C++(List)

news2025/1/11 0:40:42

本节目标:
1.list介绍及使用

2.list深度剖析及模拟实现

3.list和vector对比


1.list介绍及使用

1.1list介绍

 1. list是可以在常数范围内在任意位置进行插入和删除的序列式容器,并且该容器可以前后双向迭代。

2. list的底层是双向链表结构,双向链表中每个元素存储在互不相关的独立节点中,在节点中通过指针指向 其前一个元素和后一个元素。

3. listforward_list非常相似:最主要的不同在于forward_list是单链表,只能朝前迭代,已让其更简单高 效。

4. 与其他的序列式容器相比 (array vector deque) list通常 在任意位置进行插入、移除元素的执行效率 更好
5. 与其他序列式容器相比, list forward_list 最大的缺陷是 不支持任意位置的随机访问 ,比如:要访问list 的第 6 个元素,必须从已知的位置 ( 比如头部或者尾部 )迭代到该位置,在这段位置上迭代需要线性的时间 开销; list还需要一些额外的空间,以保存每个节点的相关联信息 ( 对于存储类型较小元素的大 list来说这 可能是一个重要的因素 )。

 

1.2list的使用 

 list中的接口比较多,此处类似,只需要掌握如何正确的使用,然后再去深入研究背后的原理,已达到可扩展 的能力。以下为list中一些常见的重要接口

1.2.1list的构造

 

构造函数( (constructor))                              接口说明
list (size_type n, const value_type& val = value_type())构造的list中包含n个值为val的元素
list()  构造空的list
list (const list& x)  拷贝构造函数
list (InputIterator first, InputIterator last)  用[first, last)区间中的元素构造list

 

list<int> lt1;	// 构造int类型的空容器
list<int> lt2(3, 2);  // 构造含有3个2的int类型容器
list<int> lt3(lt2);  // 拷贝构造lt2
string s("hello");
list<char> lt4(s.begin(), s.end());  // 利用迭代器构造

1.2.2list iterator的使用

此处,大家可暂时 将迭代器理解成一个指针,该指针指向 list 中的某个节点 底层实现我们也是对指针进行封装 保证上层调用的时候看起来还是iterator,从而是容器迭代器阅读性更高。
函数声名 接口说明
begin + 
end
返回第一个元素的迭代器+返回最后一个元素下一个位置的迭代器
rbegin + 
rend
返回第一个元素的reverse_iterator,即end位置,返回最后一个元素下一个位置的reverse_iterator,即begin位置

 1. beginend为正向迭代器,对迭代器执行++操作,迭代器向后移动

2. rbegin(end) rend(begin) 为反向迭代器,对迭代器执行 ++ 操作,迭代器向前移动

 

 

int main()
{
	string s("hello thisword!");
	list<char> lt(s.begin(), s.end()); 
	//正向迭代器遍历容器
	list<char>::iterator it = lt.begin();
	while (it != lt.end())
	{
		cout << *it << " ";
		it++;
	}
	cout << endl;

	//反向迭代器遍历容器
	list<char>::reverse_iterator rit = lt.rbegin();
	while (rit != lt.rend())
	{
		cout << *rit << " ";
		rit++;
	}
	cout << endl;
	return 0;
}

 1.2.3 list capacity

 

函数声明接口说明
empty检测list是否为空,是返回true,否则返回false
size返回list中有效节点的个数

这两个关于list的函数没什么知识点就是获取该容器内元素个数,已经容量的函数。

1.2.4list element access 

 

函数声明接口说明
front返回list的第一个节点中值的引用
back返回list的最后一个节点中值的引用
int main()
{
	list<int> lt;
	lt.push_back(1);
	lt.push_back(2);
	lt.push_back(3);
	lt.push_back(4);
	cout << lt.front() << endl;
	cout << lt.back() << endl;
	return 0;
}

1.2.5 list modifiers

 

