网上看到一个txt文本信息,共2351条饭否记录,据说是微信之父每天发的饭否记录,其实我不知道什么是饭否。我读取这个文本内容,展示到词语图上。之前也使用过,但是好久没有玩Python了,称假期空闲,练习练习。开始发行“通过网页”变成了高频词汇,一看源文本文件,发行每条记录的后面都包含“ 2010-11-26 13:59 通过网页”,这样通过网页肯定是高频词了,所有重新处理了源文本信息,使用正则表达式式,提前时间节点前的任意字符。使用的正则表达式:.+(?=(\d{4}\-\d{2}\-\d{2}))
提取信息如下:
找一个背景,网上找奋斗图片,去掉背景色,裁剪人物。
完整代码:
from os import path from PIL import Image import numpy as np import matplotlib.pyplot as plt import os import chardet from wordcloud import WordCloud, STOPWORDS # get data directory (using getcwd() is needed to support running example in generated IPython notebook) d = path.dirname(__file__) if "__file__" in locals() else os.getcwd() print(d) # Read the whole text. # text = open(path.join(d, 'ZXL.txt'), encoding='utf-8', errors='ignore').read() with open(path.join(d, 'ZXL.txt'), 'rb') as f: raw_data = f.read() result = chardet.detect(raw_data) use_encoding = result['encoding'] # 查看文本使用的编码 print(use_encoding) # utf-8 text = open(path.join(d, 'ZXL.txt'), 'r', encoding=use_encoding).read() # read the mask image fight_mask = np.array(Image.open(path.join(d, "fight.png"))) # 指定字体文件路径 font_path = r'C:\Windows\Fonts\方正粗黑宋简体.ttf' # 创建词云图对象并设置字体 stopwords = set(STOPWORDS) wc = WordCloud(background_color="white", max_words=6000, mask=fight_mask, font_path=font_path, stopwords=stopwords, contour_width=3, contour_color='steelblue') # generate word cloud wc.generate(text) # store to file wc.to_file(path.join(d, "ZXL_example.png")) # show plt.imshow(wc, interpolation='bilinear') plt.axis("off") plt.show() 运行效果如下:
生产图片文件: