机器学习 不均衡数据采样方法:imblearn 库的使用

news2025/1/12 13:24:38

✅作者简介:人工智能专业本科在读,喜欢计算机与编程,写博客记录自己的学习历程。
🍎个人主页:小嗷犬的个人主页
🍊个人网站:小嗷犬的技术小站
🥭个人信条:为天地立心,为生民立命,为往圣继绝学,为万世开太平。


本文目录

    • imblearn 简介
    • imblearn 安装
    • 欠采样方法
      • ClusterCentroids
      • EditedNearestNeighbours
      • CondensedNearestNeighbour
      • AllKNN
      • InstanceHardnessThreshold
    • 过采样方法
      • SMOTE
      • SMOTE-NC
      • SMOTEN
      • ADASYN
      • BorderlineSMOTE
      • KMeansSMOTE
      • SVMSMOTE
    • 组合采样方法
      • SMOTETomek
      • SMOTEENN
    • imblearn 库使用示例
      • 导入库
      • 查看原始数据分布
      • 采样后的数据分布
      • 不同采样方法的可视化对比


imblearn 简介

imblearn(全名为 imbalanced-learn )是一个用于处理不平衡数据集的 Python 库。在许多实际情况中,数据集中的类别分布可能是不均衡的,这意味着某些类别的样本数量远远超过其他类别。这可能会导致在训练机器学习模型时出现问题,因为模型可能会偏向于学习多数类别。

imblearn 库提供了一系列处理不平衡数据集的方法,包括:

  1. 欠采样方法:减少多数类别的样本以使其与少数类别相匹配。
  2. 过采样方法:通过生成合成样本来增加少数类别的样本数量,使其与多数类别相匹配。
  3. 组合采样方法:结合了欠采样和过采样的技术,以获得更好的平衡。

imblearn 库包含了许多常用的不平衡数据处理算法,例如SMOTE(Synthetic Minority Over-sampling Technique)、Tomek Links、RandomUnderSampler、RandomOverSampler 等等。

这个库对于处理各种类型的不平衡数据问题非常有用,可以提升在这类数据上训练模型的性能。


imblearn 安装

imblearn 库可以通过 pip 安装:

pip install imblearn

欠采样方法

欠采样方法通过减少多数类别的样本数量来平衡数据集。这些方法通常用于处理大型数据集,因为它们可以减少数据集的大小。

下面我们将介绍 imblearn 库中的一些常用欠采样方法。

ClusterCentroids

ClusterCentroids 是一种欠采样方法,它通过聚类算法来减少多数类别的样本数量。它通过将多数类别的样本聚类为多个簇,然后对每个簇选择其中心作为新的样本来实现。

具体来说,ClusterCentroids 采取以下步骤:

  1. 将多数类别的样本分成几个簇(clusters)。
  2. 对于每个簇,选择其中心点作为代表样本。
  3. 最终的训练集将包含所有少数类别样本以及选定的多数类别样本中心点。

EditedNearestNeighbours

EditedNearestNeighbours (简称 ENN)是一种欠采样方法,它通过删除多数类别中的异常值来减少多数类别的样本数量。它通过以下步骤实现:

  1. 对于每一个多数类别的样本,找到它的 k 个最近邻居(根据指定的距离度量)。
  2. 如果多数类别的样本的大多数最近邻居属于与它不同的类别(即多数类别样本的大多数邻居属于少数类别),则将该样本移除。

CondensedNearestNeighbour

CondensedNearestNeighbour 是一种欠采样方法,它通过选择多数类别样本的子集来减少多数类别的样本数量。它通过以下步骤实现:

  1. 将少数类别的样本全部保留在训练集中。
  2. 逐一考察多数类别的样本。对于每一个多数类别的样本,找到它的k个最近邻居(根据指定的距离度量)。
  3. 如果多数类别的样本能够被少数类别样本所代表,即该多数类别样本的最近邻居中存在少数类别样本,则将该多数类别样本移除。

AllKNN

AllKNN 是一种欠采样方法,它在执行时会多次应用 ENN(Edited Nearest Neighbours)算法,并在每次迭代时逐步增加最近邻的数量。

AllKNN 通过多次应用 ENN,并逐步增加最近邻的数量,可以更加彻底地清除位于类别边界附近的噪声样本。

InstanceHardnessThreshold

InstanceHardnessThreshold 是一种欠采样方法,它通过计算每个样本的难度分数来减少多数类别的样本数量。它通过以下步骤实现:

