计算机竞赛 深度学习疫情社交安全距离检测算法 - python opencv cnn

news2024/11/27 1:30:35

文章目录

  • 0 前言
  • 1 课题背景
  • 2 实现效果
  • 3 相关技术
    • 3.1 YOLOV4
    • 3.2 基于 DeepSort 算法的行人跟踪
  • 4 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 **基于深度学习疫情社交安全距离检测算法 **

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:5分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

1 课题背景

安全的社交距离是公共预防传染病毒的途径之一。所以,在人群密集的区域进行社交距离的安全评估是十分重要的。社交距离的测量旨在保持个体之间的物理距离和减少相互接触的人群来减缓或阻止病毒传播,在抗击病毒和预防大流感中发挥重要作用。但时刻保持安全距离具有一定的难度,特别是在校园,工厂等场所,在这种情况下,开发智能摄像头等技术尤为关键。将人工智能,深度学习集成至安全摄像头对行人进行社交距离评估。现阶段针对疫情防范的要求,主要采用人工干预和计算机处理技术。人工干预存在人力资源要求高,风险大,时间成本高等等缺点。计算机处理等人工智能技术的发展,对社交安全距离的安全评估具有良好的效果。

2 实现效果

通过距离分类人群的高危险和低危险距离。

在这里插入图片描述
相关代码

import argparse
from utils.datasets import *
from utils.utils import *
 
def detect(save_img=False):
    out, source, weights, view_img, save_txt, imgsz = \
        opt.output, opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_size
    webcam = source == '0' or source.startswith('rtsp') or source.startswith('http') or source.endswith('.txt')
 
    # Initialize
    device = torch_utils.select_device(opt.device)
    if os.path.exists(out):
        shutil.rmtree(out)  # delete output folder
    os.makedirs(out)  # make new output folder
    half = device.type != 'cpu'  # half precision only supported on CUDA
 
    # Load model
    google_utils.attempt_download(weights)
    model = torch.load(weights, map_location=device)['model'].float()  # load to FP32
    # torch.save(torch.load(weights, map_location=device), weights)  # update model if SourceChangeWarning
    # model.fuse()
    model.to(device).eval()
    if half:
        model.half()  # to FP16
 
    # Second-stage classifier
    classify = False
    if classify:
        modelc = torch_utils.load_classifier(name='resnet101', n=2)  # initialize
        modelc.load_state_dict(torch.load('weights/resnet101.pt', map_location=device)['model'])  # load weights
        modelc.to(device).eval()
 
    # Set Dataloader
    vid_path, vid_writer = None, None
    if webcam:
        view_img = True
        torch.backends.cudnn.benchmark = True  # set True to speed up constant image size inference
        dataset = LoadStreams(source, img_size=imgsz)
    else:
        save_img = True
        dataset = LoadImages(source, img_size=imgsz)
 
    # Get names and colors
    names = model.names if hasattr(model, 'names') else model.modules.names
    colors = [[random.randint(0, 255) for _ in range(3)] for _ in range(len(names))]
 
    # Run inference
    t0 = time.time()
    img = torch.zeros((1, 3, imgsz, imgsz), device=device)  # init img
    _ = model(img.half() if half else img) if device.type != 'cpu' else None  # run once
    for path, img, im0s, vid_cap in dataset:
        img = torch.from_numpy(img).to(device)
        img = img.half() if half else img.float()  # uint8 to fp16/32
        img /= 255.0  # 0 - 255 to 0.0 - 1.0
        if img.ndimension() == 3:
            img = img.unsqueeze(0)
 
        # Inference
        t1 = torch_utils.time_synchronized()
        pred = model(img, augment=opt.augment)[0]
 
        # Apply NMS
        pred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres,
                                   fast=True, classes=opt.classes, agnostic=opt.agnostic_nms)
        t2 = torch_utils.time_synchronized()
 
        # Apply Classifier
        if classify:
            pred = apply_classifier(pred, modelc, img, im0s)
 
        # List to store bounding coordinates of people
        people_coords = []
 
        # Process detections
        for i, det in enumerate(pred):  # detections per image
            if webcam:  # batch_size >= 1
                p, s, im0 = path[i], '%g: ' % i, im0s[i].copy()
            else:
                p, s, im0 = path, '', im0s
 
            save_path = str(Path(out) / Path(p).name)
            s += '%gx%g ' % img.shape[2:]  # print string
            gn = torch.tensor(im0.shape)[[1, 0, 1, 0]]  #  normalization gain whwh
            if det is not None and len(det):
                # Rescale boxes from img_size to im0 size
                det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()
 
                # Print results
                for c in det[:, -1].unique():
                    n = (det[:, -1] == c).sum()  # detections per class
                    s += '%g %ss, ' % (n, names[int(c)])  # add to string
 
                # Write results
                for *xyxy, conf, cls in det:
                    if save_txt:  # Write to file
                        xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist()  # normalized xywh
                        with open(save_path[:save_path.rfind('.')] + '.txt', 'a') as file:
                            file.write(('%g ' * 5 + '\n') % (cls, *xywh))  # label format
 
                    if save_img or view_img:  # Add bbox to image
                        label = '%s %.2f' % (names[int(cls)], conf)
                        if label is not None:
                            if (label.split())[0] == 'person':
                                people_coords.append(xyxy)
                                # plot_one_box(xyxy, im0, line_thickness=3)
                                plot_dots_on_people(xyxy, im0)
 
            # Plot lines connecting people
            distancing(people_coords, im0, dist_thres_lim=(200,250))
 
            # Print time (inference + NMS)
            print('%sDone. (%.3fs)' % (s, t2 - t1))
 
            # Stream results
            if view_img:
                cv2.imshow(p, im0)
                if cv2.waitKey(1) == ord('q'):  # q to quit
                    raise StopIteration
 
            # Save results (image with detections)
            if save_img:
                if dataset.mode == 'images':
                    cv2.imwrite(save_path, im0)
                else:
                    if vid_path != save_path:  # new video
                        vid_path = save_path
                        if isinstance(vid_writer, cv2.VideoWriter):
                            vid_writer.release()  # release previous video writer
 
                        fps = vid_cap.get(cv2.CAP_PROP_FPS)
                        w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
                        h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
                        vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*opt.fourcc), fps, (w, h))
                    vid_writer.write(im0)
 
    if save_txt or save_img:
        print('Results saved to %s' % os.getcwd() + os.sep + out)
        if platform == 'darwin':  # MacOS
            os.system('open ' + save_path)
 
    print('Done. (%.3fs)' % (time.time() - t0))

3 相关技术

3.1 YOLOV4

YOLOv4使用卷积网络 CSPDarknet-53 特征提取,网络结构模型如图 2 所示。在每个 Darknet-53的残块行加上 CSP(Cross
Stage Partial)结构13,将基础层划分为两部分,再通过跨层次结构的特征融合进行合并。并采用 FPN( feature pyramid
networks)结构加强特征金字塔,最后用不同层的特征的高分辨率来提取不同尺度特征图进行对象检测。最终网络输出 3
个不同尺度的特征图,在三个不同尺度特征图上分别使用 3 个不同的先验框(anchors)进行预测识别,使得远近大小目标均能得到较好的检测。
在这里插入图片描述
YOLOv4 的先验框尺寸是经PASCALL_VOC,COCO
数据集包含的种类复杂而生成的,并不一定完全适合行人。本研究旨在研究行人之间的社交距离,针对行人目标检测,利用聚类算法对 YOLOv4
的先验框微调,首先将行人数据集 F 依据相似性分为i个对象,即在这里插入图片描述,其中每个对象都具有 m
个维度的属性。聚类算法的目的是 i 个对象依据相似性聚集到指定的 j 个类簇,每个对象属于且仅属于一个其到类簇中心距离最小的类簇中心。初始化 j 个 聚 类
中 心C c c c   1 2 , ,..., j,计算每一个对象到每一个聚类中心的欧式距离,见公式
在这里插入图片描述
之后,依次比较每个对象到每个聚类中心的距离,将对象分配至距离最近的簇类中心的类簇中,
得到 在这里插入图片描述个类簇S s s s  1 2 ,
,..., l,聚类算法中定义了类簇的原型,类簇中心就是类簇内所有对象在各个维度的均值,其公式见
在这里插入图片描述
相关代码

def check_anchors(dataset, model, thr=4.0, imgsz=640):
    # Check anchor fit to data, recompute if necessary
    print('\nAnalyzing anchors... ', end='')
    m = model.module.model[-1] if hasattr(model, 'module') else model.model[-1]  # Detect()
    shapes = imgsz * dataset.shapes / dataset.shapes.max(1, keepdims=True)
    wh = torch.tensor(np.concatenate([l[:, 3:5] * s for s, l in zip(shapes, dataset.labels)])).float()  # wh

    def metric(k):  # compute metric
        r = wh[:, None] / k[None]
        x = torch.min(r, 1. / r).min(2)[0]  # ratio metric
        best = x.max(1)[0]  # best_x
        return (best > 1. / thr).float().mean()  #  best possible recall

    bpr = metric(m.anchor_grid.clone().cpu().view(-1, 2))
    print('Best Possible Recall (BPR) = %.4f' % bpr, end='')
    if bpr < 0.99:  # threshold to recompute
        print('. Attempting to generate improved anchors, please wait...' % bpr)
        na = m.anchor_grid.numel() // 2  # number of anchors
        new_anchors = kmean_anchors(dataset, n=na, img_size=imgsz, thr=thr, gen=1000, verbose=False)
        new_bpr = metric(new_anchors.reshape(-1, 2))
        if new_bpr > bpr:  # replace anchors
            new_anchors = torch.tensor(new_anchors, device=m.anchors.device).type_as(m.anchors)
            m.anchor_grid[:] = new_anchors.clone().view_as(m.anchor_grid)  # for inference
            m.anchors[:] = new_anchors.clone().view_as(m.anchors) / m.stride.to(m.anchors.device).view(-1, 1, 1)  # loss
            print('New anchors saved to model. Update model *.yaml to use these anchors in the future.')
        else:
            print('Original anchors better than new anchors. Proceeding with original anchors.')
    print('')  # newline

3.2 基于 DeepSort 算法的行人跟踪

YOLOv4中完成行人目标检测后生成边界框(Bounding box,Bbox),Bbox 含有包含最小化行人边框矩形的坐标信息,本研究引入
DeepSort 算法[18]完成对行人的质点进行跟踪,目的是为了在运动矢量分析时算行人安全社交距离中。首先,对行人进行质点化计算。其质点计算公式如
在这里插入图片描述
确定行人质点后,利用 DeepSort 算法实现对多个目标的精确定位与跟踪,其核心算法流程如图所示:
在这里插入图片描述
相关代码

class TrackState:
	'''
	单个轨迹的三种状态
	'''
    Tentative = 1 #不确定态
    Confirmed = 2 #确定态
    Deleted = 3 #删除态

class Track:
    def __init__(self, mean, covariance, track_id, class_id, conf, n_init, max_age,
                 feature=None):
        '''
        mean:位置、速度状态分布均值向量,维度(8×1)
        convariance:位置、速度状态分布方差矩阵,维度(8×8)
        track_id:轨迹ID
        class_id:轨迹所属类别
        hits:轨迹更新次数(初始化为1),即轨迹与目标连续匹配成功次数
        age:轨迹连续存在的帧数(初始化为1),即轨迹出现到被删除的连续总帧数
        time_since_update:轨迹距离上次更新后的连续帧数(初始化为0),即轨迹与目标连续匹配失败次数
        state:轨迹状态
        features:轨迹所属目标的外观语义特征,轨迹匹配成功时添加当前帧的新外观语义特征
        conf:轨迹所属目标的置信度得分
        _n_init:轨迹状态由不确定态到确定态所需连续匹配成功的次数
        _max_age:轨迹状态由不确定态到删除态所需连续匹配失败的次数
        '''   
        self.mean = mean
        self.covariance = covariance
        self.track_id = track_id
        self.class_id = int(class_id)
        self.hits = 1
        self.age = 1
        self.time_since_update = 0

        self.state = TrackState.Tentative
        self.features = []
        if feature is not None:
            self.features.append(feature) #若不为None,初始化外观语义特征

        self.conf = conf
        self._n_init = n_init
        self._max_age = max_age

    def increment_age(self):
    	'''
    	预测下一帧轨迹时调用
    	'''
        self.age += 1 #轨迹连续存在帧数+1
        self.time_since_update += 1 #轨迹连续匹配失败次数+1

    def predict(self, kf):
    	'''
    	预测下一帧轨迹信息
    	'''
        self.mean, self.covariance = kf.predict(self.mean, self.covariance) #卡尔曼滤波预测下一帧轨迹的状态均值和方差
        self.increment_age() #调用函数,age+1,time_since_update+1

    def update(self, kf, detection, class_id, conf):
    	'''
    	更新匹配成功的轨迹信息
    	'''
        self.conf = conf #更新置信度得分
        self.mean, self.covariance = kf.update(
            self.mean, self.covariance, detection.to_xyah()) #卡尔曼滤波更新轨迹的状态均值和方差
        self.features.append(detection.feature) #添加轨迹对应目标框的外观语义特征
        self.class_id = class_id.int() #更新轨迹所属类别

        self.hits += 1 #轨迹匹配成功次数+1
        self.time_since_update = 0 #匹配成功时,轨迹连续匹配失败次数归0
        if self.state == TrackState.Tentative and self.hits >= self._n_init:
            self.state = TrackState.Confirmed #当连续匹配成功次数达标时轨迹由不确定态转为确定态

    def mark_missed(self):
    	'''
    	将轨迹状态转为删除态
    	'''
        if self.state == TrackState.Tentative:
            self.state = TrackState.Deleted #当级联匹配和IOU匹配后仍为不确定态
        elif self.time_since_update > self._max_age:
            self.state = TrackState.Deleted #当连续匹配失败次数超标

	'''
	该部分还存在一些轨迹坐标转化及状态判定函数,具体可参考代码来源
	'''

4 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1056158.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

