期望最大化(EM)算法:从理论到实战全解析

news2024/11/17 17:35:38

目录

    • 一、引言
      • 概率模型与隐变量
      • 极大似然估计(MLE)
      • Jensen不等式
    • 二、基础数学原理
      • 条件概率与联合概率
      • 似然函数
      • Kullback-Leibler散度
      • 贝叶斯推断
    • 三、EM算法的核心思想
      • 期望(E)步骤
      • 最大化(M)步骤
      • Q函数与辅助函数
      • 收敛性
    • 四、EM算法与高斯混合模型(GMM)
      • 高斯混合模型的定义
      • 分量权重
      • E步骤在GMM中的应用
      • M步骤在GMM中的应用
    • 五、实战案例
      • 定义:目标
      • 定义:输入和输出
      • 实现步骤
      • 结果解释
    • 六、总结

本文深入探讨了期望最大化(EM)算法的原理、数学基础和应用。通过详尽的定义和具体例子,文章阐释了EM算法在高斯混合模型(GMM)中的应用,并通过Python和PyTorch代码实现进行了实战演示。

关注TechLead,分享AI全维度知识。作者拥有10+年互联网服务架构、AI产品研发经验、团队管理经验,同济本复旦硕,复旦机器人智能实验室成员,阿里云认证的资深架构师,项目管理专业人士,上亿营收AI产品研发负责人。

file

一、引言

期望最大化算法(Expectation-Maximization Algorithm,简称EM算法)是一种迭代优化算法,主要用于估计含有隐变量(latent variables)的概率模型参数。它在机器学习和统计学中有着广泛的应用,包括但不限于高斯混合模型(Gaussian Mixture Model, GMM)、隐马尔可夫模型(Hidden Markov Model, HMM)以及各种聚类和分类问题。

概率模型与隐变量

概率模型是一种用数学表示的数据生成过程。在统计学和机器学习中,一个概率模型通常用来描述观测数据(observable data)和潜在结构(latent structure)之间的关系。

  • 例子:假设我们有一个数据集,包含了一群人的身高和体重。一个简单的概率模型可能假设身高和体重都符合正态分布。

**隐变量(Latent Variables)**是指那些不能直接观测到,但会影响到观测数据的变量。在包含隐变量的概率模型中,通常更难以进行参数估计。

  • 例子:在推断一群人是否喜欢运动的情况下,我们可能能观测到他们的身高和体重,但“是否喜欢运动”这一隐变量是无法直接观测的。

极大似然估计(MLE)

**极大似然估计(Maximum Likelihood Estimation, MLE)**是一种用于估计概率模型参数的方法。它通过寻找一组参数,使得给定观测数据出现的可能性(即似然函数)最大化。

  • 例子:在一个硬币投掷实验中,观测到了10次正面和15次反面,MLE会寻找一个参数(硬币正面朝上的概率),使得观测到这样的数据最有可能。

Jensen不等式

Jensen不等式是凸优化理论中的一个基本不等式,常用于证明EM算法的收敛性。简单地说,Jensen不等式表明对于一个凸函数,函数在凸组合上的值不会大于凸组合中各点值的平均。

file


二、基础数学原理

在理解EM算法的工作机制之前,我们需要掌握一些关键的数学概念和原理。这些原理不仅形成了EM算法的数学基础,而且也有助于我们理解算法的收敛性和效率。

条件概率与联合概率

file

似然函数

file

Kullback-Leibler散度

file

贝叶斯推断

贝叶斯推断是一种基于贝叶斯定理的参数估计和模型选择方法。它使用先验概率、似然函数和证据(或归一化因子)来计算参数的后验概率。

  • 例子:在垃圾邮件分类中,贝叶斯推断可以用于更新垃圾邮件(或非垃圾邮件)的概率,每当用户标记一个新邮件时。

这些数学原理为我们提供了理解EM算法所需的坚实基础。通过了解这些概念,我们可以更深入地探讨EM算法如何进行参数估计,特别是在存在隐变量的复杂模型中。


三、EM算法的核心思想

file

EM算法的主要目的是找到含有隐变量的概率模型的参数估计。这一目标在直接应用极大似然估计(MLE)困难或不可行时尤为重要。EM算法通过交替执行两个步骤来实现这一目标:期望(E)步骤和最大化(M)步骤。

