sheng的学习笔记-【中文】【吴恩达课后测验】Course 1 - 神经网络和深度学习 - 第三周测验

news2024/12/24 2:34:03

课程1_第3周_测验题

目录:目录

第一题

1.以下哪一项是正确的?

A. 【  】 a [ 2 ] ( 12 ) a^{[2](12)} a[2](12)是第12层,第2个训练数据的激活向量。

B. 【  】X是一个矩阵,其中每个列都是一个训练示例。

C. 【  】 a 4 [ 2 ] a^{[2]}_4 a4[2] 是第2层,第4个训练数据的激活输出。

D. 【  】 a 4 [ 2 ] a^{[2]}_4 a4[2] 是第2层,第4个神经元的激活输出。

E. 【  】 a [ 2 ] a^{[2]} a[2] 表示第2层的激活向量。

F. 【  】 a [ 2 ] ( 12 ) a^{[2](12)} a[2](12)是第2层,第12个数据的激活向量。

G. 【  】 X X X是一个矩阵,其中每个行是一个训练数据。

答案:

B.【 √ 】X是一个矩阵,其中每个列都是一个训练示例。

D.【 √ 】 a 4 [ 2 ] a^{[2]}_4 a4[2] 是第2层,第4个神经元的激活输出。

E.【 √ 】 a [ 2 ] a^{[2]} a[2] 表示第2层的激活向量。

F.【 √ 】 a [ 2 ] ( 12 ) a^{[2](12)} a[2](12)是第2层,第12个数据的激活向量。

第二题

2.对于隐藏单元,tanh激活通常比sigmoid激活函数更有效,因为其输出的平均值接近于零,因此它可以更好地将数据集中到下一层。

A. 【  】对
B. 【  】不对

答案:

A.【 √ 】对

note:正如tanh所看到的,tanh的输出在-1和1之间,因此它将数据集中在一起,使得下一层的学习变得更加简单。

第三题

3.以下哪一个是层的正向传播的正确矢量化实现,其中 1 ≤ l ≤ L 1 \le l \le L 1lL

A. 【  】

Z [ l ] = W [ l ] A [ l ] + b [ l ] Z^{[l]}=W^{[l]}A^{[l]}+b^{[l]} Z[l]=W[l]A[l]+b[l]

A [ l + 1 ] = g [ l ] ( Z [ l ] ) A^{[l+1]}=g^{[l]}(Z^{[l]}) A[l+1]=g[l](Z[l])

B. 【  】

Z [ l ] = W [ l ] A [ l ] + b [ l ] Z^{[l]}=W^{[l]}A^{[l]}+b^{[l]} Z[l]=W[l]A[l]+b[l]

A [ l + 1 ] = g [ l + 1 ] ( Z [ l ] ) A^{[l+1]}=g^{[l+1]}(Z^{[l]}) A[l+1]=g[l+1](Z[l])

C. 【  】

Z [ l ] = W [ l − 1 ] A [ l ] + b [ l ] Z^{[l]}=W^{[l-1]}A^{[l]}+b^{[l]} Z[l]=W[l1]A[l]+b[l]

A [ l ] = g [ l ] ( Z [ l ] ) A^{[l]}=g^{[l]}(Z^{[l]}) A[l]=g[l](Z[l])

D. 【  】

Z [ l ] = W [ l ] A [ l − 1 ] + b [ l ] Z^{[l]}=W^{[l]}A^{[l-1]}+b^{[l]} Z[l]=W[l]A[l1]+b[l]

A [ l ] = g [ l ] ( Z [ l ] ) A^{[l]}=g^{[l]}(Z^{[l]}) A[l]=g[l](Z[l])

答案:

D.【 √ 】

Z [ l ] = W [ l ] A [ l − 1 ] + b [ l ] Z^{[l]}=W^{[l]}A^{[l-1]}+b^{[l]} Z[l]=W[l]A[l1]+b[l]

A [ l ] = g [ l ] ( Z [ l ] ) A^{[l]}=g^{[l]}(Z^{[l]}) A[l]=g[l](Z[l])

第四题

4.您正在构建一个用于识别黄瓜(y=1)与西瓜(y=0)的二进制分类器。对于输出层,您建议使用哪一个激活函数?

