【计算机组成原理】考研真题攻克与重点知识点剖析 - 第 2 篇:数据的表示和运算

news2025/1/11 7:43:18

前言

  • 本文基础知识部分来自于b站:分享笔记的好人儿的思维导图与王道考研课程,感谢大佬的开源精神,习题来自老师划的重点以及考研真题。
  • 此前我尝试了完全使用Python或是结合大语言模型对考研真题进行数据清洗与可视化分析,本人技术有限,最终数据清洗结果不够理想,相关CSDN文章便没有发出。
  • 这里我将按章节顺序,围绕考研真题展开计算机组成原理总共7章的知识,边学习边整理数据。
  • 第一章链接:【计算机组成原理】考研真题攻克与重点知识点剖析 - 第 1 篇:计算机系统概述

请注意,本文中的部分内容来自网络搜集和个人实践,如有任何错误,请随时向我们提出批评和指正。本文仅供学习和交流使用,不涉及任何商业目的。如果因本文内容引发版权或侵权问题,请通过私信告知我们,我们将立即予以删除。

文章目录

  • 前言
  • 数据的表示
    • 数制与编码
    • 真值和机器数定义
    • 以上知识思维导图
    • 可跳过
      • BCD码
      • 无符号整数运算
      • 有符号整数运算
        • 原码表示
        • 源码缺点
        • 原码→反码→补码的转换(机算)
        • 原码、补码快速转换技巧(手算)
        • 补码的加法运算(例1)
        • 补码的加法运算(例2)
        • 移码
        • 练习
    • 以上知识总结
    • 数据存储时的字节排列
    • 机器数表示方法
      • 定点数
        • 定点数的表示
        • 定点小数vs定点整数
        • 定点数的局限性
      • 浮点数
        • 浮点数的表示(约定小数点位置)
        • 浮点数尾数的规格化
    • 浮点数的表示思维导图
        • IEEE 754标准
  • 数据的运算
    • 布尔代数和基本逻辑电路
    • 加法器(所有算数运算部件都基于加法器)
      • 加法器原理
      • 补码加减运算器(利用加法器实现)
        • **计算有符号数**
        • **计算无符号数**
      • 标志位生成
        • (OF)有符号数补码加减运算器溢出判断
        • (CF)无符号数补码加减运算器溢出判断
      • 溢出判断
      • 符号扩展
    • 加减运算思维导图
    • 加法器设计与实现
      • 一位加法器(全加器)
      • 串行加法器
      • 并行加法器(单级/多级)
      • n位带标志加法器
      • 算数逻辑单元(ALU)
    • C语言中各类运算
    • 定点数的运算
      • 定点数的加减运算
        • 可通过二路选择器+带标志加法器实现加/减运算器
        • 原码定点数加减法运算(符号不参与运算)
        • 补码定点数加减法运算(符号参与运算)
        • 补码溢出的判定方法
      • 定点数的乘除运算
        • 整数的乘运算
        • 整数的除法运算
    • 浮点数的加减运算
      • 不同类型转换
    • 浮点数的运算思维导图
    • 考研真题
    • 408 - 2023
      • 13. 计算short型变量的机器数
      • **14. 计算IEEE 754 单精度浮点数的值**
      • 16. 溢出和借位标志问题
    • 408 - 2022
      • 13. 32位补码整数范围
      • 14. IEEE754单精度浮点数表示
    • 408 - 2021
      • 13. 带符号整数的补码表示与大小比较
      • 14. IEEE754浮点格式表示精度问题
    • (未完待续,逐张试卷分析中)

数据的表示

数制与编码

  • 真值与机器数

    • 机器数:用0和1编码的计算机内部的0/1序列

    • 真值:机器数代表的实际值,现实中带正负号的数,X

  • 数值数据表示的三要素(要确定一个数值数据的值必须先确定这三个要素)

    • 进位计数制

      • 十进制(后缀D)、二进制(后缀B)、十六进制(后缀H,或前缀0x表示)、八进制(后缀O)
    • 定/浮点表示

      • 浮点整数、定点小数、浮点数(解决小数点问题)
    • 二进制编码

      • 原码、补码、反码、移码(解决正负号问题)
  • 十进制数与R进制数之间的转换

    • R进制到十进制(按“权”展开)在这里插入图片描述
      在这里插入图片描述

    • 十进制到二进制,再将二进制转十六(四位一组)或八进制(三位一组)
      在这里插入图片描述
      在这里插入图片描述

    • 二进制<–>八进制、十六进制

在这里插入图片描述

  • 各种进制的常见书写方式
    在这里插入图片描述

真值和机器数定义

在这里插入图片描述

以上知识思维导图

在这里插入图片描述

可跳过

BCD码

在这里插入图片描述

无符号整数运算

在这里插入图片描述
在这里插入图片描述

有符号整数运算

原码表示

在这里插入图片描述

源码缺点

在这里插入图片描述

原码→反码→补码的转换(机算)