函数声明接口说明
push_front在list首元素前插入值为val的元素
pop_front删除list中第一个元素
push_back在list尾部插入值为val的元素
pop_back删除list中最后一个元素
insert在list position 位置中插入值为val的元素
erase删除list position位置的元素
swap交换两个list中的元素
clear清空list中的有效元素

1.swap

int main()
{
	list<int> lt1(3, 2);
	list<int> lt2(2, 3);
	lt1.swap(lt2); //交换两个容器的内容
	return 0;
}

2 sort

int main()
{
	list<int> lt;
	lt.push_back(2);
	lt.push_back(1);
	lt.push_back(4);
	lt.push_back(3);
	cout << "排序前:";
	for (auto e : lt)
	{
		cout << e << " ";
	}
	cout << endl;

	lt.sort();
	cout << "排序后:";
	for (auto e : lt)
	{
		cout << e << " ";
	}
	cout << endl;
}

3.resize

resize操作方式有两种

  1. 当所给值大于当前的size时,将size扩大到该值,扩大的数据为第二个所给值,若未给出,则默认为容器所存储类型的默认构造函数所构造出来的值。
  2. 当所给值小于当前的size时,将size缩小到该值

 

int main()
{
	list<int> lt(3, 3);
	for (auto e : lt)
	{
		cout << e << " ";
	}
	cout << endl; 
	lt.resize(5, 4); //将size扩大为5,扩大的值为4
	for (auto e : lt)
	{
		cout << e << " ";
	}
	cout << endl; 
	lt.resize(2); //将size缩小为2
	for (auto e : lt)
	{
		cout << e << " ";
	}
	cout << endl; 
	return 0;
}

4 unique

去除连续重复元素

int main()
{
	list<int> lt;
	lt.push_back(1);
	lt.push_back(2);
	lt.push_back(3);
	lt.push_back(3);
	lt.push_back(2);
	lt.push_back(3);
	lt.push_back(2);
	for (auto e : lt)
	{
		cout << e << " ";
	}
	cout << endl;
	lt.unique();// 去除连续重复的元素
	for (auto e : lt)
	{
		cout << e << " ";
	}
	cout << endl;
	lt.sort();// 排序
	lt.unique();
	for (auto e : lt)
	{
		cout << e << " ";
	}
	cout << endl;
	return 0;
}

 1.2.6 list的迭代器失效

 

前面说过,此处大家可将迭代器暂时理解成类似于指针, 迭代器失效即迭代器所指向的节点的无效,即该节 点被删除了 。因为 list 的底层结构为带头结点的双向循环链表 ,因此 list 中进行插入时是不会导致 list 的迭代 器失效的, 只有在删除时才会失效 并且失效的只是指向被删除节点的迭代器,其他迭代器不会受到影响
错误点如下:
void TestListIterator1()
{
 int array[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 0 };
 list<int> l(array, array+sizeof(array)/sizeof(array[0]));
 auto it = l.begin();
 while (it != l.end())
 {
 // erase()函数执行后,it所指向的节点已被删除,因此it无效,在下一次使用it时,必须先给
其赋值
 l.erase(it); 
 ++it;
 }
}

改正如下:

// 改正
void TestListIterator()
{
 int array[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 0 };
 list<int> l(array, array+sizeof(array)/sizeof(array[0]));
 auto it = l.begin();
 while (it != l.end())
 {
 l.erase(it++); // it = l.erase(it);
 }
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1057421.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

[React] react-redux基本使用

文章目录 1.redux2.安装redux3.操作redux3.1 创建最为核心的store3.2 创建为store工作的reducer3.3 redux的响应式处理 4.完整版redux4.1 完善actionCreators4.2 thunk中间件 5.react-redux5.1 Count容器组件5.2 connect函数5.3 Provider 1.redux redux原理图 actionCreators:…