  1. 计算多数类别中每个样本的难度分数。
  2. 剔除难度分数低于指定阈值的样本。
  3. 将剩余样本与少数类别的样本组合成新的训练集。

过采样方法

过采样方法通过生成合成样本来增加少数类别的样本数量,使其与多数类别相匹配。这些方法通常用于处理小型数据集,因为它们可以增加数据集的大小。

下面我们将介绍 imblearn 库中的一些常用过采样方法。

SMOTE

SMOTE(Synthetic Minority Over-sampling Technique)是一种过采样方法,它通过生成合成样本来增加少数类别的样本数量,使其与多数类别相匹配。

SMOTE 的原理基于对少数类样本的插值。具体而言,它首先随机选择一个少数类样本作为起始点,然后从该样本的近邻中随机选择一个样本作为参考点。然后,SMOTE 通过在这两个样本之间的线段上生成新的合成样本来增加数据集的样本数量。

SMOTE-NC

SMOTE-NC(SMOTE for Nominal and Continuous features)是一种用于处理同时包含数值和分类特征的数据集的过采样方法。它是对传统的 SMOTE 算法的扩展,能够处理同时存在数值和分类特征的情况,但不适用于仅包含分类特征的数据集。

SMOTE-NC 的原理与 SMOTE 类似,但在生成合成样本时有所不同。它的生成过程如下:

  1. 对于选定的起始点和参考点,计算它们之间的差距,得到一个向量。
  2. 将连续特征(数值特征)的差距乘以一个随机数,得到新样本的位置。这一步与传统的 SMOTE 相同。
  3. 对于分类特征,随机选择起始点或参考点的特征值作为新合成样本的特征值。
  4. 对于连续特征和分类特征,分别使用插值和随机选择的方式来生成新样本的特征值。

通过这种方式,SMOTE-NC 能够处理同时包含数值和分类特征的数据集,并生成新的合成样本来增加少数类样本的数量。这样可以在平衡数据集的同时保持数值和分类特征的一致性。

SMOTEN

SMOTEN(Synthetic Minority Over-sampling Technique for Nominal)是一种专门针对分类特征的过采样方法,用于解决类别不平衡问题。它是对 SMOTE 算法的扩展,适用于仅包含分类特征的数据集。

SMOTEN 的原理与 SMOTE 类似,但在生成合成样本时有所不同。它的生成过程如下:

  1. 对于选定的起始点和参考点,计算它们之间的差距,得到一个向量。
  2. 对于每个分类特征,统计起始点和参考点之间相应特征的唯一值(类别)的频率。
  3. 根据特征的频率,确定新样本的位置。具体而言,对于每个分类特征,随机选择一个起始点或参考点的类别,并在该类别中随机选择一个值作为新合成样本的特征值。
  4. 对于连续特征,采用传统的 SMOTE 方式,通过在差距向量上乘以一个随机数,确定新样本的位置,并使用插值来生成新样本的特征值。

ADASYN

ADASYN(Adaptive Synthetic)是一种基于自适应合成的过采样算法。它与 SMOTE 方法相似,但根据类别的局部分布估计生成不同数量的样本。

ADASYN 根据样本之间的差距,计算每个样本的密度因子。密度因子表示该样本周围少数类样本的密度。较低的密度因子表示该样本所属的区域缺乏少数类样本,而较高的密度因子表示该样本周围有更多的少数类样本。

BorderlineSMOTE

BorderlineSMOTE(边界 SMOTE)是一种过采样算法,是对原始 SMOTE 算法的改进和扩展。它能够检测并利用边界样本生成新的合成样本,以解决类别不平衡问题。

BorderlineSMOTESMOTE 算法的基础上进行了改进,通过识别边界样本来更有针对性地生成新的合成样本。边界样本是指那些位于多数类样本和少数类样本之间的样本,它们往往是难以分类的样本。通过识别并处理这些边界样本,BorderlineSMOTE 能够提高分类器对难以分类样本的识别能力。

KMeansSMOTE

KMeansSMOTE 的关键在于使用 KMeans 聚类将数据样本划分为不同的簇,并通过识别边界样本来有针对性地进行合成样本的生成。这种方法可以提高合成样本的多样性和真实性,因为它仅在边界样本周围进行过采样,而不是在整个少数类样本集上进行。

SVMSMOTE

SVMSMOTE 是一种基于 SMOTE 算法的变体,其特点是利用支持向量机(SVM)算法来检测用于生成新的合成样本的样本。通过将数据集中的少数类样本划分为支持向量和非支持向量,SVMSMOTE 能够更准确地选择样本进行合成。对于每个少数类支持向量,它选择其最近邻中的一个作为参考点,并通过计算其与参考点之间的差距来生成新的合成样本。