在这里插入图片描述

原码、补码快速转换技巧(手算)

在这里插入图片描述

在这里插入图片描述

补码的加法运算(例1)

19=16+2+1
0001 0011
在这里插入图片描述

补码的加法运算(例2)

在这里插入图片描述

移码

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

练习

在这里插入图片描述

以上知识总结

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

数据存储时的字节排列

  • 大端方式:从最高有效字节到最低有效字节的顺序存储数据(从左到右,正常思维)

  • 小端方式:从最低有效字节到最高有效字节的顺序存储数据(从右到左,便于机器)
    在这里插入图片描述

  • 边界对齐问题:存储数据不满字长,填充空白,虽然浪费空间,但提高效率(若数据不对齐可能额外存取一次)

  • 在这里插入图片描述

机器数表示方法

定点数

在这里插入图片描述
定点::小数点位置固定

定点数的表示
  • 原码

    • 最高位为符号位,数值部分不变在这里插入图片描述
  • 补码

    • 定义:[X]补 = 2^n + X(-2^n <= X < 2^n,mod 2^n)

    • 理解:为了机器数加减运算的统一。
      实际上是模运算,一个负数的补码等于模减该负数的绝对值,即时钟从10点到6点,可以倒拨4格:10-4=6;也可以顺拨8格,10+8=18=6

  • 反码

    • 原码与补码相互转化的过渡
  • 移码

    • 数值加一个偏置常数,通常在真值X上加2^n(便于浮点数加减运算时对阶,阶数有正有负,统一加一个常数让阶数都为正方便比较)
  • 不同机器数之间的转换关系
    在这里插入图片描述

  • 范围与真值0

    • 定点整数

      • 原码

        • 范围:- (2^n - 1) <= x <= 2^n - 1

          • 最大:0,111…111

            • 最小:1,111…111

              • 真值零: 0,000…000,1,000…000
      • 反码

        • 范围:- (2^n - 1) <= x <= 2^n - 1

          • 最大:0,111…111

            • 最小:1,000…000

              • 真值零: 0,000…000,1,111…111
      • 补码

        • 范围:- 2^n <= x <= 2^n - 1

          • 最大:0,111…111

            • 最小:1,000…000

              • 真值零: 0,000…000
    • 定点小数

      • 原码

        • 范围:- (1 - 2^-n) <= x <= 1 - 2^-n

          • 最大:0,111…111

            • 最小:1,111…111

              • 真值零: 0,000…000,1,000…000
      • 反码

        • 范围:- (1 - 2^-n) <= x <= 1 - 2^-n

          • 最大:0,111…111

            • 最小:1,000…000

              • 真值零: 0,000…000,1,111…111
      • 补码

        • 范围:-1 <= x <= 1 - 2^-n

          • 最大:0,111…111

            • 最小:1,000…000

              • 真值零: 0,000…000
  • 有符号数与无符号数

    • 有符号数:最高位的0/1表示正/负

    • 无符号数:整个机器字长全部二进制位均为数值位,无符号位

    • 同时有无符号数和带符号数,在C编译器中隐含将带符号整数强制转换为无符号数

定点小数vs定点整数

(+/-)0/1 000 0001.
(+/-)0/1. 000 0001在这里插入图片描述

定点数的局限性

在这里插入图片描述

浮点数

在这里插入图片描述

浮点数的表示(约定小数点位置)
  • 一般格式

    • 浮点数真值格式:N = r^E × M(r阶码的底,E阶码用移码表示,M尾数,S数符)在这里插入图片描述

    • 表示范围(原码对称,故表示范围关于原点对称)在这里插入图片描述

    • 浮点数范围比定点数大,但个数不变,故数更稀疏且不均匀

  • 规格化浮点数

    • 规格化数形式:+/-1.M × r^E

      • 为了表示更多有效数字,规定规格化数的小数点前为1
    • 基数2:原码规格化最高位一定是1,补码规格化数的尾数最高位一定与尾数符号相反(基数4原码最高两位不全为0,基数8原码最高三位不全为0)

  • IEEE754标准

    • +/-1.M × 2^E(S数符,E阶码用移码表示全0全1特殊表示,M(Significand)尾数用原码表示,隐含尾数最高数位)在这里插入图片描述

    • 短浮点数

      • 数符1+阶码8+尾数23=总位数32(偏置值127)

        • 范围:1 × 2^(1-127) ---------- 1.111…111 × 2^(254-127)
    • 长浮点数

      • 数符1+阶码11+尾数52=总位数64(偏置值1023)