司空见惯 - 奈尔宝的NTTP

联合国对21世纪人才定义的标准&#xff0c;包括六种核心技能&#xff0c;即批判性思维&#xff08;critical thinking)、人际交往&#xff08;communication)、与人合作&#xff08;collaboration)、创造性&#xff08;creativity)、信息素养&#xff08;information literacy)…

【中国知名企业高管团队】系列25:360

今天华研荟的“走进中国知名企业高管团队系列”带大家走进360——这是少数以数字作为产品名称的公司&#xff0c;如果您在网上看到有人说“数字公司”&#xff0c;那么大概率指的就是360公司。 360公司正式的名称是三六零安全科技股份有限公司&#xff0c;可以说是中国覆盖面最…

数据结构: 数组与链表

目录 1 数组 1.1 数组常用操作 1. 初始化数组 2. 访问元素 3. 插入元素 4. 删除元素 5. 遍历数组 6. 查找元素 7. 扩容数组 1.2 数组优点与局限性 1.3 数组典型应用 2 链表 2.1 链表常用操作 1. 初始化链表 2. 插入节点 3. 删除…

正确完成实时 AI

发表于 构建真实世界的实时 AI 一、说明 我们知道&#xff0c;当前的AI进展是扎根于历史数据&#xff0c;这就造成一个事实&#xff0c;模型总是赶不上实时进展&#xff0c;模型的洞察力不够尖锐&#xff0c;或者&#xff0c;时间损失等&#xff0c;本篇对这一系列AI的短板展开…

【初识Linux】:常见指令(1)

朋友们、伙计们&#xff0c;我们又见面了&#xff0c;本期来给大家解读一下有关Linux的基础知识点&#xff0c;如果看完之后对你有一定的启发&#xff0c;那么请留下你的三连&#xff0c;祝大家心想事成&#xff01; C 语 言 专 栏&#xff1a;C语言&#xff1a;从入门到精通 数…

WebSocket基础——WebSocket的基本概念 VS Http SpringBoot整合WebSocket vue前端代码和效果展示

前言 WebSocket是一种在Web浏览器和服务器之间进行全双工通信的协议。它允许在单个TCP连接上进行双向通信&#xff0c;而不需要通过多个HTTP请求-响应循环来实现。相比传统的HTTP请求&#xff0c;WebSocket提供了更低的延迟和更高的实时性。 本篇博客介绍WebSocket的基本概念…

计算机网络(四):网络层

参考引用 计算机网络微课堂-湖科大教书匠计算机网络&#xff08;第7版&#xff09;-谢希仁 1. 网络层概述 网络层的主要任务是实现网络互连&#xff0c;进而实现数据包在各网络之间的传输 要实现网络层任务&#xff0c;需要解决以下主要问题 网络层向运输层提供怎样的服务 (“…

基于SpringBoot的养老监护管理平台设计与实现(源码+lw+部署文档+讲解等)

文章目录 前言具体实现截图论文参考详细视频演示为什么选择我自己的网站自己的小程序&#xff08;小蔡coding&#xff09;有保障的售后福利 代码参考源码获取 前言 &#x1f497;博主介绍&#xff1a;✌全网粉丝10W,CSDN特邀作者、博客专家、CSDN新星计划导师、全栈领域优质创作…

解决Invalid bound statement (not found)错误~

报错如下所示&#xff1a; 找了好久&#xff0c;刚开始以为是名称哪里写的有问题&#xff0c;但仔细检查了好多遍都不是 最后发现了问题如下所示&#xff1a; UserMapper里面的内容被我修改了&#xff0c;但classes中的内容还是原来的内容&#xff0c;所以才导致了编译器报错n…

Vue2详解

Vue2 一、Vue快速上手 1.1什么是Vue 概念&#xff1a;Vue是一套构建用户界面的渐进式 框架 构建用户界面&#xff1a;基于数据渲染出用户可以看到的界面 渐进式&#xff1a;所谓渐进式就是循序渐进&#xff0c;不一定非得把Vue中所有的API都学完才能开发Vue&#xff0c;可以…

