基于SVM+TensorFlow+Django的酒店评论打分智能推荐系统——机器学习算法应用(含python工程源码)+数据集+模型(一)

news2024/11/24 18:29:10

目录

  • 前言
  • 总体设计
    • 系统整体结构图
    • 系统流程图
  • 运行环境
    • Python环境
    • TensorFlow 环境
      • 方法一
      • 方法二
    • 安装其他模块
    • 安装MySQL 数据库
  • 模块实现
    • 1. 数据预处理
      • 1)数据整合
      • 2)文本清洗
      • 3)文本分词
  • 相关其它博客
  • 工程源代码下载
  • 其它资料下载


在这里插入图片描述

前言

本项目以支持向量机(SVM)技术为核心,利用酒店评论数据集进行了情感分析模型的训练。通过使用Word2Vec生成词向量,该项目实现了一个打分推荐系统,其中服务器端提供数据,而客户端则查询数据。

首先,项目使用了酒店评论数据集,这些评论包括了来自不同用户的对酒店的评价。这些评论被用来训练情感分析模型,该模型能够分析文本并确定评论的情感极性,即正面、负面或中性。

其次,项目使用Word2Vec技术,将文本数据转换为词向量表示。这些词向量捕捉了不同词汇之间的语义关系,从而提高了文本分析的效果。这些词向量可以用于训练模型以进行情感分析。

在服务器端,项目提供了处理和存储酒店评论数据的功能。这意味着评论数据可以在服务器上进行管理、存储和更新。

在客户端,用户可以查询酒店评论数据,并获得关于特定酒店的情感分析结果。例如,用户可以输入酒店名称或位置,并获取该酒店的评论以及评论的情感分数,这有助于用户更好地了解其他人对酒店的评价。

总的来说,本项目基于SVM技术和Word2Vec词向量,提供了一个针对酒店评论情感的分析和打分推荐系统。这个系统可以帮助用户更好地了解酒店的口碑和评价,从而做出更明智的决策。

总体设计

本部分包括系统整体结构图和系统流程图。

系统整体结构图

系统整体结构如图所示。

在这里插入图片描述

系统流程图

系统流程如图所示。

在这里插入图片描述

运行环境

本部分包括Python环境、TensorFlow环境、 安装模块、MySQL数据库。

Python环境

需要Python 3.6及以上配置,在Windows环境下推荐下载Anaconda完成Python所需环境的配置,下载地址为https://www.anaconda.com/,也可下载虚拟机在Linux环境下运行代码。

鼠标右击“我的电脑”,单击“属性”,选择高级系统设置。单击“环境变量”,找到系统变量中的Path,单击“编辑”然后新建,将Python解释器所在路径粘贴并确定。

TensorFlow 环境

安装方法如下:

方法一

打开Anaconda Prompt,输入清华仓库镜像。

conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config -set show_channel_urls yes

创建Python 3.6的环境,名称为TensorFlow,此时Python版本和后面TensorFlow的版本有匹配问题,此步选择Python 3.x。

conda create -n tensorflow python=3.6

有需要确认的地方,都输入y。在Anaconda Prompt中激活TensorFlow环境:

conda activate tensorflow

安装CPU版本的TensorFlow:

pip install -upgrade --ignore -installed tensorflow

测试代码如下:

import tensorflow as tf
hello = tf.constant( 'Hello, TensorFlow! ')
sess = tf.Session()
print sess.run(hello)
# 输出 b'Hello! TensorFlow'

安装完毕。

方法二

打开Anaconda Navigator,进入Environments 单击Create,在弹出的对话框中输入TensorFlow,选择合适的Python版本,创建好TensorFlow环境,然后进入TensorFlow环境,单击Not installed在搜索框内寻找需要用到的包。例如,TensorFlow,在右下方选择apply,测试是否安装成功。在Jupyter Notebook编辑器中输入以下代码:

import tensorflow as tf
hello = tf.constant( 'Hello, TensorFlow! ')
sess = tf.Session()
print sess.run(hello)
# 输出 b'Hello! TensorFlow'

