制客户端发起一个会话连接到接收 ZooKeeper 服务端应答的时间。sessionTimeoutMs 作用在服务端,而 connectionTimeoutMs 作用在客户端。
使用示例

创建节点
创建节点的方式如下面的代码所示,回顾我们之前课程中讲到的内容,描述一个节点要包括节点的类型,即临时节点还是持久节点、节点的数据信息、节点是否是有序节点等属性和性质。

 @Test
public void testCreate() throws Exception {
    String path = curatorFramework.create().forPath("/curator-node");
    curatorFramework.create().withMode(CreateMode.PERSISTENT).forPath("/curator-node","some-data".getBytes())
    log.info("curator create node :{}  successfully.",path);
}

在 Curator 中,可以使用 create 函数创建数据节点,并通过 withMode 函数指定节点类型(持久化节点,临时节点,顺序节点,临时顺序节点,持久化顺序节点等),默认是持久化节点,之后调用 forPath函数来指定节点的路径和数据信息。

一次性创建带层级结构的节点

@Test
public void testCreateWithParent() throws Exception {
    String pathWithParent="/node-parent/sub-node-1";
    String path = curatorFramework.create().creatingParentsIfNeeded().forPath(pathWithParent);
    log.info("curator create node :{}  successfully.",path);
}

获取数据

@Test
public void testGetData() throws Exception {
    byte[] bytes = curatorFramework.getData().forPath("/curator-node");
    log.info("get data from  node :{}  successfully.",new String(bytes));
}

更新数据
我们通过客户端实例的 setData() 方法更新 ZooKeeper 服务上的数据节点,在setData 方法的后边,通过 forPath 函数来指定更新的数据节点路径以及要更新的数据。

@Test
public void testSetData() throws Exception {
    curatorFramework.setData().forPath("/curator-node","changed!".getBytes());
    byte[] bytes = curatorFramework.setData().forPath("/curator-node");
    log.info("get data from  node /curator-node :{}  successfully.",new String(bytes));
}

删除节点

@Test
public void testDelete() throws Exception {
    String pathWithParent="/node-parent";
    curatorFramework.delete().guaranteed().deletingChildrenIfNeeded().forPath(pathWithParent);
}

guaranteed:该函数的功能如字面意思一样,主要起到一个保障删除成功的作用,其底层工作方式是:只要该客户端的会话有效,就会在后台持续发起删除请求,直到该数据节点在 ZooKeeper 服务端被删除。
deletingChildrenIfNeeded:指定了该函数后,系统在删除该数据节点的时候会以递归的方式直接删除其子节点,以及子节点的子节点。

异步接口
Curator 引入了BackgroundCallback 接口,用来处理服务器端返回来的信息,这个处理过程是在异步线程中调用,默认在 EventThread 中调用,也可以自定义线程池。

public interface BackgroundCallback
{
    /**
     * Called when the async background operation completes
     *
     * @param client the client
     * @param event operation result details
     * @throws Exception errors
     */
    public void processResult(CuratorFramework client, CuratorEvent event) throws Exception;
}

如上接口,主要参数为 client 客户端,和服务端事件 event。inBackground异步处理默认在EventThread中执行

@Test
public void test() throws Exception {
    curatorFramework.getData().inBackground((item1, item2) -> {
        log.info(" background: {}", item2);
    }).forPath(ZK_NODE);

    TimeUnit.SECONDS.sleep(Integer.MAX_VALUE);
}

或者使用自定义线程池:

@Test
public void test() throws Exception {
    ExecutorService executorService = Executors.newSingleThreadExecutor();
    
    curatorFramework.getData().inBackground((item1, item2) -> {
        log.info(" background: {}", item2);
    },executorService).forPath(ZK_NODE);

    TimeUnit.SECONDS.sleep(Integer.MAX_VALUE);
}

Curator 监听器
我们知道,ZK的一大特色便是他们的监听机制。Curator在监听方面,相比于原生的客户端,Curator将重复注册、事件信息等进行了高度封装,让用户做到开箱即用。并且在监听事件返回了详细的信息,包括变动的节点路径,节点值等等,这是原生API所没有的。
Curator 引入了 Cache 来实现对 Zookeeper 服务端事件监听,Cache 事件监听可以理解为一个本地缓存视图与远程 Zookeeper 视图的对比过程。

官方推荐的节点监听API有:

  • NodeCache(已过期):对某一个节点进行监听,监听事件包括指定路径的增删改等操作
@Slf4j
public class NodeCacheTest extends AbstractCuratorTest{

    public static final String NODE_CACHE="/node-cache";

    @Test
    public void testNodeCacheTest() throws Exception {

        createIfNeed(NODE_CACHE);
        NodeCache nodeCache = new NodeCache(curatorFramework, NODE_CACHE);
        nodeCache.getListenable().addListener(new NodeCacheListener() {
            @Override
            public void nodeChanged() throws Exception {
                log.info("{} path nodeChanged: ",NODE_CACHE);
                printNodeData();
            }
        });

        nodeCache.start();
    }


    public void printNodeData() throws Exception {
        byte[] bytes = curatorFramework.getData().forPath(NODE_CACHE);
        log.info("data: {}",new String(bytes));
    }
}
  • PathChildrenCache(已过期):对指定路径节点的一级子目录监听,不对该节点的操作监听。换句话说就是对其子目录的增删改操作监听
@Slf4j
public class PathCacheTest extends AbstractCuratorTest{

    public static final String PATH="/path-cache";

    @Test
    public void testPathCache() throws Exception {

        createIfNeed(PATH);
        PathChildrenCache pathChildrenCache = new PathChildrenCache(curatorFramework, PATH, true);
        pathChildrenCache.getListenable().addListener(new PathChildrenCacheListener() {
            @Override
            public void childEvent(CuratorFramework client, PathChildrenCacheEvent event) throws Exception {
                log.info("event:  {}",event);
            }
        });

        // 如果设置为true则在首次启动时就会缓存节点内容到Cache中
        pathChildrenCache.start(true);
    }
}
  • TreeCache(已过期):综合NodeCache和PathChildrenCahce的特性,是对整个目录进行监听,可以设置监听深度
public class TreeCacheTest extends AbstractCuratorTest{

    public static final String TREE_CACHE="/tree-path";

    @Test
    public void testTreeCache() throws Exception {
        createIfNeed(TREE_CACHE);
        TreeCache treeCache = new TreeCache(curatorFramework, TREE_CACHE);
        treeCache.getListenable().addListener(new TreeCacheListener() {
            @Override
            public void childEvent(CuratorFramework client, TreeCacheEvent event) throws Exception {
                log.info(" tree cache: {}",event);
            }
        });
        treeCache.start();
    }
}
  • CuratorCache:上面的几个节点缓存API其实已经过期了,最近的版本开始使用CuratorCache单个接口来替代它们,在使用上也更为简单。我们来小小的看一下该类的创建api
    在这里插入图片描述
    如上所示,构建节点缓存的build()方法提供了一个可选的参数optionsOptions是一个内部枚举类型,如果不指定,默认是缓存【给定节点开始的整个节点树】。
    下面是一个简单的使用示例:
package org.tuling.zk.curator;

import org.apache.curator.framework.CuratorFramework;
import org.apache.curator.framework.CuratorFrameworkFactory;
import org.apache.curator.framework.imps.CuratorFrameworkState;
import org.apache.curator.framework.recipes.cache.CuratorCache;
import org.apache.curator.framework.recipes.cache.CuratorCacheListener;
import org.apache.curator.retry.ExponentialBackoffRetry;
import org.apache.zookeeper.CreateMode;

public class TestCuratorCache {

    private final static String CLUSTER_CONNECT_STR="114.132.46.145:2181";

    public static void main(String[] args) throws Exception {
        //构建客户端实例
        CuratorFramework curator= CuratorFrameworkFactory.builder()
                .connectString(CLUSTER_CONNECT_STR)
                .retryPolicy(new ExponentialBackoffRetry(1000,3)) // 设置重试策略
                .build();
        //启动客户端
        curator.start();
        
        assert curator.getState().equals(CuratorFrameworkState.STARTED);
        curator.blockUntilConnected();

        if(curator.checkExists().forPath("/father") != null) {
            curator.delete().deletingChildrenIfNeeded().forPath("/father");
        }
        
        // 创建CuratorCache实例,基于路径/father/son/grandson1(这里说的路径都是基于命名空间下的路径)
        // 缓存构建选项是SINGLE_NODE_CACHE
        CuratorCache cache = CuratorCache.build(curator, "/father/son/grandson1",
                CuratorCache.Options.SINGLE_NODE_CACHE);