        • 范围:1 × 2^(1-1023) ---------- 1.111…111 × 2^(2046-1023)
    • 特殊数的表示

      • 阶码全0,尾数M=0,真值X=0+(0-)

      • 阶码全0,尾数M!=0,非规格化小数

      • 阶码全1,尾数M=0,真值X=+∞(-无穷)

      • 阶码全1,尾数M!=0,非数值NaN

在这里插入图片描述

浮点数尾数的规格化

在这里插入图片描述
在这里插入图片描述

浮点数的表示思维导图

在这里插入图片描述

IEEE 754标准

偏置值-1
在这里插入图片描述

  • 关于-1000 0000+0111 1111 = 1111 1111

2^8=1 0000 0000 任何运算结果在mod2的8次方后,都只会保留最低的八位,
所以在这里我们可以 将 0111 1111+1 0000 0000=1 0111 1111,
这样就使 被减数 比 减数 大 1 0111 1111-1000 0000 = 1111 1111

在这里插入图片描述
例1
在这里插入图片描述

例2
在这里插入图片描述
例3
在这里插入图片描述

数据的运算

布尔代数和基本逻辑电路

  • 基本逻辑运算:与或非,任何逻辑表达式可写成三种基本运算的逻辑组合在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

  • 组合逻辑电路:没有存储功能,输出仅依赖于当前输入

  • 具有存储功能,其输出不仅依赖于当前输入,还依赖于存储单元当前状态

  • 组合逻辑部件(功能部件,利用基本逻辑门电路构成):译码器、编码器、多路选择器、加法器

加法器(所有算数运算部件都基于加法器)

加法器原理

在这里插入图片描述

补码加减运算器(利用加法器实现)

计算有符号数

sub=0
在这里插入图片描述
sub=1
在这里插入图片描述

计算无符号数

电路相同,判断溢出方式不同
sub=0
在这里插入图片描述
sub=1
在这里插入图片描述

标志位生成

在这里插入图片描述

在这里插入图片描述

(OF)有符号数补码加减运算器溢出判断

在这里插入图片描述

(CF)无符号数补码加减运算器溢出判断

在这里插入图片描述

溢出判断

在这里插入图片描述
方法一在这里插入图片描述
方法二
在这里插入图片描述
方法三
在这里插入图片描述

符号扩展

在这里插入图片描述

加减运算思维导图

在这里插入图片描述

加法器设计与实现

一位加法器(全加器)

  • 输入:加数A和B,低位进位Cin

    • 输出:和:F = A ⊕ B ⊕ Cin
      高位进位:Cout=A·B + A·Cin + B·Cin在这里插入图片描述

在这里插入图片描述

串行加法器

  • n个全加器相连,进位触发器用来寄存进位信号,每一级进位依赖于前一级进位,进位信号逐级形成 Cout=A·B + (A⊕B)·Cin
    在这里插入图片描述

并行加法器(单级/多级)

  • 各级进位信号同时形成,又称先行进位,各进位之间无等待,相互独立并同时产生

    • 辅助函数:Gi = Ai·Bi Pi = Ai + Bi
      全加逻辑方程:Si = Pi⊕Ci Ci+1 = Gi + Pi·Ci

    • C1 = G0 + P0·C0
      C2 = G1 + P1·C1 = G1 + P1·G0 + P1·P0·C0
      C3 = G2 + P2·C2 = G2 + P2·G1 + P2·P1·G0 + P2·P1·P0·C0
      由上式可知:各进位之间无等待,相互独立并同时产生
      在这里插入图片描述
      优化
      在这里插入图片描述

在这里插入图片描述

n位带标志加法器

在这里插入图片描述

  • 溢出标志OF(仅有符号数加减法有意义)
    • 含义:有符号数的加减法是否发生了溢出
    • 计算:OF=最高位产生的进位⊕次高位产生的进位
  • 符号标志SF(仅有符号数加减法有意义)
    • 含义:有符号数加减运算结果的正负性
    • SF=最高位的本位和
  • 零标志ZF
    • 含义:运算结果是否为0
    • 计算:n 位全0,ZF=1
  • 进/借位标志CF(仅无符号加减法有意义)
    • 含义:加法时为进位标志,减法时为借位标志
    • 计算:CF=最高位进位⊕sub(减法sub=1,加法sub=0)

算数逻辑单元(ALU)

  • 利用二路选择器+带标志加法器构造加/减运算器在这里插入图片描述
  • 加/减运算器基础上加寄存器、移位器、控制逻辑可实现ALU在这里插入图片描述
    - 算数运算:取负、移位、加减乘除、扩展
    - 逻辑运算:与或非