能够输出hello TensorFlow,说明安装成功。

安装其他模块

在anaconda prompt中使用命令行切换到TensorFlow环境:

activate tensorflow

安装Scikit-learn模块:

pip install scikit-learn -i https://pypi.tuna.tsinghua.edu.cn/simple

安装jieba模块:

pip install jieba -i https://pypi.tuna.tsinghua.edu.cn/simple

安装gensim模块:

pip install gensim -i https://pypi.tuna.tsinghua.edu.cn/simple

安装Django模块:
下载并解压Django,和Python安装在同一个根目录,进入Django目录,执行:

python setup.py install

Django被安装到Python的Lib下site packages。将这些目录添加到系统环境变量中: C:\Python33\Lib\site packages\django; C:\Python33\Scripts,使用Django的django -admin.py命令新建工程。

安装MySQL 数据库

下载MySQL安装并配置。在计算机高级属性的系统变量中写好MySQL所在位置,方便用命令行操作MySQL,在服务里启动数据库服务,登录数据库:

mysql -u root -P

创建数据库grades:

CREATE DATABASE grades;

在数据库里创建表单:

在这里插入图片描述

模块实现

本项目包括3个模块:数据预处理、模型训练及保存、模型测试,下面分别给出各模块的功能介绍及相关代码。

1. 数据预处理

数据集下载链接为https://www.aitechclub.com/data-detail?data_id=29,停用词典下载链接为http://www.datasoldier.net/archives/636。如果链接失效,可从本博客对应的工程源码中的模型训练目录下的data目录下载相关数据集。

1)数据整合

原始数据包含在两个文件夹中,每个文件夹各有2000条消极和2000条积极的评论,因此,需要先做评论数据整合,将两个评论放在.txt文档中。

#读取每一条文字内容
def getContent(fullname):
    f = open(fullname,'rb+')
    content = f.readlines()
    f.close()
    return content
    #将积极和消极评论分别写入两个文件中
for parent,dirnames,filenames in os.walk(rootdir): 
            for filename in filenames:
            #使用getContent()函数,得到每条评论的具体内容
                content = getContent(rootdir + '\\' + filename)
                output.writelines(content)
                i = i+1
        output.close()

2)文本清洗

进行文本特殊符号(如表情)的清理删除。

#文本清洗
def clearTxt(line):
        if line != '':
         #去掉末尾的空格 
line = line.strip()
          pun_num = string.punctuation + string.digits
          intab = pun_num
          outtab = " "*len(pun_num)
          #去除所有标点和数字
          trantab = str.maketrans(intab, outtab)
          line = line.translate(trantab)
          #去除文本中的英文和数字
          line = re.sub("[a-zA-Z0-9]", "", line)
          #去除文本中的中文符号和英文符号
             line = re.sub("[\s+\.\!\/_,$%^*(+\"\';:“”.]+|[+——!==°【】,÷。??、 ~@#¥%……&*()]+", "", line)
        return line

3)文本分词

将分词后的文本转化为以高维向量表示的方式,这里使用微信中文语料训练的开源模型。

#进行文本分词
#引入jieba模块
import jieba
import jieba.analyse
import codecs,sys,string,re
    #文本分词
def sent2word(line):
      segList = jieba.cut(line,cut_all=False)    
      segSentence = ''
    for word in segList:
        if word != '\t':
            segSentence += word + " "
    return segSentence.strip()
#删除分词后文本里的停用词
def delstopword(line,stopkey):
    wordList = line.split(' ')          
    sentence = ''
    for word in wordList:
        word = word.strip()
 #spotkey是在主函数中获取的评论行数
#逐行删除,不破坏词所在每行的位置,始终保持每条评论的间隔
        if word not in stopkey:
            if word != '\t':
                sentence += word + " "
    return sentence.strip()
#载入模型
fdir = 'E:\word2vec\word2vec_from_weixin\word2vec'
inp = fdir + '\word2vec_wx'
model = gensim.models.Word2Vec.load(inp)
#把词语转化为词向量的函数
def getWordVecs(wordList,model):
    vecs = []
    for word in wordList:
        word = word.replace('\n','')
        #print word
        try:
            vecs.append(model[word])
        except KeyError:
            continue
    return np.array(vecs, dtype='float')
#转化为词向量
def buildVecs(filename,model):
    fileVecs = []
    with codecs.open(filename, 'rb', encoding='utf-8') as contents:
        for line in contents:
            wordList = line.split(' ')
           #调用getwordVecs()函数,获取每条评论的词向量
            vecs = getWordVecs(wordList,model)
            if len(vecs) >0:
                vecsArray = sum(np.array(vecs))/len(vecs) 
                fileVecs.append(vecsArray)
    return fileVecs
#建立词向量表,其中积极的首列填充为1,消极的首列填充为0
    Y = np.concatenate((np.ones(len(posInput)), np.zeros(len(negInput))))
    X = posInput[:]
    for neg in negInput:
        X.append(neg)
    X = np.array(X)