        // 创建一系列CuratorCache监听器,都是通过lambda表达式指定
        CuratorCacheListener listener = CuratorCacheListener.builder()
                // 初始化完成时调用
                .forInitialized(() -> System.out.println("[forInitialized] : Cache initialized"))
                // 添加或更改缓存中的数据时调用
                .forCreatesAndChanges(
                        (oldNode, node) -> System.out.printf("[forCreatesAndChanges] : Node changed: Old: [%s] New: [%s]\n",
                                oldNode, node)
                )
                // 添加缓存中的数据时调用
                .forCreates(childData -> System.out.printf("[forCreates] : Node created: [%s]\n", childData))
                // 更改缓存中的数据时调用
                .forChanges(
                        (oldNode, node) -> System.out.printf("[forChanges] : Node changed: Old: [%s] New: [%s]\n",
                                oldNode, node)
                )
                // 删除缓存中的数据时调用
                .forDeletes(childData -> System.out.printf("[forDeletes] : Node deleted: data: [%s]\n", childData))
                // 添加、更改或删除缓存中的数据时调用
                .forAll((type, oldData, data) -> System.out.printf("[forAll] : type: [%s] [%s] [%s]\n", type, oldData, data))
                .build();

        // 给CuratorCache实例添加监听器
        cache.listenable().addListener(listener);

        // 启动CuratorCache
        cache.start();

        // 创建节点/father/son/grandson1
        curator.create()
                .creatingParentsIfNeeded()
                .withMode(CreateMode.PERSISTENT)
                .forPath("/father/son/grandson1", "data".getBytes());
        
        // 创建节点/father/son/grandson1/test
        curator.create()
                .creatingParentsIfNeeded()
                .withMode(CreateMode.PERSISTENT)
                .forPath("/father/son/grandson1/test", "test".getBytes());
        
        // 创建节点/father/son/grandson1/test/test2
        curator.create()
                .creatingParentsIfNeeded()
                .withMode(CreateMode.PERSISTENT)
                .forPath("/father/son/grandson1/test/test2", "test2".getBytes());
       
        // 更改节点/father/son/grandson1的数据
        curator.setData()
                .forPath("/father/son/grandson1", "new data".getBytes());

        // 更改节点/father/son/grandson1/test的数据
        curator.setData()
                .forPath("/father/son/grandson1/test", "new test".getBytes());

        // 删除节点/father/son/grandson1
        curator.delete()
                .deletingChildrenIfNeeded()
                .forPath("/father/son/grandson1");

        Thread.sleep(10000000);
    }
}

二、Zookeeper在分布式命名服务中的实战

所谓命名服务,其实就是为系统中的资源提供标识能力,被命名的服务比如是:集群中的某个机器,提供服务的地址或者远程对象。ZooKeeper的命名服务主要是利用ZooKeeper节点的树形分层结构和子节点的顺序维护能力,来为分布式系统中的资源命名。典型的,用到了分布式命名服务的场景有:

  • 分布式API目录
  • 分布式节点命名
  • 分布式ID生成器

2.1 分布式API目录

分布式API目录,即:为分布式系统中各种API接口服务的名称、链接地址,提供类似JNDI(Java命名和目录接口)中的文件系统的功能。借助于ZooKeeper的树形分层结构就能提供分布式的API调用功能。
在Dubbo中,就是使用了当前方式。使用ZooKeeper维护的全局服务接口API的地址列表。大致的思路为:

  • 服务提供者(Service Provider)在启动的时候,向ZooKeeper上的指定节点/dubbo/${serviceName}/providers写入自己的API地址,这个操作就相当于服务的公开。
  • 服务消费者(Consumer)启动的时候,订阅节点/dubbo/{serviceName}/providers下的服务提供者的URL地址,获得所有服务提供者的API

大概的模型图如下:
在这里插入图片描述

2.2 分布式节点的命名

一个分布式系统通常会由很多的节点组成,节点的数量不是固定的,而是不断动态变化的。比如说,当业务不断膨胀和流量洪峰到来时,大量的节点可能会动态加入到集群中。而一旦流量洪峰过去了,就需要下线大量的节点。再比如说,由于机器或者网络的原因,一些节点会主动离开集群。
如何为大量的动态节点命名呢?一种简单的办法是可以通过配置文件,手动为每一个节点命名。但是,如果节点数据量太大,或者说变动频繁,手动命名则是不现实的,这就需要用到分布式节点的命名服务。
可用于生成集群节点的编号的方案:

  1. 使用数据库的自增ID特性,用数据表存储机器的MAC地址或者IP来维护
  2. 使用ZooKeeper持久顺序节点的顺序特性来维护节点的NodeId编号

在第2种方案中,集群节点命名服务的基本流程是:

  • 启动节点服务,连接ZooKeeper,检查命名服务根节点是否存在,如果不存在,就创建系统的根节点
  • 在根节点下创建一个临时顺序ZNode节点,取回ZNode的编号把它作为分布式系统中节点的NODEID
  • 如果临时节点太多,可以根据需要删除临时顺序ZNode节点

2.3 分布式的ID生成器

在分布式系统中,分布式ID生成器的使用场景非常之多:

  • 大量的数据记录,需要分布式ID。
  • 大量的系统消息,需要分布式ID。
  • 大量的请求日志,如restful的操作记录,需要唯一标识,以便进行后续的用户行为分析和调用链路分析。
  • 分布式节点的命名服务,往往也需要分布式ID。
  • … …

传统的数据库自增主键已经不能满足需求。在分布式系统环境中,迫切需要一种全新的唯一ID系统,这种系统需要满足以下需求:

  1. 全局唯一:不能出现重复ID
  2. 高可用:ID生成系统是基础系统,被许多关键系统调用,一旦宕机,就会造成严重影响

市面上,分布式的ID生成器方案大致如下:

  1. Java的UUID
  2. 分布式缓存Redis生成ID:利用Redis的原子操作INCR和INCRBY,生成全局唯一的ID
  3. Twitter的SnowFlake算法(雪花算法)
  4. ZooKeeper生成ID:利用ZooKeeper的顺序节点,生成全局唯一的ID
  5. MongoDb的ObjectId:MongoDB是一个分布式的非结构化NoSQL数据库,每插入一条记录会自动生成全局唯一的一个“_id”字段值,它是一个12字节的字符串,可以作为分布式系统中全局唯一的ID

我们这里介绍一下,基于Zookeeper实现分布式ID生成器

基于Zookeeper实现分布式ID生成器
在ZooKeeper节点的四种类型中,其中有以下两种类型具备自动编号的能力:

  • PERSISTENT_SEQUENTIAL持久化顺序节点
  • EPHEMERAL_SEQUENTIAL临时顺序节点

ZooKeeper的每一个节点都会为它的第一级子节点维护一份顺序编号,会记录每个子节点创建的先后顺序,这个顺序编号是分布式同步的,也是全局唯一的。
可以通过创建ZooKeeper的临时顺序节点的方法,生成全局唯一的ID:

@Slf4j
public class IDMaker extends CuratorBaseOperations {

    private String createSeqNode(String pathPefix) throws Exception {
        CuratorFramework curatorFramework = getCuratorFramework();
        //创建一个临时顺序节点
        String destPath = curatorFramework.create()
                .creatingParentsIfNeeded()
                .withMode(CreateMode.EPHEMERAL_SEQUENTIAL)
                .forPath(pathPefix);
        return destPath;
    }

    public String  makeId(String path) throws Exception {
        String str = createSeqNode(path);
        if(null != str){
            //获取末尾的序号
            int index = str.lastIndexOf(path);
            if(index>=0){
                index+=path.length();
                return index<=str.length() ? str.substring(index):"";
            }
        }
        return str;
    }
}

@Test
public void testMarkId() throws Exception {
    IDMaker idMaker = new IDMaker();
    idMaker.init();
    String pathPrefix = "/idmarker/id-";

    for(int i=0;i<5;i++){
        new Thread(()->{
            for (int j=0;j<10;j++){
                String id = null;
                try {
                    id = idMaker.makeId(pathPrefix);
                    log.info("{}线程第{}个创建的id为{}",Thread.currentThread().getName(),
                            j,id);
                } catch (Exception e) {
                    e.printStackTrace();
                }
            }
        },"thread"+i).start();
    }