期望(E)步骤

期望步骤(Expectation step)涉及计算隐变量给定观测数据和当前参数估计的条件期望。这通常用于构建一个函数,称为Q函数,来近似目标函数(通常是似然函数)。

  • 例子:在高斯混合模型中,期望步骤涉及计算每个观测数据点属于各个高斯分布的条件概率,这些概率也称为后验概率。

最大化(M)步骤

最大化步骤(Maximization step)则是在给定Q函数的情况下,寻找能使Q函数最大化的参数值。

  • 例子:继续上面的高斯混合模型例子,最大化步骤涉及调整每个高斯分布的均值和方差,以最大化由期望步骤得到的Q函数。

Q函数与辅助函数

Q函数是EM算法中的一个核心概念,用于近似目标函数(如似然函数)。Q函数通常依赖于观测数据、隐变量和模型参数。

  • 例子:在高斯混合模型的EM算法中,Q函数基于观测数据和各个高斯分布的后验概率来定义。

**辅助函数(Auxiliary Function)**是EM算法的一个重要组成部分,用于保证算法收敛。通过最大化辅助函数,我们间接地最大化了似然函数。

  • 例子:在一些文本分类问题中,辅助函数可以通过拉格朗日乘数法来构建,以简化最大化问题。

收敛性

在EM算法中,由于使用了Jensen不等式和辅助函数,算法保证会收敛到局部最大值。

  • 例子:在实施高斯混合模型的EM算法后,你会发现每次迭代都会导致似然函数的值增加(或保持不变),直到达到局部最大值。

通过深入探讨这些核心概念和步骤,我们能更全面地理解EM算法是如何工作的,以及为什么它在处理含有隐变量的复杂概率模型时如此有效。


四、EM算法与高斯混合模型(GMM)

高斯混合模型(Gaussian Mixture Model,GMM)是一种使用高斯概率密度函数(pdf)为基础构建的概率模型。它是EM算法应用的一个典型例子,尤其是当我们要对数据进行聚类或者密度估计时。

高斯混合模型的定义

高斯混合模型是由多个高斯分布组成的。每一个高斯分布称为一个分量(component),并且每一个分量都有其自己的均值((\mu))和方差((\sigma^2))。

  • 例子:假设一个数据集呈现出两个明显不同的簇。一个高斯混合模型可能会用两个高斯分布来描述这两个簇,每个分布有自己的均值和方差。

分量权重

每个高斯分量在模型中都有一个权重((\pi_k)),这个权重描述了该分量对整个数据集的“重要性”。

  • 例子:在一个由两个高斯分布组成的GMM中,如果一个分布的权重为0.7,另一个为0.3,这意味着第一个分布对整个模型的影响较大。

E步骤在GMM中的应用

在GMM中的E步骤,我们计算数据点对每个高斯分量的后验概率,即给定数据点,它来自某个特定分量的概率。

  • 例子:假设一个数据点(x),在E步骤中,我们计算它来自GMM中每个高斯分量的后验概率。
# 使用Python和PyTorch计算后验概率
import torch
from torch.distributions import MultivariateNormal

# 假设有两个分量
means = [torch.tensor([0.0]), torch.tensor([5.0])]
variances = [torch.tensor([1.0]), torch.tensor([2.0])]
weights = [0.6, 0.4]

# 数据点
x = torch.tensor([1.0])

# 计算后验概率
posterior_probabilities = []
for i in range(2):
    normal_distribution = MultivariateNormal(means[i], torch.eye(1) * variances[i])
    posterior_probabilities.append(weights[i] * torch.exp(normal_distribution.log_prob(x)))

# 归一化
sum_probs = sum(posterior_probabilities)
posterior_probabilities = [prob / sum_probs for prob in posterior_probabilities]

print("后验概率:", posterior_probabilities)

M步骤在GMM中的应用

M步骤中,我们根据E步骤计算出的后验概率来更新每个高斯分量的参数(均值和方差)。

  • 例子:假设从E步骤中获得了数据点对于两个高斯分量的后验概率,我们会用这些后验概率来加权地更新均值和方差。

通过详细地探讨高斯混合模型和它与EM算法的关联,我们更深入地理解了这一复杂模型是如何工作的,以及EM算法在其中扮演了什么角色。这不仅有助于我们理解算法的数学基础,还为实际应用提供了实用的见解。