A. 【  】ReLU
B. 【  】Leaky ReLU
C. 【  】sigmoid
D. 【  】tanh

答案:

C.【 √ 】sigmoid

note:

  1. 来自sigmoid函数的输出值可以很容易地理解为概率。
  2. Sigmoid输出的值介于0和1之间,这使其成为二元分类的一个非常好的选择。 如果输出小于0.5,则可以将其归类为0,如果输出大于0.5,则归类为1。 它也可以用tanh来完成,但是它不太方便,因为输出在-1和1之间。

第五题

5.考虑以下代码:
A = np.random.randn(4,3)
B = np.sum(A, axis = 1, keepdims = True)
B.shape是多少?

A. 【  】(4,)

B. 【  】(1, 3)

C. 【  】(, 3)

D. 【  】(4, 1)

答案:

D.【 √ 】shape = (4, 1)

note:我们使用(keepdims = True)来确保A.shape是(4,1)而不是(4,),它使我们的代码更加严格。

第六题

6.假设你已经建立了一个神经网络。您决定将权重和偏差初始化为零。以下哪项陈述是正确的?(选出所有正确项)

A. 【  】第一隐藏层中的每个神经元将执行相同的计算。因此,即使在梯度下降的多次迭代之后,层中的每个神经元将执行与其他神经元相同的计算。

B. 【  】第一隐层中的每个神经元在第一次迭代中执行相同的计算。但是在梯度下降的一次迭代之后,他们将学会计算不同的东西,因为我们已经“破坏了对称性”。

C. 【  】第一个隐藏层中的每个神经元将执行相同的计算,但不同层中的神经元执行不同的计算,因此我们完成了课堂上所描述的“对称性破坏”。

D. 【  】即使在第一次迭代中,第一个隐藏层的神经元也会执行不同的计算,因此,它们的参数会以自己的方式不断演化。

答案:

A.【 √ 】第一个隐藏层中的每个神经元节点将执行相同的计算。 所以即使经过多次梯度下降迭代后,层中的每个神经元节点都会计算出与其他神经元节点相同的东西。

第七题

7.逻辑回归的权重w应该随机初始化,而不是全部初始化为全部零,否则,逻辑回归将无法学习有用的决策边界,因为它将无法“打破对称”。

A. 【  】对
B. 【  】不对

答案:

B.【 √ 】不对

note:
Logistic回归没有隐藏层。 如果将权重初始化为零,则Logistic回归中的第一个示例x将输出零,但Logistic回归的导数取决于不是零的输入x(因为没有隐藏层)。 因此,在第二次迭代中,如果x不是常量向量,则权值遵循x的分布并且彼此不同。

第八题

8.你已经为所有隐藏的单位建立了一个使用tanh激活的网络。使用np.random.randn(…, …) * 1000将权重初始化为相对较大的值。会发生什么?

A. 【  】没关系。只要随机初始化权重,梯度下降不受权重大小的影响。

B. 【  】这将导致tanh的输入也非常大,从而导致梯度也变大。因此,你必须将设置得非常小,以防止发散;这将减慢学习速度。

C. 【  】这将导致tanh的输入也非常大,导致单元被“高度激活”。与权重从小值开始相比,加快了学习速度。

D. 【  】这将导致tanh的输入也非常大,从而导致梯度接近于零。因此,优化算法将变得缓慢。

答案:

D.【 √ 】这将导致tanh的输入也很大,因此导致梯度接近于零, 优化算法将因此变得缓慢。

note:tanh对于较大的值变得平坦,这导致其梯度接近于零。 这减慢了优化算法。

第九题

9.考虑以下1个隐层的神经网络:
在这里插入图片描述

A. 【  】 W [ 1 ] W^{[1]} W[1]的形状是(2, 4)

B. 【  】 b [ 1 ] b^{[1]} b[1]的形状是(4, 1)

C. 【  】 W [ 1 ] W^{[1]} W[1]的形状是(4, 2)

D. 【  】 b [ 1 ] b^{[1]} b[1]的形状是(2, 1)

E. 【  】 W [ 2 ] W^{[2]} W[2]的形状是(1, 4)

F. 【  】 b [ 2 ] b^{[2]} b[2]的形状是(4, 1)

G. 【  】 W [ 2 ] W^{[2]} W[2]的形状是(4, 1)

H. 【  】 b [ 2 ] b^{[2]} b[2]的形状是(1, 1)

答案:

B.【 √ 】 b [ 1 ] b^{[1]} b[1]的形状是(4, 1)

C.【 √ 】 W [ 1 ] W^{[1]} W[1]的形状是(4, 2)

E.【 √ 】 W [ 2 ] W^{[2]} W[2]的形状是(1, 4)

H.【 √ 】 b [ 2 ] b^{[2]} b[2]的形状是(1, 1)

第十题

10.在和上一问相同的网络中, Z [ 1 ] Z^{[1]} Z[1] A [ 1 ] A^{[1]} A[1]的维度是多少?

