OpenCV实现求解单目相机位姿

news2025/1/12 16:13:28

        单目相机通过对极约束来求解相机运动的位姿。参考了ORBSLAM中单目实现的代码,这里用opencv来实现最简单的位姿估计.

 


mLeftImg = cv::imread(lImg, cv::IMREAD_GRAYSCALE);
mRightImg = cv::imread(rImg, cv::IMREAD_GRAYSCALE);
cv::Ptr<ORB> OrbLeftExtractor = cv::ORB::create();
cv::Ptr<ORB> OrbRightExtractor = cv::ORB::create();

OrbLeftExtractor->detectAndCompute(mLeftImg, noArray(), mLeftKps, mLeftDes);
OrbRightExtractor->detectAndCompute(mRightImg, noArray(), mRightKps, mRightDes);
Ptr<DescriptorMatcher> matcher = DescriptorMatcher::create(DescriptorMatcher::BRUTEFORCE_HAMMING);
matcher->match(mLeftDes, mRightDes, mMatches);

 首先通过ORB特征提取,获取两幅图像的匹配度,我将其连线出来的效果:

 

RANSAC的算法原理可以google,很容易理解。先看看ORBSLAM中的实现:

bool Initializer::Initialize(const Frame &CurrentFrame, const vector<int> &vMatches12, cv::Mat &R21, cv::Mat &t21,
                             vector<cv::Point3f> &vP3D, vector<bool> &vbTriangulated)
{
    // Fill structures with current keypoints and matches with reference frame
    // Reference Frame: 1, Current Frame: 2
    // Frame2 特征点
    mvKeys2 = CurrentFrame.mvKeysUn;

    // mvMatches12记录匹配上的特征点对
    mvMatches12.clear();
    mvMatches12.reserve(mvKeys2.size());
    // mvbMatched1记录每个特征点是否有匹配的特征点,
    // 这个变量后面没有用到,后面只关心匹配上的特征点
    mvbMatched1.resize(mvKeys1.size());

    // 步骤1:组织特征点对
    for(size_t i=0, iend=vMatches12.size();i<iend; i++)
    {
        if(vMatches12[i]>=0)
        {
            mvMatches12.push_back(make_pair(i,vMatches12[i]));
            mvbMatched1[i]=true;
        }
        else
            mvbMatched1[i]=false;
    }

    // 匹配上的特征点的个数
    const int N = mvMatches12.size();

    // Indices for minimum set selection
    // 新建一个容器vAllIndices,生成0到N-1的数作为特征点的索引
    vector<size_t> vAllIndices;
    vAllIndices.reserve(N);
    vector<size_t> vAvailableIndices;

    for(int i=0; i<N; i++)
    {
        vAllIndices.push_back(i);
    }

    // Generate sets of 8 points for each RANSAC iteration
    // **步骤2:在所有匹配特征点对中随机选择8对匹配特征点为一组,共选择mMaxIterations组 **
     // 用于FindHomography和FindFundamental求解
    // mMaxIterations:200
    mvSets = vector< vector<size_t> >(mMaxIterations,vector<size_t>(8,0));

    DUtils::Random::SeedRandOnce(0);

    for(int it=0; it<mMaxIterations; it++)
    {
        vAvailableIndices = vAllIndices;

        // Select a minimum set
        for(size_t j=0; j<8; j++)
        {
            // 产生0到N-1的随机数
            int randi = DUtils::Random::RandomInt(0,vAvailableIndices.size()-1);
            // idx表示哪一个索引对应的特征点被选中
            int idx = vAvailableIndices[randi];

            mvSets[it][j] = idx;

            // randi对应的索引已经被选过了,从容器中删除
            // randi对应的索引用最后一个元素替换,并删掉最后一个元素
            vAvailableIndices[randi] = vAvailableIndices.back();
            vAvailableIndices.pop_back();
        }
    }

    // Launch threads to compute in parallel a fundamental matrix and a homography
    // 步骤3:调用多线程分别用于计算fundamental matrix和homography
    vector<bool> vbMatchesInliersH, vbMatchesInliersF;
    float SH, SF; // score for H and F
    cv::Mat H, F; // H and F

    // ref是引用的功能:http://en.cppreference.com/w/cpp/utility/functional/ref
    // 计算homograpy并打分
    thread threadH(&Initializer::FindHomography,this,ref(vbMatchesInliersH), ref(SH), ref(H));
    // 计算fundamental matrix并打分
    thread threadF(&Initializer::FindFundamental,this,ref(vbMatchesInliersF), ref(SF), ref(F));