    Thread.sleep(Integer.MAX_VALUE);
}

测试结果如下:
在这里插入图片描述

基于Zookeeper实现SnowFlakeID算法
Twitter(推特)的SnowFlake算法是一种著名的分布式服务器用户ID生成算法。SnowFlake算法所生成的ID是一个64bit的长整型数字,这个64bit被划分成四个部分,其中后面三个部分分别表示时间戳、工作机器ID、序列号。
在这里插入图片描述
SnowFlakeID的四个部分,具体介绍如下:
1)第一位:占用1 bit,其值始终是0,没有实际作用
2)时间戳:占用41 bit,精确到毫秒,总共可以容纳约69年的时间
3)工作机器id:占用10 bit,最多可以容纳1024个节点
4)序列号:占用12 bit。这个值意味着,在同一毫秒同一节点上,可以生成4096个id,这已经是相当可观了

在工作节点达到1024顶配的场景下,SnowFlake算法在同一毫秒最多可以生成的ID数量为: 1024 * 4096 =4194304,在绝大多数并发场景下都是够用的。

SnowFlake算法的优点:

  • 生成ID时不依赖于数据库,完全在内存生成,高性能和高可用性
  • 容量大,每秒可生成几百万个ID
  • ID呈趋势递增,后续插入数据库的索引树时,性能较高

SnowFlake算法的缺点:

  • 依赖于系统时钟的一致性,如果某台机器的系统时钟回拨了,有可能造成ID冲突,或者ID乱序
  • 在启动之前,如果这台机器的系统时间回拨过,那么有可能出现ID重复的危险

基于ZK实现雪花算法的代码示例如下:(体现在第三部分机器id上)

public class SnowflakeIdGenerator {

    /**
     * 单例
     */
    public static SnowflakeIdGenerator instance =
            new SnowflakeIdGenerator();


    /**
     * 初始化单例
     *
     * @param workerId 节点Id,最大8091
     * @return the 单例
     */
    public synchronized void init(long workerId) {
        if (workerId > MAX_WORKER_ID) {
            // zk分配的workerId过大
            throw new IllegalArgumentException("woker Id wrong: " + workerId);
        }
        instance.workerId = workerId;
    }

    private SnowflakeIdGenerator() {

    }


    /**
     * 开始使用该算法的时间为: 2017-01-01 00:00:00
     */
    private static final long START_TIME = 1483200000000L;

    /**
     * worker id 的bit数,最多支持8192个节点
     */
    private static final int WORKER_ID_BITS = 13;

    /**
     * 序列号,支持单节点最高每毫秒的最大ID数1024
     */
    private final static int SEQUENCE_BITS = 10;

    /**
     * 最大的 worker id ,8091
     * -1 的补码(二进制全1)右移13位, 然后取反
     */
    private final static long MAX_WORKER_ID = ~(-1L << WORKER_ID_BITS);

    /**
     * 最大的序列号,1023
     * -1 的补码(二进制全1)右移10位, 然后取反
     */
    private final static long MAX_SEQUENCE = ~(-1L << SEQUENCE_BITS);

    /**
     * worker 节点编号的移位
     */
    private final static long WORKER_ID_SHIFT = SEQUENCE_BITS;

    /**
     * 时间戳的移位
     */
    private final static long TIMESTAMP_LEFT_SHIFT = WORKER_ID_BITS + SEQUENCE_BITS;

    /**
     * 该项目的worker 节点 id
     */
    private long workerId;

    /**
     * 上次生成ID的时间戳
     */
    private long lastTimestamp = -1L;

    /**
     * 当前毫秒生成的序列
     */
    private long sequence = 0L;

    /**
     * Next id long.
     *
     * @return the nextId
     */
    public Long nextId() {
        return generateId();
    }

    /**
     * 生成唯一id的具体实现
     */
    private synchronized long generateId() {
        long current = System.currentTimeMillis();

        if (current < lastTimestamp) {
            // 如果当前时间小于上一次ID生成的时间戳,说明系统时钟回退过,出现问题返回-1
            return -1;
        }

        if (current == lastTimestamp) {
            // 如果当前生成id的时间还是上次的时间,那么对sequence序列号进行+1
            sequence = (sequence + 1) & MAX_SEQUENCE;

            if (sequence == MAX_SEQUENCE) {
                // 当前毫秒生成的序列数已经大于最大值,那么阻塞到下一个毫秒再获取新的时间戳
                current = this.nextMs(lastTimestamp);
            }
        } else {
            // 当前的时间戳已经是下一个毫秒
            sequence = 0L;
        }