A. 【  】 Z [ 1 ] Z^{[1]} Z[1] A [ 1 ] A^{[1]} A[1]是(4,1)

B. 【  】 Z [ 1 ] Z^{[1]} Z[1] A [ 1 ] A^{[1]} A[1]是(1,4)

C. 【  】 Z [ 1 ] Z^{[1]} Z[1] A [ 1 ] A^{[1]} A[1]是(4,m)

D. 【  】 Z [ 1 ] Z^{[1]} Z[1] A [ 1 ] A^{[1]} A[1]是(4,2)

答案:

C.【 √ 】 Z [ 1 ] Z^{[1]} Z[1] A [ 1 ] A^{[1]} A[1]是(4,m)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1060323.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

互联网Java工程师面试题·MyBatis 篇·第一弹

目录 1、什么是 Mybatis? 2、Mybaits 的优点 3、MyBatis 框架的缺点 4、MyBatis 框架适用场合 5、MyBatis 与 Hibernate 有哪些不同? 6、#{}和${}的区别是什么? 7、当实体类中的属性名和表中的字段名不一样 ,怎么办 &#x…

ERROR 6400 --- [ main] com.zaxxer.hikari.pool.HikariPool : root - Exception

在引用的日志中,报告了Hikari连接池初始化期间的异常。具体异常信息是"Exception during pool initialization"。这个异常可能是由于与MySQL数据库的通信链接失败导致的。在引用中也提到了与SSL连接相关的错误。 根据引用中提供的代码,可以看到…

docker方式启动一个java项目-Nginx本地有代码,并配置反向代理

文章目录 案例导入说明1.安装MySQL1.1.准备目录1.2.运行命令1.3.修改配置1.4.重启 2.导入SQL3.导入Demo工程3.1.分页查询商品(仔细看代码,很多新的MP编程技巧)3.2.新增商品3.3.修改商品3.4.修改库存3.5.删除商品3.6.根据id查询商品3.7.根据id…

html 高性能 简易轮播图

目标 实现简易轮播图动画效果 设计理念 无论有多少个轮播图,仅使用常数个轮播图tab,通过js替换更新dom内容,实现性能优化;使用bfc避免回流,(重绘是基本上无法避免,不在考虑)&#…

CompletableFuture异步回调

CompletableFuture异步回调 CompletableFutureFuture模式CompletableFuture详解1.CompletableFuture的UML类关系2.CompletionStage接口3.使用runAsync和supplyAcync创建子任务4.设置子任务回调钩子5.调用handle()方法统一处理异常和结果6.线程池的使用 异步任务的串行执行thenA…

【做题笔记】多项式/FFT/NTT

HDU1402 - A * B Problem Plus 题目链接 大数乘法是多项式的基础应用,其原理是将多项式 f ( x ) a 0 a 1 x a 2 x 2 a 3 x 3 ⋯ a n x n f(x)a_0a_1xa_2x^2a_3x^3\cdotsa_nx^n f(x)a0​a1​xa2​x2a3​x3⋯an​xn中的 x 10 x10 x10,然后让大数的…

20230922 比赛总结

反思 A 考场降智,没想到拆分成 2 α 5 β x 2^{\alpha}5^{\beta}x 2α5βx 的形式,一直在卡精度(thx anti) B 又是随机题,又是 b l bl bl 题,差点又被区分了 C 我是 s b sb sb,排序顺序有点小问题…

concrt140.dll丢失怎么恢复?教你三种最简单的解决方法

今天早上,当我打开电脑时,突然看到一个提示窗口,显示找不到 concrt140.dll 文件。我一下子懵了,不知道这是怎么回事,也不知道如何解决这个问题。于是,我开始了寻找答案的旅程。首先,我了解到 co…

深入理解浏览器渲染原理

文章目录 浏览器是如何渲染页面的渲染流程解析HTML(构建DOM树)解析过程中遇到JS代码 样式计算1. 解析CSS代码2. 转换样式表中的属性值,使其标准化3. 计算DOM树中每个节点的具体样式CSS继承规则CSS层叠规则 布局分层分层update layer tree 绘制…