    // Wait until both threads have finished
    threadH.join();
    threadF.join();

    // Compute ratio of scores
    // 步骤4:计算得分比例,选取某个模型
    float RH = SH/(SH+SF);

    // Try to reconstruct from homography or fundamental depending on the ratio (0.40-0.45)
    // 步骤5:从H矩阵或F矩阵中恢复R,t
    if(RH>0.40)
        return ReconstructH(vbMatchesInliersH,H,mK,R21,t21,vP3D,vbTriangulated,1.0,50);
    else //if(pF_HF>0.6)
        return ReconstructF(vbMatchesInliersF,F,mK,R21,t21,vP3D,vbTriangulated,1.0,50);

    return false;
}

 

orbslam首先是从配对特征中随机迭代mMaxIterations次,每一次都从配对点中选出8个点用来计算homography和fundamental矩阵,都是用SVD来计算的,如下:

FindFundamental:


void Initializer::FindFundamental(vector<bool> &vbMatchesInliers, float &score, cv::Mat &F21)
{
    // Number of putative matches
    const int N = vbMatchesInliers.size();

    // 分别得到归一化的坐标P1和P2
    vector<cv::Point2f> vPn1, vPn2;
    cv::Mat T1, T2;
    Normalize(mvKeys1,vPn1, T1);
    Normalize(mvKeys2,vPn2, T2);
    cv::Mat T2t = T2.t();

    // Best Results variables
    score = 0.0;
    vbMatchesInliers = vector<bool>(N,false);

    // Iteration variables
    vector<cv::Point2f> vPn1i(8);
    vector<cv::Point2f> vPn2i(8);
    cv::Mat F21i;
    vector<bool> vbCurrentInliers(N,false);
    float currentScore;

    // Perform all RANSAC iterations and save the solution with highest score
    for(int it=0; it<mMaxIterations; it++)
    {
        // Select a minimum set
        for(int j=0; j<8; j++)
        {
            int idx = mvSets[it][j];

            vPn1i[j] = vPn1[mvMatches12[idx].first];
            vPn2i[j] = vPn2[mvMatches12[idx].second];
        }

        cv::Mat Fn = ComputeF21(vPn1i,vPn2i);

        F21i = T2t*Fn*T1;  //解除归一化

        // 利用重投影误差为当次RANSAC的结果评分
        currentScore = CheckFundamental(F21i, vbCurrentInliers, mSigma);

        if(currentScore>score)
        {
            F21 = F21i.clone();
            vbMatchesInliers = vbCurrentInliers;
            score = currentScore;
        }
    }
}

通过ComputeF21计算本质矩阵,

cv::Mat Initializer::ComputeF21(const vector<cv::Point2f> &vP1,const vector<cv::Point2f> &vP2)
{
    const int N = vP1.size();

    cv::Mat A(N,9,CV_32F); // N*9

    for(int i=0; i<N; i++)
    {
        const float u1 = vP1[i].x;
        const float v1 = vP1[i].y;
        const float u2 = vP2[i].x;
        const float v2 = vP2[i].y;

        A.at<float>(i,0) = u2*u1;
        A.at<float>(i,1) = u2*v1;
        A.at<float>(i,2) = u2;
        A.at<float>(i,3) = v2*u1;
        A.at<float>(i,4) = v2*v1;
        A.at<float>(i,5) = v2;
        A.at<float>(i,6) = u1;
        A.at<float>(i,7) = v1;
        A.at<float>(i,8) = 1;
    }

    cv::Mat u,w,vt;

    cv::SVDecomp(A,w,u,vt,cv::SVD::MODIFY_A | cv::SVD::FULL_UV);

    cv::Mat Fpre = vt.row(8).reshape(0, 3); // v的最后一列

    cv::SVDecomp(Fpre,w,u,vt,cv::SVD::MODIFY_A | cv::SVD::FULL_UV);

    w.at<float>(2)=0; // 秩2约束,将第3个奇异值设为0 //强迫约束

    return  u*cv::Mat::diag(w)*vt;
}

 

看到用的是线性SVD解。

通过重投影来评估本质矩阵的好坏。


float Initializer::CheckFundamental(const cv::Mat &F21, vector<bool> &vbMatchesInliers, float sigma)
{
    const int N = mvMatches12.size();

    const float f11 = F21.at<float>(0,0);
    const float f12 = F21.at<float>(0,1);
    const float f13 = F21.at<float>(0,2);
    const float f21 = F21.at<float>(1,0);
    const float f22 = F21.at<float>(1,1);
    const float f23 = F21.at<float>(1,2);
    const float f31 = F21.at<float>(2,0);
    const float f32 = F21.at<float>(2,1);
    const float f33 = F21.at<float>(2,2);

    vbMatchesInliers.resize(N);

    float score = 0;