在这里插入图片描述
这里74181中

  • B3~B0和A3~A0是两个操作数,

  • F3~F0为输出结果。

  • C-l表示最低位的外来进位,

  • Cn+4是7418l向高位的进位;

  • P、G可供先行进位使用。

  • M用于区别算术运算还是逻辑运算;

  • S3~S0的不同取值可实现不同的运算。

  • 输入B3~B0和A3~A0两个机器字长为4bit的信息

  • 输出F3~F0机器字长为4bit的计算结果

  • F3~F0存入寄存器X,寄存器的位数要与机器字长保持一致,所以寄存器的位数=机器字长

  • S3~S0有4bit的信息,对应2^4=16种算数运算和逻辑运算
    知识回顾
    在这里插入图片描述

C语言中各类运算

  • 算术运算:无符号数、带符号的、浮点数的加减乘除运算

  • 位运算:与、或、取反、异或

  • 逻辑运算:&&、||、!

  • 移位运算(王道分原码补码反码讨论,此处是C语言)

    • 逻辑左/右移(无符号数)

      • 高(低)位移出,低(高)位补0(若高位移出1,则左移发生溢出)
    • 算数左/右移(带符号数)

      • 左移:高位移出,低位补0(若移出位不等于新的符号位,则溢出)

      • 右移:低位移出,高位补符(可能数据丢失)

    • 循环移位

      • 带进位标志位的循环移位

      • 不带进位标志位的循环移位,移出的位需要同时进入进位寄存器

  • 位扩展和位截断

    • 扩展

      • 无符号数:0扩展(前面补0)

      • 带符号数:符号扩展(前面补符)

    • 截断

      • 强行将高位丢弃,故可能发生溢出

定点数的运算

定点数的加减运算

可通过二路选择器+带标志加法器实现加/减运算器
  • 计算机中所有运算都基于加法器实现

  • 加法器不知道所运算的是带符号数还是无符号数

  • 加法器不判定对错,总是取低n位为结果,并生成标志信息

  • 无符号加法溢出条件:CF=1

    • 有符号加溢出条件:OF=1
  • 无符号减法溢出:差为负数,即借位CF=1

    • 其他溢出判定方法见下方
  • 减法做比较大小

    • 无符号数大于:CF=0

    • 有符号数大于:OF=SF

原码定点数加减法运算(符号不参与运算)
  • 加法准则

    • 符号相同:绝对值相加,符号不变

    • 符号不同:绝对值大的减去绝对值小的,符号取绝对值大的

  • 减法准则

    • 减数符号取反,做原码加法运算
补码定点数加减法运算(符号参与运算)
  • 公式:[A+B]补=[A]补 + [B]补(MOD 2^n) [A-B]补=[A]补 + [-B]补(MOD 2^n)
补码溢出的判定方法
  • 一位符号位

    • 参与运算的两个数符号相同,结果符号变化,则溢出

    • 最高位进位与次高位进位不同,则溢出

  • 双符号位(存储仅一符号位,进入ALU后两位符号位)

    • 在乘除等运算中,为了不丢弃中间的溢出结果,多位符号位可以保留符号位和溢出的数值位,保留正确的中间结果

    • 00正数,无溢出

    • 01正溢出(符号位不同,最高位为真正符号)

    • 10负溢出(符号位不同,最高位为真正符号)

    • 11负数,无溢出

定点数的乘除运算

整数的乘运算
  • 高级语言中两个n位整数相乘得到的结果也是n位整数,即取2n位乘积中的低n位

  • 溢出问题(硬件不判溢出,仅保留2n位乘积):乘积的高n位全0或全1,并等于低n位的最高位时不溢出(无符号高n位全0)

  • 相同机器数无符号数和有符号数高n位可能不同,低n位相同,故指令分无符号数乘指令、有符号数乘指令

  • 乘法运算比移位和加法等运算所用时间长,故往往用组合运算代替,例如x×20,20=24+22,故x×20=(x<<4)+(x<<2)

  • 乘法实现细节可在考前看重新看一遍王道回忆细节,前期理解即可

整数的除法运算
  • 整数除运算除了-2^(n-1)/-1会溢出,其他情况不溢出

  • 不能整除时需要舍入

    • 正数:商取比自身小的最接近的整数

    • 负数:商取比自身大的最接近整数(加偏移量2^k-1,右移k位)

  • 整数除法运算复杂,约30或更多时钟周期(除数为2的幂次形式,用右移代替)

  • 除法实现细节可在考前看重新看一遍王道回忆细节,前期理解即可

浮点数的加减运算

  • 对阶

    • 小阶看齐大阶,将阶码小的尾数右移一位,阶加一,直到两个数的阶码相等
  • 尾数求和

  • 规格化(若补码负数则关注第一个0位置,虽然IEEE754标准尾数是原码)