【数据结构】红黑树(C++实现)

​ ​&#x1f4dd;个人主页&#xff1a;Sherry的成长之路 &#x1f3e0;学习社区&#xff1a;Sherry的成长之路&#xff08;个人社区&#xff09; &#x1f4d6;专栏链接&#xff1a;数据结构 &#x1f3af;长路漫漫浩浩&#xff0c;万事皆有期待 上一篇博客&#xff1a;【数据…

一篇博客学会系列(3) —— 对动态内存管理的深度讲解以及经典笔试题的深度解析

目录 动态内存管理 1、为什么存在动态内存管理 2、动态内存函数的介绍 2.1、malloc和free 2.2、calloc 2.3、realloc 3、常见的动态内存错误 3.1、对NULL指针的解引用操作 3.2、对动态开辟空间的越界访问 3.3、对非动态开辟内存使用free释放 3.4、使用free释放一块动态…

接口测试入门实践

简单接口搭建(表单/REST) 五步教会你写接口 首先要安装flask包: pip install flask 从flask中导入Flask类和request对象: from flask import Flask, request从当前模块实例化出一个Flask实例:appFlask(__name__)编写一个函数来处理请求 从请求对象中获取数据:arequest.values.…

【test】文章测试

自定义文章测试 欢迎使用Markdown编辑器新的改变功能快捷键合理的创建标题&#xff0c;有助于目录的生成如何改变文本的样式插入链接与图片如何插入一段漂亮的代码片生成一个适合你的列表创建一个表格设定内容居中、居左、居右SmartyPants 创建一个自定义列表如何创建一个注脚注…

【改进哈里鹰算法(NCHHO)】使用混沌和非线性控制参数来提高哈里鹰算法的优化性能,解决车联网相关的路由问题(Matlab代码实现)

&#x1f4a5;&#x1f4a5;&#x1f49e;&#x1f49e;欢迎来到本博客❤️❤️&#x1f4a5;&#x1f4a5; &#x1f3c6;博主优势&#xff1a;&#x1f31e;&#x1f31e;&#x1f31e;博客内容尽量做到思维缜密&#xff0c;逻辑清晰&#xff0c;为了方便读者。 ⛳️座右铭&a…

嵌入式学习笔记(42)SD卡的编程接口

8.3.1 SD卡的物理接口 SD卡由9个针脚与外界进行物理连接&#xff0c;这9个脚中有2个地&#xff0c;1个电源&#xff0c;6个信号线。 8.3.2 SD协议与SPI协议 (1)SD卡与SRAM/DDR/SROM之类的东西的不同&#xff1a;SRAM/DDR/SROM之类的存储芯片是总线式的&#xff0c;只要连接上…

Docker部署Nginx-常用命令

1.拉取 docker pull nginx 2. 查看镜像 docker images 3.保存镜像 docker save -o nginx.tar nginx:latest 4.删除镜像 docker rmi nginx:latest 5. 加载镜像 docker load -i nginx.tar 6. 运行Nginx docker run -d --name nginx -p 80:80 nginx 7.停掉Nginx容器 docker stop n…

Android 活动Activity

目录 一、启停活动页面1.1 Activity的启动和结束1.2 Activity的生命周期1.3 Activity的启动模式 二、在活动之间传递消息2.1 显式Intent和隐式Intent2.2 向下一个Activity发送数据2.3 向上一个Activity返回数据 三、补充附加信息3.1 利用资源文件配置字符串3.2 利用元数据传递配…

操作系统--分页存储管理

一、概念介绍 分页存储&#xff1a;一是分内存地址&#xff0c;二是分逻辑地址。 1.分内存地址 将内存空间分为一个个大小相等的分区。比如&#xff0c;每个分区4KB。 每个分区就是一个“页框”&#xff0c;每个页框有个编号&#xff0c;即“页框号”&#xff0c;“页框号”…