    // 基于卡方检验计算出的阈值(假设测量有一个像素的偏差)
    const float th = 3.841;  //置信度95%,自由度1
    const float thScore = 5.991;//置信度95%,自由度2

    const float invSigmaSquare = 1.0/(sigma*sigma);

    for(int i=0; i<N; i++)
    {
        bool bIn = true;

        const cv::KeyPoint &kp1 = mvKeys1[mvMatches12[i].first];
        const cv::KeyPoint &kp2 = mvKeys2[mvMatches12[i].second];

        const float u1 = kp1.pt.x;
        const float v1 = kp1.pt.y;
        const float u2 = kp2.pt.x;
        const float v2 = kp2.pt.y;

        // Reprojection error in second image
        // l2=F21x1=(a2,b2,c2)
        // F21x1可以算出x1在图像中x2对应的线l
        const float a2 = f11*u1+f12*v1+f13;
        const float b2 = f21*u1+f22*v1+f23;
        const float c2 = f31*u1+f32*v1+f33;

        // x2应该在l这条线上:x2点乘l = 0 
        const float num2 = a2*u2+b2*v2+c2;

        const float squareDist1 = num2*num2/(a2*a2+b2*b2); // 点到线的几何距离 的平方

        const float chiSquare1 = squareDist1*invSigmaSquare;

        if(chiSquare1>th)
            bIn = false;
        else
            score += thScore - chiSquare1;

        // Reprojection error in second image
        // l1 =x2tF21=(a1,b1,c1)

        const float a1 = f11*u2+f21*v2+f31;
        const float b1 = f12*u2+f22*v2+f32;
        const float c1 = f13*u2+f23*v2+f33;

        const float num1 = a1*u1+b1*v1+c1;

        const float squareDist2 = num1*num1/(a1*a1+b1*b1);

        const float chiSquare2 = squareDist2*invSigmaSquare;

        if(chiSquare2>th)
            bIn = false;
        else
            score += thScore - chiSquare2;

        if(bIn)
            vbMatchesInliers[i]=true;
        else
            vbMatchesInliers[i]=false;
    }

    return score;
}

最后回到Initializer::Initialize,将单映矩阵和本质矩阵的得分进行比对,选出最合适的,就求出RT了。

ORBSLAM2同时考虑了单应和本质,SLAM14讲中也说到,工程实践中一般都讲两者都计算出来选择较好的,不过效率上会影响比较多感觉。

opencv实现就比较简单了,思路和上面的类似,只是现在只考虑本质矩阵。在之前获取到特征点之后,

/*add ransac method for accurate match*/
          vector<Point2f> vLeftP2f;
          vector<Point2f> vRightP2f;
          for(auto& each:mMatches)
          {
              vLeftP2f.push_back(mLeftKps[each.queryIdx].pt);
              vRightP2f.push_back(mRightKps[each.trainIdx].pt);
          }
          vector<unsigned char> vTemp(vLeftP2f.size());
            /*计算本质矩阵,用RANSAC*/
          Mat transM = findEssentialMat(vLeftP2f, vRightP2f, cameraMatrix,RANSAC, 0.999, 1.0, vTemp);
          vector<DMatch> optimizeM;
          for(int i = 0; i < vTemp.size(); i++)
          {
             if(vTemp[i])
              {
                  optimizeM.push_back(mMatches[i]);
              }
          }
          mMatches.swap(optimizeM);
          cout << transM<<endl;
         Mat optimizeP;
          drawMatches(mLeftImg, mLeftKps, mRightImg, mRightKps, mMatches, optimizeP);
          imshow("output5", optimizeP);

看下结果:

图片

 确实效果好多了,匹配准确度比之前的要好,之后我们就可以通过这个本质矩阵来计算RT了。

Mat R, t, mask;
recoverPose(transM, vLeftP2f, vRightP2f, cameraMatrix, R, t, mask);

一个接口搞定。最后我们可以通过验证对极约束,来看看求出的位姿是否准确。

定义检查函数:

Mat cameraMatrix = (Mat_<double>(3,3) << CAM_FX, 0.0, CAM_CX, 0.0, CAM_FY, CAM_CY, 0.0, 0.0, 1.0);
 
  bool epipolarConstraintCheck(Mat CameraK, vector<Point2f>& p1s, vector<Point2f>& p2s, Mat R, Mat t)
  {
      for(int i = 0; i < p1s.size(); i++)
      {
          Mat y1 = (Mat_<double>(3,1)<<p1s[i].x, p1s[i].y, 1);
         Mat y2 = (Mat_<double>(3,1)<<p2s[i].x, p2s[i].y, 1);
          //T 的凡对称矩阵
          Mat t_x = (Mat_<double>(3,3)<< 0, -t.at<double>(2,0), t.at<double>(1,0),
                    t.at<double>(2,0), 0, -t.at<double>(0,0),
                    -t.at<double>(1,0),t.at<double>(0,0),0);
          Mat d = y2.t() * cameraMatrix.inv().t() * t_x * R * cameraMatrix.inv()* y1;
          cout<<"epipolar constraint = "<<d<<endl;
      }
  }

最后可以看到结果都是趋近于0的,证明位姿还是比较准确的。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1067622.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

No169.精选前端面试题,享受每天的挑战和学习

🤍 前端开发工程师(主业)、技术博主(副业)、已过CET6 🍨 阿珊和她的猫_CSDN个人主页 🕠 牛客高级专题作者、在牛客打造高质量专栏《前端面试必备》 🍚 蓝桥云课签约作者、已在蓝桥云课上架的前后端实战课程《Vue.js 和 Egg.js 开发企业级健康管理项目》、《带你从入…

Neo4j深度学习

Neo4j的简介 Neo4j是用Java实现的开源NoSQL图数据库。从2003年开始开发&#xff0c;2007年正式发布第一版&#xff0c;其源码托管于GitHtb。Neo4j作为图数据库中的代表产品&#xff0c;已经在众多的行业项目中进行了应用&#xff0c;如&#xff1a;网络管理、软件分析、组织和…

Android Camera FW 里的requestId和frameId

安卓相机frameworks里面经常出现requestId和frameId&#xff0c;最近简单看了一下代码&#xff0c;发现相关流程还是很复杂的&#xff0c;总结来看requestId 就是上层&#xff08;java&#xff09;发送的repeating(capture)请求的id&#xff0c;是从0开始递增的。 这是CameraD…

Linux基本指令(下)——“Linux”

各位CSDN的uu们好呀&#xff0c;今天&#xff0c;小雅兰的内容仍然是Linux中的基本指令啦&#xff0c;下面&#xff0c;让我们进入Linux的世界吧&#xff01;&#xff01;&#xff01; Cal指令 find指令&#xff1a;&#xff08;灰常重要&#xff09; -name grep指令 zip/un…

论文阅读--Cell-free massive MIMO versus small cells

无蜂窝大规模MIMO与小蜂窝网络 论文信息 Ngo H Q, Ashikhmin A, Yang H, et al. Cell-free massive MIMO versus small cells[J]. IEEE Transactions on Wireless Communications, 2017, 16(3): 1834-1850. 无蜂窝大规模MIMO中没有小区或者小区边界的界定&#xff0c;所有接入…

2023Node.js零基础教程(小白友好型),nodejs新手到高手,(二)NodeJS入门——buffer模块、计算机基础、fs模块、path模块

就算步子乱了又如何&#xff0c;接着跳下去就好了。——《闻香识女人》 开始 011_Buffer_介绍与创建 hello&#xff0c;大家好&#xff0c;我们来学习一下buffer。首先来看看 buffer 是一个什么东东。buffer&#xff0c;中文译为缓冲区&#xff0c;是一个类似于数组的对象&am…

关于分布式操作系统

关于分布式操作系统&#xff0c;如果你不太理解的话&#xff0c;可以把它看成是传统操作系统延展。二者的区别在于&#xff0c;传统的操作系统都是单机系统&#xff0c;只能在一台计算机上运行&#xff0c;而分布式操作系统是多机系统&#xff0c;每台计算机都是系统中的一个计…

从抽象类和普通类的区别中体会设计模式

普通类可以实例化&#xff0c;抽象类型只能去继承&#xff0c;抽象类用于定义一些基本的行为和属性&#xff0c;具体的行为由子类去完成。我们先来看下下边的代码&#xff1a; 我们也来顺便总结一下普通类和抽象类的区别&#xff1a; 实例化&#xff1a;普通类可以直接实例化&…

架构师选择题--信息安全技术(系统安全)

架构师选择题--信息安全技术 真题 很少超纲 真题 b c d d b a d a d a Kergberos和数字证书是类似的协议 向TGS申请票据 C PGP&#xff1a;安全电子邮件传输协议 b c b 使用发送方是私钥加密摘要–发送方不可抵赖 加密&#xff1a;保密性 信息摘要&#xff1a;完整性 数…