    • 最后形式:+/-1.xxx…xxx

    • 左规:结果为+/-0.0…01xxx…xxx时,需要左规,尾数左移一次,阶码减1,直到第一个1移到小数点左边,作为隐藏位

      • 每次阶码减1判断是否下溢,阶码下溢,结果为0
    • 右规:结果为+/-1x.xxx…xxx时,需要右规,尾数右移一次,阶码加1,直到第一个1移到小数点左边,作为隐藏位

      • 每次阶码加一后判断是否上溢,阶码上溢,中断处理
  • 舍入

    • IEEE754舍入方式

      • 就近舍入(舍入为最近可表示的数)

        • 非中间数:0舍1入,中间数:强迫结果为偶数
      • 朝+∞方向舍入(+∞方向最近的可表示的数)

      • 朝-∞方向舍入(-∞方向最近的可表示的数)

      • 朝0方向舍入=直接截去

    • 舍入结果可能导致尾数未规格化,需再次右规判断溢出情况

  • 若运算结果尾数为0,阶码也置0

在这里插入图片描述
例1
在这里插入图片描述
在这里插入图片描述
例2
在这里插入图片描述

不同类型转换

  • char—>int

    • 前面补0
  • int<—>unsigned

    • 都可能溢出丢失数据
  • int—>float

    • 不会发生溢出,但可能有数据舍入
  • double—>float或int

    • 可能发生溢出,可能舍入
  • float或double—>int

    • 数据向0方向截断
  • char—>int—>long—>double
    float—>double

    • 范围精度由小变大,无损失

在这里插入图片描述
在这里插入图片描述

浮点数的运算思维导图

在这里插入图片描述

考研真题

408 - 2023

下面是题目13的格式化表述:

13. 计算short型变量的机器数

若short型变量x=-8190,则x的机器数为【 】。

A. E002H

B. E001H

C. 9FFFH

D. 9FFEH

基础知识

在解析这个问题之前,让我们了解以下基础知识:

  1. short型变量:short是一种整数数据类型,通常占用16位内存空间。在计算机内部,整数通常以补码形式表示。这意味着正数和负数都有相应的二进制表示。

  2. 补码表示:补码是一种用于表示带符号整数的方法。正数的补码和原码相同,而负数的补码是将其绝对值的二进制表示按位取反,然后加1。

解析:
short型变量是补码表示的16位带符号整数。x是负数,可先求出8190的机器数,8190=8192-2=213- 2’,8190的机器数为0010 0000 0000 0000B -0000 0000 0000 0010B=0001 1111 11111110B,因此-8190的机器数为1110 0000 0000 0010B = E002H(按位取反,末位加1)。

首先,我们知道short型变量是16位的,因此需要计算-8190的16位补码表示。
2^13表示为10 0000 0000 0000(2)

  1. 首先,计算8190的二进制表示:8190 = 2^13 - 2 = 1 1111 1111 1110。

  2. 接下来,求-8190的补码,即将8190的二进制表示按位取反,然后加1。

    • 按位取反:
      • 0001 1111 1111 1110B
      • 1110 0000 0000 0001B
    • 加1:
      • 1110 0000 0000 0001B
      • +1↓
      • 1110 0000 0000 0010B

首先,将二进制数 1110 0000 0000 0010 分成四组,每组四个二进制位:

  • 1110(二进制)对应于 E(十六进制)。
  • 0000(二进制)对应于 0(十六进制)。
  • 0000(二进制)对应于 0(十六进制)。
  • 0010(二进制)对应于 2(十六进制)。

所以,x的机器数为1110 0000 0000 0010B。在十六进制表示中,答案是选项A:E002H。

14. 计算IEEE 754 单精度浮点数的值

已知float型变量用IEEE 754单精度浮点数格式表示。若float型变量x的机器数为80200000H,则x的值是什么?

A. -2^-128

B. -1.01x2^-127

C. -1.01x2^-126

D. 非数(NAN)
答案:A

基础知识

在解析这个问题之前,让我们了解以下基础知识:

  • IEEE 754 单精度浮点数:IEEE 754是一种标准,用于表示浮点数在计算机中的二进制格式。单精度浮点数使用32位二进制格式,分为符号位、阶码和尾数。

  • 规格化数(normalized numbers):对于规格化数,阶码部分不全为0或全为1,而是以一定的方式表示浮点数的阶。这使得浮点数可以表示较大或较小的数值范围。

  • 非规格化数(denormalized numbers):当阶码部分全为0时,就进入了非规格化数的领域。在这种情况下,尾数部分不再表示1.xxxx的形式,而是0.xxxx的形式。这意味着非规格化数表示非常接近零的小数值,但失去了一些精度。