相关其它博客

基于SVM+TensorFlow+Django的酒店评论打分智能推荐系统——机器学习算法应用(含python工程源码)+数据集+模型(二)

基于SVM+TensorFlow+Django的酒店评论打分智能推荐系统——机器学习算法应用(含python工程源码)+数据集+模型(三)

工程源代码下载

详见本人博客资源下载页


其它资料下载

如果大家想继续了解人工智能相关学习路线和知识体系,欢迎大家翻阅我的另外一篇博客《重磅 | 完备的人工智能AI 学习——基础知识学习路线,所有资料免关注免套路直接网盘下载》
这篇博客参考了Github知名开源平台,AI技术平台以及相关领域专家:Datawhale,ApacheCN,AI有道和黄海广博士等约有近100G相关资料,希望能帮助到所有小伙伴们。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1067470.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

三十一、【进阶】B+树的演变过程

1、B树简单介绍 (1)介绍:B树也属于B树,是B树的变种 (2)特点:所有的数据都位于叶子节点上,叶子节点上的所有元素形成了一个单项链表 (3)图示: 2…

多微信如何自动发朋友圈?

想要做私域,朋友圈是我们不可忽视的一部分。无论是促进潜在客户下单,还是引导老客户二次下单,朋友圈的经营需要我们用心去打造。 这怎么理解呢?我们可以在一天内定时发送几条朋友圈,分段时间发,这样微信好…

av_read_frame error: Connection reset by peer

播放器加上这个选项即可:setOption(IjkMediaPlayer.OPT_CATEGORY_FORMAT,"reconnect",1) 具体出处参照源码:

小程序 词云图 echarts-for-weixin-wordcloud

GitHub - clydee-geng/echarts-for-weixin-wordcloud: echarts词云微信小程序版 这个是适配与小程序版的词云图,之前有找到ucharts来代替,但是ucharts的词云图功能有两个缺点:1.无法根据值的大小显示词云图的大小;2.显示的顺序是…

前端 vs 后端️: 深入探讨Web开发的两大王国

🌷🍁 博主猫头虎 带您 Go to New World.✨🍁 🦄 博客首页——猫头虎的博客🎐 🐳《面试题大全专栏》 文章图文并茂🦕生动形象🦖简单易学!欢迎大家来踩踩~🌺 &a…

数据防泄密软件排行榜(企业电脑防泄密软件哪一款好用,有哪些推荐)

在当今信息化社会,数据已经成为了企业的重要资产。然而,数据的安全问题也日益突出,尤其是数据的泄露,不仅会导致企业的商业秘密被竞争对手获取,还可能引发一系列的法律问题。因此,数据防泄密软件的重要性不…

九、互联网技术——记忆背诵

文章目录 一、网络操作系统的功能和特性二、网络操作系统的逻辑构成四、主动攻击和被动攻击五、安全机制和安全服务六、信息与数据七、数据处理与数据管理八、数据模型九、概念模型的E-R表示方法十、四种数据模型十一、数据库系统组成十二、DBMS主要功能十三、数据库系统的3级模…

【yolo系列:YOLOV7改进-添加EIOU,SIOU,AlphaIOU,FocalEIOU.】

yolo系列文章目录 在YoloV7中添加EIoU,SIoU,AlphaIoU,FocalEIoU,Wise-IoU. 2023-2-7 更新 yolov7添加Wise-IoUB站链接 重磅!!!!! YOLO系列模型改进损失函数 文章目录 yolo系列文章目录一、初始的yolov7损失函数二、首…