(面试)谈谈我对C++面向对象特性的理解

&#x1f4af; 博客内容&#xff1a;C读取一行内个数不定的整数的方式 &#x1f600; 作  者&#xff1a;陈大大陈 &#x1f680; 个人简介&#xff1a;一个正在努力学技术的准前端&#xff0c;专注基础和实战分享 &#xff0c;欢迎私信&#xff01; &#x1f496; 欢迎大家&…

等精度频率计verilog,quartus仿真视频,原理图,代码

名称&#xff1a;等精度频率计设计verilog quartus仿真 软件&#xff1a;Quartus 语言&#xff1a;Verilog 要求&#xff1a; A&#xff1a;测量范围信号:方波 频率:100Hz~1MHz; B&#xff1a;测试误差:<0.1%(全量程) C&#xff1a;时钟频率:50kHz D&#xff1a;预闸…

UniApp项目实践HelloUni

效果镇楼 书接上文&#xff0c;继续写入内容&#xff1b;哪怕一句话代码呢&#xff0c;今天的一小步&#xff0c;将来的一大步 <template><div class"box"><h1>uniapp <span class"row">零基础</span>入门和快速进阶课程&l…

​​金TECH频道|最近备受关注的应用重构,到底怎么做?

“金TECH频道”旨在为您分享中电金信助力行业数字化转型的最新产品业务动态、技术观点洞察与应用实践案例。让我们在这里&#xff0c;与行业发展同频共振&#xff0c;共筑数字新基石。 ​​

Python接口自动化测试 —— Selenium+pytest+数据驱动

主流自动化框架 selenium &#xff1a;web端自动化框架 &#xff0c;&#xff08;行业里面最核心的框架&#xff09; appium &#xff1a;手机app端框架 requests &#xff1a;接口测试 selenium 工具类封装 selenium提供了很多方法供我们去完成网页元素的操作&#xff0c; …

学习记忆——数学篇——案例——算术——整除特点

理解记忆法 对于数的整除特征大家都比较熟悉&#xff1a;比如4看后两位&#xff08;因为100是4的倍数&#xff09;&#xff0c;8看后三位&#xff08;因为1000是8的倍数&#xff09;&#xff0c;5末尾是0或5&#xff0c;3与9看各位数字和等等&#xff0c;今天重点研究一下3,9,…

cpp primer笔记100-拷贝控制

如果拷贝构造函数如果传递的参数不是引用类型&#xff0c;则调用拷贝永远不成功&#xff0c;因为如果调用了拷贝构造函数&#xff0c;则必须拷贝它的实参&#xff0c;但是为了拷贝实参&#xff0c;我们又需要调用拷贝构造函数&#xff0c;如此循环。 如果想要删除默认构造函数…

【浅谈IDE宏指令录制】为加速chrome扩展国际化,我从vscode回归notepad++

vscode 的宏录制功能 —— 差强人意 安装vscode开源扩展&#xff1a;https://github.com/C10udburst/macros-vscode.git 可开启类似于 notetepad 的宏录制与回放功能&#xff01;比如录制字符串替换&#xff0c;能记录操作之时&#xff0c;替换对话框中的文本&#xff01;&am…

Mac上安装Java的JDK多版本管理软件jEnv

JDK的多版本管理软件主要有以下三种&#xff1a; jEnv jEnv 是一个命令行工具&#xff0c;可以帮助您管理和切换不同版本的 Java 环境。它可以让您在不同的项目之间轻松切换 Java 版本。您可以使用 jenv global 命令设置全局 Java 版本&#xff0c;也可以使用 jenv local 命令…

【力扣】42. 接雨水

这道题我卡了差不多1个小时&#xff0c;不是不会做&#xff0c;是不知道怎么能用栈来实现&#xff0c;后面看了一个博主的视频&#xff0c;豁然开朗&#xff0c;我主要的纠结点在于当指针指到7的时候&#xff0c;我计算出4到7的水块是2&#xff0c;但实际上是0&#xff0c;因为…

打造完美家庭空间,让生活更加舒适

在现代繁忙的都市生活中&#xff0c;家是人们温暖而舒适的避风港。而如何打造一个恰到好处的家庭空间&#xff0c;成为了许多人心中的追求。今天&#xff0c;就让我们来探索一些空间布局方案&#xff0c;为您的家庭营造一个完美融合功能与美感的舒适空间。 &#x1f3e0;&…