五、实战案例

在实战案例中,我们将使用Python和PyTorch来实现一个简单的高斯混合模型(GMM)以展示EM算法的应用。

定义:目标

我们的目标是对一维数据进行聚类。我们将使用两个高斯分量(也就是说,K=2)。

  • 例子:假设我们有一个一维数据集,其中包含两个簇。我们希望使用GMM模型找到这两个簇的参数(均值和方差)。

定义:输入和输出

  • 输入:一维数据数组
  • 输出:两个高斯分量的参数(均值和方差)以及它们的权重。

实现步骤

  1. 初始化参数:为均值、方差和权重设置初始值。
  2. E步骤:计算数据点属于每个分量的后验概率。
  3. M步骤:使用后验概率更新均值、方差和权重。
  4. 收敛检查:检查参数是否收敛。如果没有,则返回第2步。
# Python和PyTorch代码实现
import torch
from torch.distributions import Normal

# 初始化参数
means = torch.tensor([0.0, 5.0])
variances = torch.tensor([1.0, 1.0])
weights = torch.tensor([0.5, 0.5])

# 假设的一维数据集
data = torch.cat((torch.randn(100) * 1.5, torch.randn(100) * 0.5 + 5))

# EM算法实现
for iteration in range(100):
    # E步骤
    posterior_probabilities = []
    for i in range(2):
        normal_distribution = Normal(means[i], torch.sqrt(variances[i]))
        posterior_probabilities.append(weights[i] * torch.exp(normal_distribution.log_prob(data)))
        
    # 归一化
    sum_probs = torch.stack(posterior_probabilities).sum(0)
    posterior_probabilities = [prob / sum_probs for prob in posterior_probabilities]

    # M步骤
    for i in range(2):
        responsibility = posterior_probabilities[i]
        means[i] = torch.sum(responsibility * data) / torch.sum(responsibility)
        variances[i] = torch.sum(responsibility * (data - means[i])**2) / torch.sum(responsibility)
        weights[i] = torch.mean(responsibility)

    # 输出当前参数
    print(f"Iteration {iteration+1}: Means = {means}, Variances = {variances}, Weights = {weights}")

结果解释

在运行以上代码后,你将看到均值、方差和权重的参数在每次迭代后都会更新。当这些参数不再显著变化时,我们可以认为算法已经收敛。

  • 输入:一维数据集,包含两个簇。
  • 输出:每次迭代后的均值、方差和权重。

通过这个实战案例,我们不仅演示了如何在PyTorch中实现EM算法,并且通过具体的代码示例深入理解了算法的每一个步骤。这样的内容安排旨在满足你对于概念丰富、充满细节和定义完整的需求。


六、总结

经过详尽的理论分析和实战示例,我们对期望最大化(EM)算法有了更全面的了解。从基础数学原理到具体的实现和应用,EM算法展示了其在统计模型参数估计中的强大能力,特别是当我们面临缺失或隐含数据时。

  1. 概率模型的选择:虽然我们在实战中使用了高斯混合模型(GMM),但EM算法并不仅限于此。事实上,它可以应用于任何满足特定条件的概率模型,这一点在研究和应用更为复杂的数据结构时尤为重要。

  2. 初始化的重要性:本文提到了参数的初始选择,但实际应用中应更加小心。糟糕的初始化可能导致算法陷入局部最优,从而影响模型性能。

  3. 收敛性和效率:尽管EM算法通常能保证收敛,但收敛速度可能是一个问题,特别是在高维数据和复杂模型中。这一点可能会促使我们寻找更有效的优化算法或者采用分布式计算。

  4. 模型解释性与复杂性的权衡:EM算法能够估计复杂模型的参数,但这种复杂性可能会导致模型解释性降低。在实际应用中,我们需要仔细考虑这种权衡。

  5. 算法的泛化能力:EM算法不仅用于聚类问题,在自然语言处理、计算生物学等多个领域也有广泛应用。了解其核心思想和工作机制能为处理不同类型的数据问题提供有力的工具。

通过深入地探讨这些技术洞见,我们不仅加深了对EM算法核心概念和工作机制的理解,还能更好地将这一算法应用到各种实际问题中。希望这篇文章能进一步促进你对于复杂概率模型和期望最大化算法的理解,也希望你能在自己的项目或研究中找到这些信息的实际应用。

关注TechLead,分享AI全维度知识。作者拥有10+年互联网服务架构、AI产品研发经验、团队管理经验,同济本复旦硕,复旦机器人智能实验室成员,阿里云认证的资深架构师,项目管理专业人士,上亿营收AI产品研发负责人。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1065458.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

城乡供水智慧化运营,喜提一等奖!