组合采样方法

组合采样方法结合了欠采样和过采样的技术,以获得更好的平衡。

下面我们将介绍 imblearn 库中的一些常用组合采样方法。

SMOTETomek

SMOTETomek 是一种组合采样方法,它结合了 SMOTETomek Links 算法。Tomek Links 是一种欠采样方法,它通过删除多数类别样本和少数类别样本之间的边界样本来减少多数类别的样本数量。

SMOTETomek 通过结合 SMOTETomek Links 算法,能够同时处理多数类别和少数类别的样本,以获得更好的平衡。

SMOTEENN

SMOTEENN 是一种组合采样方法,它结合了 SMOTEENN 算法。

相比于 SMOTETomek,由于 SMOTEENN 结合了 ENN 算法,因此它能够更容易地清除位于类别边界附近的噪声样本。


imblearn 库使用示例

下面我们将通过一个示例来演示 imblearn 库的使用。

导入库

首先,我们需要导入一些需要用到的库:

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

from sklearn.datasets import load_breast_cancer  # sklearn 乳腺癌数据集
from imblearn.under_sampling import ClusterCentroids, EditedNearestNeighbours
from imblearn.over_sampling import SMOTE, ADASYN
from imblearn.combine import SMOTEENN, SMOTETomek

查看原始数据分布

我们使用 sklearn 自带的乳腺癌数据集作为示例数据集。首先,我们导入数据集,并查看数据集的基本信息:

data = load_breast_cancer()

X = data.data
y = data.target

print(f"类别为 0 的样本数: {X[y == 0].shape[0]}, 类别为 1 的样本数: {X[y == 1].shape[0]}")

sns.set_style("darkgrid")
sns.scatterplot(data=data, x=X[:, 0], y=X[:, 1], hue=y)
plt.xlabel(f"{data.feature_names[0]}")
plt.ylabel(f"{data.feature_names[1]}")
plt.title("Original")
plt.show()

输出结果如下:

类别为 0 的样本数: 212, 类别为 1 的样本数: 357

原始数据类别分布

采样后的数据分布

接下来,我们使用 imblearn 库中的一些采样方法来处理数据集,以获得更好的平衡。

data = load_breast_cancer()

X = data.data
y = data.target

sampler1 = ClusterCentroids(random_state=0)
sampler2 = EditedNearestNeighbours()
sampler3 = SMOTE(random_state=0)
sampler4 = ADASYN(random_state=0)
sampler5 = SMOTEENN(random_state=0)
sampler6 = SMOTETomek(random_state=0)

X1, y1 = sampler1.fit_resample(X, y)
X2, y2 = sampler2.fit_resample(X, y)
X3, y3 = sampler3.fit_resample(X, y)
X4, y4 = sampler4.fit_resample(X, y)
X5, y5 = sampler5.fit_resample(X, y)
X6, y6 = sampler6.fit_resample(X, y)

print(
    f"ClusterCentroids: 类别为 0 的样本数: {X1[y1 == 0].shape[0]}, 类别为 1 的样本数: {X1[y1 == 1].shape[0]}"
)
print(
    f"EditedNearestNeighbours: 类别为 0 的样本数: {X2[y2 == 0].shape[0]}, 类别为 1 的样本数: {X2[y2 == 1].shape[0]}"
)
print(
    f"SMOTE: 类别为 0 的样本数: {X3[y3 == 0].shape[0]}, 类别为 1 的样本数: {X3[y3 == 1].shape[0]}"
)
print(
    f"ADASYN: 类别为 0 的样本数: {X4[y4 == 0].shape[0]}, 类别为 1 的样本数: {X4[y4 == 1].shape[0]}"
)
print(
    f"SMOTEENN: 类别为 0 的样本数: {X5[y5 == 0].shape[0]}, 类别为 1 的样本数: {X5[y5 == 1].shape[0]}"
)
print(
    f"SMOTETomek: 类别为 0 的样本数: {X6[y6 == 0].shape[0]}, 类别为 1 的样本数: {X6[y6 == 1].shape[0]}"
)

输出结果如下:

ClusterCentroids: 类别为 0 的样本数: 212, 类别为 1 的样本数: 212
EditedNearestNeighbours: 类别为 0 的样本数: 212, 类别为 1 的样本数: 320
SMOTE: 类别为 0 的样本数: 357, 类别为 1 的样本数: 357
ADASYN: 类别为 0 的样本数: 358, 类别为 1 的样本数: 357
SMOTEENN: 类别为 0 的样本数: 304, 类别为 1 的样本数: 313
SMOTETomek: 类别为 0 的样本数: 349, 类别为 1 的样本数: 349

不同采样方法的可视化对比

下面我们将使用 matplotlibseaborn 库来可视化不同采样方法的效果。

sns.set_style("darkgrid")
plt.figure(figsize=(9, 18))

plt.subplot(4, 2, 1)
sns.scatterplot(data=data, x=X1[:, 0], y=X1[:, 1], hue=y1)
plt.title("ClusterCentroids")

plt.subplot(4, 2, 2)
sns.scatterplot(data=data, x=X2[:, 0], y=X2[:, 1], hue=y2)
plt.title("EditedNearestNeighbours")

plt.subplot(4, 2, 3)
sns.scatterplot(data=data, x=X3[:, 0], y=X3[:, 1], hue=y3)
plt.title("SMOTE")

plt.subplot(4, 2, 4)
sns.scatterplot(data=data, x=X4[:, 0], y=X4[:, 1], hue=y4)
plt.title("ADASYN")

plt.subplot(4, 2, 5)
sns.scatterplot(data=data, x=X5[:, 0], y=X5[:, 1], hue=y5)
plt.title("SMOTEENN")

plt.subplot(4, 2, 6)
sns.scatterplot(data=data, x=X6[:, 0], y=X6[:, 1], hue=y6)
plt.title("SMOTETomek")

plt.show()

对比结果如下:

采样后数据类别分布

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1058319.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【Hello Linux】多路转接之 epoll

本篇博客介绍: 多路转接之epoll 多路转接之epoll 初识epollepoll相关系统调用epoll的工作原理epoll服务器编写成员变量构造函数 循环函数HandlerEvent函数epoll的优缺点 我们学习epoll分为四部分 快速理解部分概念 快速的看一下部分接口讲解epoll的工作原理手写epo…

找不到msvcr120.dll怎么办?电脑缺失msvcr120.dll的修复方法

msvcr120.dll 是 Microsoft Visual C Redistributable Package 中的一个动态链接库文件,它包含了 C 运行时库的一些功能。这个文件通常与 Visual C 2010 编译器一起使用,用于支持一些大型游戏和应用程序的运行。msvcr120.dll 文件的主要作用是提供 C 语言…

远程代码执行渗透测试—Server2128

远程代码执行渗透测试 任务环境说明: √ 服务器场景:Server2128(开放链接) √服务器场景操作系统:Windows √服务器用户名:Administrator密码:pssw0rd 1.找出靶机桌面上文件夹1中的文件RCEBac…

【AI视野·今日Robot 机器人论文速览 第四十六期】Tue, 3 Oct 2023

AI视野今日CS.Robotics 机器人学论文速览 Tue, 3 Oct 2023 Totally 76 papers 👉上期速览✈更多精彩请移步主页 Daily Robotics Papers Generalized Animal Imitator: Agile Locomotion with Versatile Motion Prior Authors Ruihan Yang, Zhuoqun Chen, Jianhan M…

RabbitMQ-网页使用消息队列

1.使用消息队列 几种模式 从最简单的开始 添加完新的虚拟机可以看到,当前admin用户的主机访问权限中新增的刚添加的环境 1.1查看交换机 交换机列表中自动新增了刚创建好的虚拟主机相关的预设交换机。一共7个。前面两个 direct类型的交换机,一个是…

运行程序时msvcr110.dll丢失的解决方法,msvcr110.dll丢失5的个详细解决方法

在使用电脑的过程中,我们经常会遇到各种问题,其中之一就是 msvcr110.dll 丢失的问题。msvcr110.dll 是 Microsoft Visual C Redistributable 的一个组件,用于支持使用 Visual C 编写的应用程序。如果您的系统中丢失了这个文件,您可…

保姆级Anaconda安装教程

一.anaconda下载 建议使用清华大学开源软件镜像站进行下载,使用官网下载速度比较慢。 anaconda清华大学开源软件镜像站 : https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/ 一路next即可,注意添加环境变量得选项都勾上。 二.验证…

C++list模拟实现

list模拟实现 1.链表结点2.类模板基本框架3.构造4.插入普通迭代器实现4.1尾插4.2普通迭代器实现4.3对比list和vector的iterator4.4迭代器的价值4.5insert4.6尾插头插复用写法 5.删除erase5.1erase5.2尾删头删复用写法 6.析构emptysizeclear6.1clear6.2size6.3 empty6.4 析构 7.…