P1017 [NOIP2000 提高组] 进制转换

#include<iostream> #include<cstdio> #include<cmath> #include<cstring> using namespace std;void zhuan(int n,int r) {if(n0) return ;int mn%r;//m为余数 if(m<0) m-r,nr;//如果余数小于0&#xff0c;转化为正数//将余数转化为ascll码方便输出…

.NET 使用 ZXing.Net 生成二维码,并识别

前言 前面已经分享给很多创建二维码&#xff0c;条形码。。。等一系列的方式 各有优缺点&#xff0c;暂时不做评价。今天推荐ZXing.Net 。也是比较全面的一种方式&#xff0c;还支持解码 .NET 二维码生成库-QrCodeGenerator商业库–Spire.BarcodeThoughtWorks.QRCodeQRCoderS…

三维重建_使用OpenMVG/OpenMVS重建场景

目录 1. 安装环境 1.1 安装OpenMVS 1.2 安装OpenMVG 2. 测试 2.1 下载数据 2.2 进行三维重建 2.2.1 OpenMVG提取稀疏点云 2.2.2 OpenMVS稠密化点云/网格化/纹理贴图 3. 运行遇到问题记录 4. 参考 1. 安装环境 本地环境&#xff1a; Ubuntu20.04 没有cuda 1.1 安装O…

英特尔参与 CentOS Stream 项目

导读红帽官方发布公告欢迎英特尔参与进 CentOS Stream 项目&#xff0c;并表示 “这一举措不仅进一步深化了我们长期的合作关系&#xff0c;也构建在英特尔已经在 Fedora 项目中积极贡献的基础之上。” 目前&#xff0c;CentOS Stream 共包括以下特别兴趣小组&#xff08;SIG&a…

排序算法之【归并排序】

&#x1f4d9;作者简介&#xff1a; 清水加冰&#xff0c;目前大二在读&#xff0c;正在学习C/C、Python、操作系统、数据库等。 &#x1f4d8;相关专栏&#xff1a;C语言初阶、C语言进阶、C语言刷题训练营、数据结构刷题训练营、有感兴趣的可以看一看。 欢迎点赞 &#x1f44d…

oralce配置访问白名单的方法

目录 配置sqlnet.ora文件 重新加载使配置生效 注意事项 Oracle数据库安全性提升&#xff1a;IP白名单的配置方法 随着互联网的发展&#xff0c;数据库安全问题也越来越严重。Oracle是目前使用较为广泛的一款数据库管理系统&#xff0c;而IP白名单作为提升数据库安全性的有效…

骑行上下坡,如何分配重心?让你的骑行更稳定、更安全

骑行&#xff0c;作为一种环保、健康的出行方式&#xff0c;越来越受到人们的喜爱。然而&#xff0c;在骑行过程中&#xff0c;尤其是上下坡时&#xff0c;如何分配好重心&#xff0c;确保骑行的稳定性和安全性呢&#xff1f;本文将为您提供一些实用的技巧&#xff0c;让您的骑…

电脑被删除的文件怎么恢复?2023年数据恢复方法分享

大多数人在使用电脑时都可能会遇到误删文件的情况。一不小心&#xff0c;重要的文件或数据就消失了&#xff0c;情急之下&#xff0c;大多会感到慌乱和无助。但其实&#xff0c;文件误删除并非不可挽回的灾难。本文将为大家介绍几种有效的文件恢复方法&#xff0c;以帮助大家在…

【Proteus仿真】【STM32单片机】汽车倒车报警系统设计

文章目录 一、功能简介二、软件设计三、实验现象联系作者 一、功能简介 本项目使用Proteus8仿真STM32单片机控制器&#xff0c;使用LCD1602液晶、按键、继电器电机模块、DS18B20温度传感器、蜂鸣器LED、HCSR04超声波等。 主要功能&#xff1a; 系统运行后&#xff0c;LCD1602显…

MFC界面控件添加函数小技巧

1..选中控件的属性&#xff0c;点击闪电形状 2.在右侧的点击方式选中生成函数 选择需要响应的消息方式。代码会自动创建响应函数

延时队列java

Redis过期键通知&#xff08;使用redis来实现延迟通知&#xff09; Slf4j public class KeyExpiredListener extends KeyExpirationEventMessageListener {public KeyExpiredListener(RedisMessageListenerContainer listenerContainer) {super(listenerContainer);}Overridep…