近日,第六届“绽放杯”5G应用征集大赛江西区域赛——5G智慧住建行业赛结果揭晓。由江西省水务集团、江西电信、天翼物联、熊猫智慧水务、江西普适科技联合申报的《5GPLC安全AIoT,助力江西水务城乡供水智慧化运营》项目获一等奖。 水务行业作为国民经济发…

vue的几个提效技巧

1.动态组件 <component :is组件名></component> 结合v-for循环使用 使用环境 如图&#xff0c;这是一个v-for渲染的列表(只是目前这个版块才刚开始做&#xff0c;目前只有一个)&#xff0c;圆圈内的就是一个组件&#xff0c;也就是要v-for动态组件 实际使用 一…

Linux基本指令(中)——“Linux”

各位CSDN的uu们好呀&#xff0c;今天&#xff0c;小雅兰的内容是Linux基本指令呀&#xff01;&#xff01;&#xff01;下面&#xff0c;让我们进入Linux的世界吧&#xff01;&#xff01;&#xff01; cp指令&#xff08;重要&#xff09; mv指令&#xff08;重要&#xff09…

外汇天眼:业务员离职,也不给出金!Sky Alliance Markets摆烂不玩了?

近段时间&#xff0c;外汇天眼收到Sky Alliance Markets的客诉激增已达10条&#xff0c;目前该平台的官网还能打开。但最近关于Sky Alliance Markets是否跑路的争议也越来越多&#xff0c;据来外汇天眼投诉的用户透露&#xff0c;Sky Alliance Markets的员工大部分已经离职&…

H3C交换机 DEV/1/FAN_DIRECTION_NOT_PREFERRED

1.现象 DEV/1/FAN_DIRECTION_NOT_PREFERRED: Fan 1 airflow direction is not preferred on slot 1, please check it. 2.解决方法&#xff1a; 查看下设备风扇的颜色&#xff0c;风扇分为红色与蓝色&#xff0c;不通颜色通风方式不通。 我这里的风扇是蓝色&#xff0c;修改…

宠物社区风格 商业版(GBK)Discuz模板

仿爱宠乐园宠物社区风格Discuz模板&#xff0c;商业版&#xff08;GBK&#xff09;Discuz模板。 1、版本支持&#xff1a;discuzx3.0版本&#xff0c;discuzx3.1版本&#xff0c;discuzx3.2版本&#xff0c;discuzx3.3版本&#xff0c;discuzx3.4版本。包括网站首页&#xff0…

记一次docker逃逸漏洞的复现

公众号&#xff1a;掌控安全EDU 分享更多技术文章&#xff0c;欢迎关注一起探讨学习 利用条件 1.Docker Version <18.09.2 2.RunC Version <1.0-rc6 3.攻击者具有容器文件上传权限&管理员使用exec访问容器||攻击者具有启动容器权限 利用原理 这里的问题存在于&#x…

【已解决】Pyecharts折线图,只有坐标轴没有折线数据

【已解决】Pyecharts折线图&#xff0c;只有坐标轴没有折线数据 1、问题复现2、原因3、问题解决 1、问题复现 在做简单的数据通过 Pyecharts 生成折现图的时候&#xff0c;一直只有坐标轴没有折线数据&#xff0c;但是代码一直看不出问题&#xff0c;代码如下&#xff1a; im…

机器人革命:你一定没见过这些全新的机器人技术!