深度学习笔记之微积分及绘图

深度学习笔记之微积分及绘图 学习资料来源:微积分 %matplotlib inline from matplotlib_inline import backend_inline from mxnet import np, npx from d2l import mxnet as d2lnpx.set_np()def f(x):return 3 * x ** 2 - 4 * xdef numerical_lim(f, x, h):retur…

浅谈yolov5中的anchor

默认锚框 YOLOv5的锚框设定是针对COCO数据集中大部分物体来拟定的,其中图像尺寸都是640640的情况。 anchors参数共3行: 第一行是在最大的特征图上的锚框 第二行是在中间的特征图上的锚框 第三行是在最小的特征图上的锚框 在目标检测中,一…

[sping] spring core - 依赖注入

[sping] spring core - 依赖注入 所有代码实现基于 Spring Boot3,core 的概念很宽广,这里的 core concept 主要指的就是 Inversion of Control 和 Dependency Injection,其他的按照进度应该是会被放到其他的 section 记录 之前有写过 IoC 和…

如何在Keil和IAR环境编译生成的bin文件添加CRC校验值

之前写过一篇文章介绍过 CRC 的原理和应用。在程序升级的情况下,我们可以在烧录下载的 bin 文件添加 CRC 校验值,以校验我们获取的bin文件是否正确。 下面我打算使用 APM32F407 的工程代码,介绍下如何在 Keil 环境和 IAR 环境对编译生成的 b…

线程概念,实现方式以及多线程模型

1.线程引入 有的进程可能需要“同时”做很多事,而传统的进程只能串行地执行一系列程序。 为此,引入了“线程”,来增加并发度。 可以把线程理解为“轻量级进程”。线程是一个基本的CPU执行单元,也是程序执行流的最小单位。引入线…

GEE15:获取不同遥感指数的时间序列及不同指数间的关系

GEE 1. 不同遥感指数间的时间序列分析2. 不同指数之间的关系 1. 不同遥感指数间的时间序列分析 GPP数据在一定程度上和植被指数(如NDVI和EVI)有着显著的相关性,那么其相关性如何?如何从时间序列的角度来思考呢?下面我将…

【Spring Cloud】深入探索统一网关 Gateway 的搭建,断言工厂,过滤器工厂,全局过滤器以及跨域问题

文章目录 前言为什么需要网关以及网关的作用网关的技术实现 一、Gateway 网关的搭建1.1 创建 Gateway 模块1.2 引入依赖1.3 配置网关1.4 验证网关是否搭建成功1.5 微服务结构分析 二、Gateway 断言工厂2.1 Spring 提供的断言工厂2.2 示例:设置断言工厂 三、Gateway …

【算法训练-字符串 三】字符串相加

废话不多说,喊一句号子鼓励自己:程序员永不失业,程序员走向架构!本篇Blog的主题是【字符串相加】,使用【字符串】这个基本的数据结构来实现,这个高频题的站点是:CodeTop,筛选条件为&…

visual studio禁用qt-vsaddin插件更新

visual studio里qt-vsaddin插件默认是自动更新的,由于qt-vsaddin插件新版本的操作方式与老版本相差较大,且新版本不稳定,容易出Bug,所以需要禁用其自动更新,步骤如下:     点击VS2019菜单栏上的【扩展】–…

制作pcb流畅

首先选择一款好用的软件。嘉立创,对新手友好,上手快,每个月还有免费的pcb打样卷。有官方的一对一客服服务。 作为一个新手我在绘制pcb时常进行如下几步。 1、绘制原理图 根据实际情况找到芯片对应的原理图,并添加自己需要的外设。…

Linux系统编程系列之互斥锁和读写锁

一、什么是互斥锁和读写锁 互斥锁是一种并发机制,用于控制多个线程对共享资源的访问。 读写锁是一种并发机制,用于控制多个线程对共享资源的访问。 二、特性 1、互斥锁 当一个线程获得了互斥锁并进入临界区(对共享资源进行访问)时…

鱼眼相机去畸变(图像拉直/展开/矫正)算法及实战总结

本文介绍两种方法 1、经纬度矫正法 2、棋盘格矫正法 一、经纬度矫正法 1、算法说明 经纬度矫正法, 可以把鱼眼图想象成半个地球, 然后将地球展开成地图,经纬度矫正法主要是利用几何原理, 对图像进行展开矫正。 经过P点的入射光线…