在这里插入图片描述

在这里插入图片描述

16. 溢出和借位标志问题

问题: 已知 x 和 y 为 int 类型,当 x=100, y=200 时,执行“x减y”指令的到的溢出标志 OF 和借位标志 CF 分别为 0, 1,那么当 x=10, y=-20 时,执行该指令得到的 OF 和 CF 分别是( )。

A. OF=0, CF=0

B. OF=0, CF=1

C. OF=1, CF=0

D. OF=1, CF=1

答案:B. OF=0, CF=1

基础知识:

int为32位有符号整型,int 为 32 位有符号短整型,用补码表示,最高位为符号位,
表示范围为 在这里插入图片描述

当 x=10, y=-20 时,x-y=30,显然在表示范围之内,不溢出,OF=0。

当 x=10, y=-20 时,[x]补=[x]原=0000 0000 0000 0000 0000 0000 0000 1010B=0000000AH,[y]原=1000 0000 0000 0000 0000 0000 0001 0100B,[y]补=1111 1111 1111 1111 1111 1111 1110 1100=FFFFFFECH,显然0000000AH-FFFFFFECH不够减,需要借位,CF=1。

408 - 2022

13. 32位补码整数范围

问题: 32位补码所能表示的整数范围是?

A. -2^32 到 2^31 - 1

B. -2^31 到 2^31 - 1

C. -2^22 到 2^32 - 1

D. -2^31 到 2^32 - 1

答案: B. -2^31 到 2^31 - 1

基础知识: 在32位补码表示中,最高的1位用于表示符号位(0表示正数,1表示负数),剩下的31位用于表示数值。因此,32位补码可以表示的整数范围是从-231到231-1。

当然,以下是按照之前的结构以Markdown形式重构的题目和答案:

14. IEEE754单精度浮点数表示

问题: -0.4375的IEEE754单精度浮点数表示为何?

A. BEE0 0000H

B. BF60 0000H

C. BF70 0000H

D. C0E0 0000H

答案: A. BEE0 0000H

基础知识:

类型数符阶码尾数数值总位数
短浮点数182332

-0.4375=-1.75×2^-2,符号S =1,阶码E=-2+127= 125= 01111101B,尾数0.75=0.11B,
补齐至23位M = 110 0000 0000 0000 0000 0000B。

IEEE754单精度浮点数的格式包括符号位、阶码和尾数部分,总共32位。-0.4375的IEEE 754单精度浮点表示如下:

  • 符号位:0(表示正数)
  • 阶码部分:01111101(对应的十进制为125)
  • 尾数部分:110 0000 0000 0000 0000 0000

拼接起来为BEE0 0000H。

408 - 2021

13. 带符号整数的补码表示与大小比较

问题: 已知带符号整数用补码表示,变量 x,y,z 的机器数分别为 FFFDH,FFFDFH,7FFCH,下列结论中,正确的是?

A. 若 x、y 和 z 为无符号整数,则 z < x < y

B. 若 x、y 和 z 为无符号整数,则 x < y < z

C. 若 x、y 和 z 为带符号整数,则 x < y < z

D. 若 x、y 和 z 为带符号整数,则 y < x < z

答案:D

基础知识:

  1. 带符号整数的补码表示:在计算机中,带符号整数通常使用补码表示。在补码中,最高位为符号位(0 表示正数,1 表示负数),其余位表示数值。

  2. 大小比较规则:对于带符号整数的补码表示,如果两个数的符号位不同,那么符号位为 0 的数更大;如果两个数的符号位相同,那么数值部分越大的数更大。

根据题目中给出的机器数:

  • x 的机器数 FFFDH 表示的是负数,其原码为 1000 0000 0000 0010B,转换成十进制为 -3。
  • y 的机器数 FFFFH 表示的是负数,其原码为 1000 0000 0000 0001B,转换成十进制为 -1。
  • z 的机器数 7FFCH 表示的是正数,其原码为 0111 1111 1111 1100B,转换成十进制为 2044。

根据大小比较规则,有 -3 < -1 < 2044,因此 y < x < z。

所以正确答案是 D. 若 x、y 和 z 为带符号整数,则 y < x < z

14. IEEE754浮点格式表示精度问题

问题: 下列数值中,不能用 IEEE754 浮点格式精确表示的是?

A. 1.2

B. 1.25

C. 2.0

D. 2.5

答案:A

基础知识:

IEEE754 是一种用于表示浮点数的标准格式,它使用科学计数法来表示浮点数,包括三个部分:符号位、指数部分和尾数部分。IEEE754 浮点格式的小数部分通常采用二进制表示。

在 IEEE754 浮点格式中,有效数字部分通常表示成规格化的形式,即一个小数乘以 2 的幂次方。有效数字的小数部分通常是 1 和 0 组成的二进制小数。

对于一个数值能够被精确表示为 IEEE754 浮点数,其小数部分必须满足以下条件:

  • 可以表示成 (1 + 1/2 + 1/4 + 1/8 + …) 的形式,其中分母是 2 的幂次方。

现在来分析选项中的数值:

A. 1.2 = 6/5 = 1 + 1/5,不满足上述条件,因此不能用 IEEE754 浮点格式精确表示。

B. 1.25 = 5/4 = 1 + 1/4,满足上述条件,可以用 IEEE754 浮点格式精确表示。

C. 2.0 = 2,可以表示成 2 的幂次方,满足条件,可以用 IEEE754 浮点格式精确表示。

D. 2.5 = 5/2 = 1 + 1/2,满足上述条件,可以用 IEEE754 浮点格式精确表示。

所以,不能用 IEEE754 浮点格式精确表示的是 A. 1.2

(未完待续,逐张试卷分析中)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1062355.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Nginx搭建Rtmp流媒体服务,并使用Ffmpeg推流

文章目录 1.rtmp流媒体服务框架图2.nginx配置3.配置nginx4.使用ffmpeg推流5.实时推摄像头流 本项目在开发板上使用nginx搭建流媒体服务&#xff0c;利用ffmpeg进行推流&#xff0c;在pc上使用vlc media进行拉流播放。 1.rtmp流媒体服务框架图 2.nginx配置 下载&#xff1a;wge…

C++(STL容器适配器)

前言&#xff1a; 适配器也称配接器&#xff08;adapters&#xff09;在STL组件的灵活组合运用功能上&#xff0c;扮演着轴承、转换器的角色。 《Design Patterns》对adapter的定义如下&#xff1a;将一个class的接口转换为另一个class的接口&#xff0c;使原本因接口不兼容而…

2023年R1快开门式压力容器操作证模拟考试题库及R1快开门式压力容器操作理论考试试题

题库来源&#xff1a;安全生产模拟考试一点通公众号小程序 2023年R1快开门式压力容器操作证模拟考试题库及R1快开门式压力容器操作理论考试试题是由安全生产模拟考试一点通提供&#xff0c;R1快开门式压力容器操作证模拟考试题库是根据R1快开门式压力容器操作最新版教材&#…

6.Tensors For Beginners-What are Convector

Covectors &#xff08;协向量&#xff09; What‘s a covector Covectors are “basically” Row Vectors 在一定程度上&#xff0c;可认为 协向量 基本上就像 行向量。 但不能简单地认为 这就是列向量进行转置&#xff01; 行向量 和 列向量 是根本不同类型的对象。 …

026 - STM32学习笔记 - 液晶屏控制(三) - DMA2D快速绘制矩形、直线

026- STM32学习笔记 - 液晶屏控制&#xff08;三&#xff09; - DMA2D快速绘制矩形、直线等 上节直接操作LTDC在先视频上直接显示&#xff0c;我们直接操作显存地址空间中的内容&#xff0c;用来显示图形&#xff0c;但是相对来说&#xff0c;这种方法费时费力&#xff0c;这节…

矩阵的c++实现(2)

上一次我们了解了矩阵的运算和如何使用矩阵解决斐波那契数列&#xff0c;这一次我们多看看例题&#xff0c;了解什么情况下用矩阵比较合适。 先看例题 1.洛谷P1939 【模板】矩阵加速&#xff08;数列&#xff09; 模板题应该很简单。 补&#xff1a;1<n<10^9 10^9肯定…

进程调度算法之时间片轮转调度(RR),优先级调度以及多级反馈队列调度

1.时间片轮转调度算法(RR) round Robin 1.算法思想 公平地、轮流地为各个进程服务&#xff0c;让每个进程在一定时间间隔内都可以得到响应。 2.算法规则 按照各进程到达就绪队列的顺序&#xff0c;轮流让各个进程执行一个时间片&#xff08;如100ms&#xff09;。 若进程未…

项目_游戏|外星人入侵

导入pygame&#xff0c;设定游戏屏幕&#xff08;大小、颜色&#xff09;&#xff0c;及游戏循环、退出机制 创建设置类 导入ship&#xff0c;绘制飞船 图灵官网&#xff0c;源代码文件没法下载&#xff0c;从网上找图片&#xff0c;更改尺寸及后缀&#xff0c;存入文件导入。 …

JS-前端在dom中预览pdf等文件

1、将pdf等文件显示到dom元素中预览 pdf文件可以是blob、url、file类型等只要使用URL.createObjectURL(file)全部转为URL即可使用无需借助任何插件&#xff0c;只需要使用<object></object>标签即可实现 1.1、html <template><div class"home"…