        // 更新上次生成id的时间戳
        lastTimestamp = current;

        // 进行移位操作生成int64的唯一ID

        //时间戳右移动23位
        long time = (current - START_TIME) << TIMESTAMP_LEFT_SHIFT;

        //workerId 右移动10位
        long workerId = this.workerId << WORKER_ID_SHIFT;

        return time | workerId | sequence;
    }

    /**
     * 阻塞到下一个毫秒
     */
    private long nextMs(long timeStamp) {
        long current = System.currentTimeMillis();
        while (current <= timeStamp) {
            current = System.currentTimeMillis();
        }
        return current;
    }
}

三、zookeeper实现分布式队列

常见的消息队列有:RabbitMQ,RocketMQ,Kafka等。Zookeeper作为一个分布式的小文件管理系统,同样能实现简单的队列功能。但是Zookeeper不适合大数据量存储,官方并不推荐作为队列使用,但由于实现简单,集群搭建较为便利,因此在一些吞吐量不高的小型系统中还是比较好用的。

3.1 设计思路

在这里插入图片描述

  1. 创建队列根节点:在Zookeeper中创建一个持久节点,用作队列的根节点。所有队列元素的节点将放在这个根节点下
  2. 实现入队操作:当需要将一个元素添加到队列时,可以在队列的根节点下创建一个临时有序节点。节点的数据可以包含队列元素的信息
  3. 实现出队操作:当需要从队列中取出一个元素时,可以执行以下操作:
    • 获取根节点下的所有子节点
    • 找到具有最小序号的子节点
    • 获取该节点的数据
    • 删除该节点
    • 返回节点的数据

代码示例如下:

/**
 * 入队
 * @param data
 * @throws Exception
 */
public void enqueue(String data) throws Exception {
    // 创建临时有序子节点
    zk.create(QUEUE_ROOT + "/queue-", data.getBytes(StandardCharsets.UTF_8),
            ZooDefs.Ids.OPEN_ACL_UNSAFE, CreateMode.EPHEMERAL_SEQUENTIAL);
}

/**
 * 出队
 * @return
 * @throws Exception
 */
public String dequeue() throws Exception {
    while (true) {
        List<String> children = zk.getChildren(QUEUE_ROOT, false);
        if (children.isEmpty()) {
            return null;
        }

        Collections.sort(children);

        for (String child : children) {
            String childPath = QUEUE_ROOT + "/" + child;
            try {
                byte[] data = zk.getData(childPath, false, null);
                zk.delete(childPath, -1);
                return new String(data, StandardCharsets.UTF_8);
            } catch (KeeperException.NoNodeException e) {
                // 节点已被其他消费者删除,尝试下一个节点
            }
        }
    }
}

3.2 使用Apache Curator实现分布式队列

Apache Curator是一个ZooKeeper客户端的封装库,提供了许多高级功能,包括分布式队列。

public class CuratorDistributedQueueDemo {
    private static final String QUEUE_ROOT = "/curator_distributed_queue";

    public static void main(String[] args) throws Exception {
        CuratorFramework client = CuratorFrameworkFactory.newClient("localhost:2181",
                new ExponentialBackoffRetry(1000, 3));
        client.start();

        // 定义队列序列化和反序列化
        QueueSerializer<String> serializer = new QueueSerializer<String>() {
            @Override
            public byte[] serialize(String item) {
                return item.getBytes();
            }

            @Override
            public String deserialize(byte[] bytes) {
                return new String(bytes);
            }
        };

        // 定义队列消费者
        QueueConsumer<String> consumer = new QueueConsumer<String>() {
            @Override
            public void consumeMessage(String message) throws Exception {
                System.out.println("消费消息: " + message);
            }

            @Override
            public void stateChanged(CuratorFramework curatorFramework, ConnectionState connectionState) {

            }
        };

        // 创建分布式队列
        DistributedQueue<String> queue = QueueBuilder.builder(client, consumer, serializer, QUEUE_ROOT)
                .buildQueue();
        queue.start();

        // 生产消息
        for (int i = 0; i < 5; i++) {
            String message = "Task-" + i;
            System.out.println("生产消息: " + message);
            queue.put(message);
            Thread.sleep(1000);
        }