博物馆藏品管理系统-美术馆藏品管理系统

一、项目背景 文物作为前史留存下来最为珍贵的遗物,具有非常高的科学价值和艺术价值,博物馆的存在便是为了保存这些珍贵的前史文化遗产,所以对博物馆的建造必定要重视品质问题。对博物馆的库存办理工作也必定要注意细节,不能出一…

【LeetCode热题100】--20.有效的括号

20.有效的括号 使用栈&#xff1a; class Solution {public boolean isValid(String s) {Stack<Character> stack new Stack<>();int num s.length();for(int i 0;i<num;i){char c s.charAt(i);if(c(||c[||c{){stack.push(c);}else if(stack.isEmpty() ||c…

矩阵求导中的分子布局和分母布局

1.求偏导的自变量的符号区别 使用标量、向量和矩阵总共有九种可能性。请注意&#xff0c;当我们考虑每个自变量和因变量中更多数量的分量时&#xff0c;我们可能会留下非常多的可能性。下表收集了最能以矩阵形式最整齐地组织的六种导数。 在这里&#xff0c;我们使用了最一般…

AI配套的技术: 矢量数据库的概念

一、说明 随着人工智能的快速采用和围绕大型语言模型发生的创新&#xff0c;我们需要在所有这些的中心&#xff0c;能够获取大量数据&#xff0c;将其上下文化&#xff0c;处理它&#xff0c;并使其能够有意义地搜索。 为原生整合生成式 AI 功能而构建的生成式 AI 流程和应用程…

Java+Redis:布隆过滤器,打造高效数据过滤神器!

&#x1f389;&#x1f389;欢迎来到我的CSDN主页&#xff01;&#x1f389;&#x1f389; &#x1f3c5;我是尘缘&#xff0c;一个在CSDN分享笔记的博主。&#x1f4da;&#x1f4da; &#x1f449;点击这里&#xff0c;就可以查看我的主页啦&#xff01;&#x1f447;&#x…

基于蝴蝶优化的BP神经网络(分类应用) - 附代码

基于蝴蝶优化的BP神经网络&#xff08;分类应用&#xff09; - 附代码 文章目录 基于蝴蝶优化的BP神经网络&#xff08;分类应用&#xff09; - 附代码1.鸢尾花iris数据介绍2.数据集整理3.蝴蝶优化BP神经网络3.1 BP神经网络参数设置3.2 蝴蝶算法应用 4.测试结果&#xff1a;5.M…

IIC学习笔记(参考小梅哥教程)

IIC: inter-integrated circuit bus ,即 集成电路总线&#xff0c;串行通信&#xff0c;多主从架构&#xff0c;半双工&#xff08;对讲机&#xff09;&#xff0c;小数据量场合&#xff0c;短距离传输。 速率&#xff1a;100kb/s 、 400kb/s 、 3.4Mkb/s 传输单位&#xff1…

《C和指针》笔记31:多维数组的数组名、指向多维数组的指针、作为函数参数的多维数组

文章目录 1. 指向多维数组的数组名2. 指向多维数组的指针3. 作为函数参数的多维数组 1. 指向多维数组的数组名 我们知道一维数组名的值是一个指针常量&#xff0c;它的类型是“指向元素类型的指针”&#xff0c;它指向数组的第1个元素。那么多维数组的数组名代表什么呢&#x…

【C++】你看懂C++的类和对象了么

目录 类 默认成员函数 构造函数 析构函数 拷贝构造函数 赋值运算符重载 运算符重载 赋值运算符重载 前置和后置重载 const成员 取地址及const取地址操作符重载 再谈构造函数 构造函数体赋值 初始化列表 explicit关键字 static成员 友元 友元函数 友元类 内…

Springboot+vue的时间管理系统(有报告)。Javaee项目,springboot vue前后端分离项目。

演示视频&#xff1a; Springbootvue的时间管理系统&#xff08;有报告&#xff09;。Javaee项目&#xff0c;springboot vue前后端分离项目。 项目介绍&#xff1a; 本文设计了一个基于Springbootvue的前后端分离的时间管理系统&#xff0c;采用M&#xff08;model&#xff0…

计算机毕设 大数据工作岗位数据分析与可视化 - python flask

文章目录 0 前言1 课题背景2 实现效果3 项目实现3.1 概括 3.2 Flask实现3.3 HTML页面交互及Jinja2 4 **完整代码**5 最后 0 前言 &#x1f525; 这两年开始毕业设计和毕业答辩的要求和难度不断提升&#xff0c;传统的毕设题目缺少创新和亮点&#xff0c;往往达不到毕业答辩的要…