【数据结构与算法】树、二叉树的概念及结构(详解)

前言: &#x1f4a5;&#x1f388;个人主页:​​​​​​Dream_Chaser&#xff5e; &#x1f388;&#x1f4a5; ✨✨专栏:http://t.csdn.cn/oXkBa ⛳⛳本篇内容:c语言数据结构--树以及二叉树的概念与结构 目录 一.树概念及结构 1.树的概念 1.1树与非树 树的特点&#xff1…

几分钟就搞定网站速度慢、网站卡等问题

为了改善网站加载速度&#xff0c;你可以考虑以下方法&#xff1a; 优化资源压缩&#xff1a;采用gzip或其他压缩算法来压缩网页的HTML、CSS和JavaScript等资源&#xff0c;从而减小数据传输的大小&#xff0c;提高加载速度。 精心挑选图片&#xff1a;选择适当的图片格式&…

7-2 图着色问题

输入样例&#xff1a; 6 8 3 2 1 1 3 4 6 2 5 2 4 5 4 5 6 3 6 4 1 2 3 3 1 2 4 5 6 6 4 5 1 2 3 4 5 6 2 3 4 2 3 4 输出样例&#xff1a; Yes Yes No No idea 注意合理的方案需满足&#xff1a;用到的颜色数 给定颜色数 solution #include <cstdio> #include &l…

防御—IPsecVPN

目录 1. 什么是数据认证&#xff0c;有什么作用&#xff0c;有哪些实现的技术手段&#xff1f; 数据认证的主要作用包括&#xff1a; 实现数据认证的主要手段包括&#xff1a; 2. 什么是身份认证&#xff0c;有什么作用&#xff0c;有哪些实现的技术手段&#xff1f; 3. 什…

Java小游戏:趣味猜数字

&#x1f451;专栏内容&#xff1a;Java⛪个人主页&#xff1a;子夜的星的主页&#x1f495;座右铭&#xff1a;前路未远&#xff0c;步履不停 目录 一、游戏介绍二、输入输出1、输出的控制台2、从键盘上输入 三、随机数生成四、游戏实现 Hello&#xff01;我们来用前面学过的东…

python执行pip指令时,提示“You should consider upgrading……”的解决方法

警告信息如下&#xff1a; WARNING: You are using pip version 21.1.2; however, version 21.3.1 is available. You should consider upgrading via the C:\Users\PycharmProjects\pythonProject\venv\Scripts\python.exe -m pip install --upgrade pip command.解决方法&am…

PsychoPy Coder 心理学实验 斯特鲁普效应

选题&#xff1a;斯特鲁普效应实验 选题来源&#xff1a;你知道的「有趣的心理学实验」有哪些&#xff1f; - 知乎 (zhihu.com) 测试目标&#xff1a;探索斯特鲁普效应&#xff0c;即被试在判断文字颜色时&#xff0c;当文字的颜色与其所表示的颜色名称不一致时&#xff0c;是…

JS-Dom转为图片,并放入pdf中进行下载

1、将dom转换为图片 这里我们使用html2canvas工具插件先将dom转为canvas元素然后canvas拥有一个方法可以将绘制出来的图形转为url然后下载即可注意&#xff1a;如果元素使用了渐变背景并透明的话&#xff0c;生成的图片可能会有点问题。我下面这个案例使用了渐变背景实现元素对…

LLM下半场之Agent基础能力概述:Profile、Memory、Plan、Action、Eval学习笔记

一.Agent发展将会是LLM的下半场 目前大家都在讨论LLM&#xff0c;LLM解决的问题是帮助机器像人类一样理解彼此的意图&#xff0c;本质上来讲&#xff0c;LLM更像是一个技术或者工具。但是人类社会发生变革的引线&#xff0c;往往是一个产品或者解决方案&#xff0c;比如电池技…

润滑油泵控制(博途SCL源代码)

有关博途PLC定时器的各种使用方法请参考下面文章链接: 博途PLC IEC定时器编程应用(SCL语言)_博图 定时器-CSDN博客博途PLC定时器支持数据类型TIME 类型 ,写法支持T#2M10S 、T#10S等,时基是MS所以如果设置1M用 DINT数据类型就是60000,大部分HMI上数据类型很多不支持IEC的…

IDEA中maven无法下载依赖解决方案

如果你尝试了很多网上的办法 仍然没有解决 那么很有可能和我一样碰到**了&#xff0c;解决办法千奇百怪&#xff0c; 解决之前&#xff08;山丹丹的那个红艳艳&#xff09;都没我屏幕红&#xff0c;本人试了一下几种 1、检查maven配置 settings.xml(应该都没问题)&#xff0c…