原创 | 文 BFT机器人 01 通过机器人协作推进危险测绘 在危险测绘领域&#xff0c;研究人员开发了一种合作方案&#xff0c;利用地面和空中机器人对污染区域进行危险测绘。该团队通过使用异构覆盖控制技术提高了密度图的质量并降低了误差。与同质替代方案相比&#xff0c;该策…

win10搭建Selenium环境+java+IDEA(3)

这里主要对前面的maven和selenium做补充说明&#xff0c;以及更新一些pom文件下载依赖的问题。 IDEA里面&#xff0c;如果你创建的工程是maven工程文件&#xff0c;那么就会有一个pom.xml文件&#xff0c;可以在这个网站&#xff1a;https://mvnrepository.com/搜索依赖&#…

聚焦酷开科技智能大屏OS Coolita,打造智能推荐服务能力全景

2023年9月18日—22日&#xff0c;科学和教育计算机协会The Association for Computing Machinery&#xff08;ACM&#xff09;在新加坡举办了为期5天的ACM RecSys 2023&#xff0c;云集了各大品牌的科技巨头技术人员&#xff0c;还有中外各大高等学府学者参与其中&#xff0c;共…

EV证书与OV证书的区别

在保护网站和用户数据的过程中&#xff0c;选择适当的SSL证书至关重要。EV&#xff08;Extended Validation&#xff09;证书和OV&#xff08;Organization Validation&#xff09;证书是SSL证书的两种常见类型&#xff0c;它们在验证过程和信任指示方面有着显著的区别。让我们…

除静电离子风嘴的工作原理及应用

除静电离子风嘴是一种常见的除静电设备&#xff0c;它的工作原理是通过产生大量的负离子来中和物体表面的静电电荷&#xff0c;从而达到除静电的目的。 除静电离子风嘴内部装有一个电离器&#xff0c;电离器会将空气中的氧气分子或水分子电离成正、负离子。这些带电的离子在空…

SVN安装教程

SVN安装教程 1. 下载安装2. 汉化3. SVN配置 1. 下载安装 百度网盘下载&#xff1a; 链接&#xff1a;SVN百度网盘下载 2. 汉化 双击汉化包 点击【下一步】 选中【Confiqure TortoiseSVN to use this language】 点击【完成】 返回桌面&#xff0c;任意位置右击&#xff0…

【AI视野·今日Robot 机器人论文速览 第四十八期】Thu, 5 Oct 2023

AI视野今日CS.Robotics 机器人学论文速览 Thu, 5 Oct 2023 Totally 32 papers &#x1f449;上期速览✈更多精彩请移步主页 Daily Robotics Papers LanguageMPC: Large Language Models as Decision Makers for Autonomous Driving Authors Hao Sha, Yao Mu, Yuxuan Jiang, Li…

Windows中的用户帐户与组账户

01 用户帐户 1.1 简介 用户帐户是对计算机用户身份的标识&#xff0c;本地用户帐户、密码存在本地计算机上&#xff0c;只对本机有效&#xff0c;存储在本地安全帐户数据库 SAM 中。 文件路径&#xff1a;C:\Windows\System32\config\SAM &#xff0c;对应的进程&#xff1a;…

力扣 -- 132. 分割回文串 II

解题步骤&#xff1a; 参考代码&#xff1a; class Solution { public:int minCut(string s) {int ns.size();//保存s的所有子串是否是回文串的信息的哈希表vector<vector<bool>> hash(n,vector<bool>(n));for(int in-1;i>0;i--){for(int ji;j<n;j){i…

干洗店软件,洗鞋店收银管理系统小程序app

闪站侠洗衣洗鞋店管理系统是一款专业的洗护管理软件&#xff0c;它集收银系统,会员卡管理系统&#xff0c;财务报表系统等强大功能为一身&#xff0c;系统界面简洁优美&#xff0c;操作直观简单。系统为广大干洗店&#xff0c;洗衣店提供了成本分析&#xff0c;利润分析&#x…

【RabbitMQ 实战】09 客户端连接集群生产和消费消息

一、部署一个三节点集群 下面的链接是最快最简单的一种集群部署方法 3分钟部署一个RabbitMQ集群 上的的例子中&#xff0c;没有映射端口&#xff0c;所以没法从宿主机外部连接容器&#xff0c;下面的yml文件中&#xff0c;暴露了端口。 每个容器应用都映射了宿主机的端口&…

jupyter notebook代码自动换行,超过一行长度自动换行,不用左右滑动

效果如下: 步骤 1.打开cmd&#xff0c;输入jupyter --config-dir找到jupyter notebook的位置 2.打开jupyter所在位置&#xff0c;进入nbconfig文件夹 3.打开notebook.json 4.输入以下代码 "MarkdownCell": {"cm_config": {"lineWrapping": t…