        Thread.sleep(10000);
        queue.close();
        client.close();
    }
}

学习总结

  1. 学习了zookeeper客户端Curator的使用

感谢

感谢【51CTO博客】大佬【作者:ITKaven】的文章。《ZooKeeper : Curator框架之数据缓存与监听CuratorCache》

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1067648.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

SpringBoot集成MyBatis-Plus实现增删改查

背景 因为学习工具的时候经常需要用到jar包&#xff0c;需要增删查改接口&#xff0c;所以参考文章实现了基于mybatis-plus的增删查改接口。 参考文章&#xff1a;第二十二节:SpringBoot集成MyBatis-Plus实现增删改查 原文中的git地址不存在&#xff0c;本文内容是原文代码修…

基于Java的源代码共享平台设计与实现(源码+lw+ppt+部署文档+视频讲解等)

文章目录 前言系统功能具体实现截图论文参考详细视频演示为什么选择我自己的网站自己的小程序&#xff08;小蔡coding&#xff09;有保障的售后福利 代码参考源码获取 前言 &#x1f497;博主介绍&#xff1a;✌全网粉丝10W,CSDN特邀作者、博客专家、CSDN新星计划导师、全栈领域…

C#学习系列相关之多线程(二)----Thread类介绍

一、线程初始化 1.无参数 static void Main(string[] args) {//第一种写法Thread thread new Thread(test);thread.Start();//第二种写法 delegateThread thread1 new Thread(new ThreadStart(test));thread1.Start();//第三种写法 lambdaThread thread2 new Thread(() >…

R语言提交后台任务Rstudio\nohup

R语言后台任务用法 在进行大规模数据分析时&#xff0c;R语言提供了后台计算的功能&#xff0c;能将计算任务提交到后台执行&#xff0c;不影响当前窗口的活动&#xff0c;而且不会受到网络波动导致任务中断&#xff0c;提交后就不用盯着一直看&#xff0c;后台运行就可以下班。…

3.1.OpenCV技能树--二值图像处理--阈值

文章目录 1.文章内容来源2.阈值分割2.1.简单阈值分割2.1.1.简单阈值分割原理介绍2.1.2.简单阈值分割核心代码2.1.3.简单阈值分割效果展示 2.2.自适应阈值分割2.2.1.自适应阈值分割原理介绍2.2.2.自适应阈值分割核心代码2.2.3.自适应阈值分割效果展示 2.3.Otsu’s二值化/大津阈值…

指针拔尖1——(看完包会,不会来打我)

文章目录 前言&#xff1a;本章节涵盖——一、指针变量基础二、字符指针三、指针数组和数组指针拓展&#xff1a;数组名和&数组名的区别四、 指针传参总结 前言&#xff1a;本章节涵盖—— 1.指针变量基础知识 2.字符指针 3.数组指针 4.指针数组 5.指针传参 一、指针变量基…

I/O多路复用【Linux/网络】(C++实现select、poll和epoll服务器)

阅读前导&#xff1a; “I/O 多路复用”处于知识树中网络和操作系统的最后&#xff0c;因此本文默认读者有计算机网络和操作系统的基础。 1. 引入&#xff1a;C10K 问题 c10k 问题是指如何让一个服务器同时处理超过 10000 个客户端的连接&#xff0c;这是一个网络编程中的经…

人机环境系统智能需要新的逻辑和数学体系

人机环境系统智能需要一个新的逻辑体系&#xff0c;以应对复杂多变、高度动态和不确定性的实际应用场景。 传统逻辑体系主要基于精确的符号逻辑和精确的数学方法&#xff0c;适用于精确的、确定性的问题。但在人机环境系统智能领域&#xff0c;问题往往是复杂的、动态的&#x…

体验华为云CodeArts Check IDE插件国际化展示效果

作者&#xff1a; yd_257945187 原文链接&#xff1a;体验CodeArts Check IDE插件国际化展示效果-云社区-华为云 开发者自述 俗话说“工欲善其事&#xff0c;必先利其器”&#xff0c;把自己的IDE配置的即逼格又好看&#xff0c;是每个程序员的梦想&#xff01;IDE插件亦是如…

Leetcode hot 100之二叉树

目录 (反)序列化二叉树&#xff08;str<->tree&#xff09;&#xff1a;前序 前序遍历&#xff08;迭代&#xff09;/路径 stack.length 入栈&#xff1a;中右左 出栈&#xff1a;中左右 中序遍历&#xff08;迭代&#xff09; cur||stack.length 后序遍历&#x…

机器视觉工程师,公司设置奖金,真的为了奖励你吗?其实和你没关系

​据说某家大厂&#xff0c;超额罚款&#xff0c;有奖有罚很正常&#xff0c;但是我觉得你罚款代理商员工就不一样了&#xff0c;把代理商当成你的员工&#xff0c;我就觉得这些大厂的脑回路有问题。 有人从来没听说过项目奖金&#xff0c;更没有奖金。那么为什么设置奖金呢&a…

开源大模型正在“杀死”闭源?

点击关注 文丨郝 鑫&#xff0c;编丨刘雨琦 “OpenAI不足为惧&#xff0c;开源会慢慢赶上来。” 彼时Hugging Face创始人Clem Delangue的一句预言&#xff0c;正在迅速成为现实。 ChatGPT横空出世7个多月后&#xff0c;7月19日&#xff0c;Llama 2宣布开源&#xff0c;并且可…

OpenCV实现求解单目相机位姿

单目相机通过对极约束来求解相机运动的位姿。参考了ORBSLAM中单目实现的代码&#xff0c;这里用opencv来实现最简单的位姿估计. mLeftImg cv::imread(lImg, cv::IMREAD_GRAYSCALE); mRightImg cv::imread(rImg, cv::IMREAD_GRAYSCALE); cv::Ptr<ORB> OrbLeftExtractor …

No169.精选前端面试题,享受每天的挑战和学习

🤍 前端开发工程师(主业)、技术博主(副业)、已过CET6 🍨 阿珊和她的猫_CSDN个人主页 🕠 牛客高级专题作者、在牛客打造高质量专栏《前端面试必备》 🍚 蓝桥云课签约作者、已在蓝桥云课上架的前后端实战课程《Vue.js 和 Egg.js 开发企业级健康管理项目》、《带你从入…

Neo4j深度学习

Neo4j的简介 Neo4j是用Java实现的开源NoSQL图数据库。从2003年开始开发&#xff0c;2007年正式发布第一版&#xff0c;其源码托管于GitHtb。Neo4j作为图数据库中的代表产品&#xff0c;已经在众多的行业项目中进行了应用&#xff0c;如&#xff1a;网络管理、软件分析、组织和…

Android Camera FW 里的requestId和frameId

安卓相机frameworks里面经常出现requestId和frameId&#xff0c;最近简单看了一下代码&#xff0c;发现相关流程还是很复杂的&#xff0c;总结来看requestId 就是上层&#xff08;java&#xff09;发送的repeating(capture)请求的id&#xff0c;是从0开始递增的。 这是CameraD…

Linux基本指令(下)——“Linux”

各位CSDN的uu们好呀&#xff0c;今天&#xff0c;小雅兰的内容仍然是Linux中的基本指令啦&#xff0c;下面&#xff0c;让我们进入Linux的世界吧&#xff01;&#xff01;&#xff01; Cal指令 find指令&#xff1a;&#xff08;灰常重要&#xff09; -name grep指令 zip/un…

论文阅读--Cell-free massive MIMO versus small cells

无蜂窝大规模MIMO与小蜂窝网络 论文信息 Ngo H Q, Ashikhmin A, Yang H, et al. Cell-free massive MIMO versus small cells[J]. IEEE Transactions on Wireless Communications, 2017, 16(3): 1834-1850. 无蜂窝大规模MIMO中没有小区或者小区边界的界定&#xff0c;所有接入…

2023Node.js零基础教程(小白友好型),nodejs新手到高手,(二)NodeJS入门——buffer模块、计算机基础、fs模块、path模块

就算步子乱了又如何&#xff0c;接着跳下去就好了。——《闻香识女人》 开始 011_Buffer_介绍与创建 hello&#xff0c;大家好&#xff0c;我们来学习一下buffer。首先来看看 buffer 是一个什么东东。buffer&#xff0c;中文译为缓冲区&#xff0c;是一个类似于数组的对象&am…

关于分布式操作系统

关于分布式操作系统&#xff0c;如果你不太理解的话&#xff0c;可以把它看成是传统操作系统延展。二者的区别在于&#xff0c;传统的操作系统都是单机系统&#xff0c;只能在一台计算机上运行&#xff0c;而分布式操作系统是多机系统&#xff0c;每台计算机都是系统中的一个计…