神经网络中的知识蒸馏

多分类交叉熵损失函数&#xff1a;每个样本的标签已经给出&#xff0c;模型给出在三种动物上的预测概率。将全部样本都被正确预测的概率求得为0.70.50.1&#xff0c;也称为似然概率。优化的目标就是希望似然概率最大化。如果样本很多&#xff0c;概率不断连乘&#xff0c;就会造…

手把手教你用 Milvus 和 Towhee 搭建一个 AI 聊天机器人

作为向量数据库的佼佼者,Milvus 适用于各种需要借助高效和可扩展向量搜索功能的 AI 应用。 举个例子,如果想要搭建一个聊天机器人,Milvus 一定是其进行数据管理的首选。那么,如何让这个应用程序开发变得易于管理及更好理解,那就需要借助 Towhee(https://towhee.io/)了。…

PHP 反序列化漏洞:__PHP_Incomplete_Class 与 serialize(unserialize($x)) !== $x;

文章目录 参考环境声明__PHP_Incomplete_Class灵显为什么需要 __PHP_Incomplete_Class&#xff1f;不可访问的属性 serialize(unserialize($x)) $x;serialize(unserialize($x)) ! $x;雾现__PHP_Incomplete_Class 对象与其序列化文本的差异试构造 __PHP__Incomplete_Class 对象…

JMeter学习第一、二、三天

JMeter介绍 Apache JMeter 是一个开源软件&#xff0c;它最初被设计为用来进行压力测试和性能测试&#xff0c;但后来添加了更多的测试功能&#xff0c;如功能测试和服务测试等。JMeter 可以用于分析和衡量各种服务的性能&#xff0c;包括网络服务、数据库、FTP服务器、HTTP服务…

文心一言 VS 讯飞星火 VS chatgpt (104)-- 算法导论10.1 2题

二、用go语言&#xff0c;说明如何在一个数组 A[1…n]中实现两个栈&#xff0c;使得当两个栈的元素个数之和不为 n 时&#xff0c;两者都不会发生上溢。要求 PUSH 和 POP 操作的运行时间为 O(1)。 文心一言&#xff1a; 在这个问题中&#xff0c;我们要在一个数组 A[1…n] 中…

Vue3 引入使用 vant组件详解

目录 Vue3 引入使用 vant组件详解1.安装2.引入2.1 全局引入2.2 按需引入2.2.1 vite项目:vite.config.js2.2.2 Webpack项目&#xff1a;webpack.config.js2.2.3 配置在vue.config.js中 3.使用 Vue3 引入使用 vant组件详解 Vant是一个强大的移动端组件库&#xff0c;目前Vant 官…

C/C++程序的内存开辟

前面我们说过&#xff0c;计算机中内存分为三个区域&#xff1a;栈区&#xff0c;堆区&#xff0c;静态区 但是这只是个简化的版本&#xff0c;接下来我们仔细看看内存区域的划分 C/C程序内存分配的几个区域&#xff1a; 栈区&#xff08;stack&#xff09;&#xff1a;在执行…

c++ 学习 之static 和 const深入学习

作用域 static 和 const 的作用域都是当前模块&#xff08;当前cpp文件),所以不同的模块可以定义同名的static 和 const 变量 在上面的例子中&#xff0c;我们先了解一些基础知识&#xff1a; static int x 1; const int x 1; static const int x 1;上面的三种声明都涉及到…

c语言练习73:统计位数为偶数的数字

统计位数为偶数的数字 给你⼀个整数数组 nums &#xff0c;请你返回其中位数为 偶数 的数字的个数。 • ⽰例 1&#xff1a; 输⼊&#xff1a;nums [12,345,2,6,7896] 输出&#xff1a;2 解释&#xff1a; 12 是 2 位数字&#xff08;位数为偶数&#xff09; 345 是 3 位…

代码随想录算法训练营第五十一天 | 动态规划 part 12 | 买卖股票含冷冻期、含手续费

目录 309.最佳买卖股票时机含冷冻期思路代码 714.买卖股票的最佳时机含手续费思路代码 309.最佳买卖股票时机含冷冻期 Leetcode 思路 因为有冷静期&#xff0c;我们可以区分出如下的四个状态&#xff1a; dp数组含义 状态一(j 0)&#xff1a;持有股票状态&#xff08;今…

分布式文件存储系统Minio实战

分布式文件系统应用场景 互联网海量非结构化数据的存储需求电商网站&#xff1a;海量商品图片视频网站&#xff1a;海量视频文件网盘 : 海量文件社交网站&#xff1a;海量图片 1. Minio介绍 MinIO 是一个基于Apache License v2.0开源协议的对象存储服务。它兼容亚马逊S3云存…

解决二叉树遍历相关问题(过程中深入一下C++递归程序栈编译和执行)

解决二叉树遍历相关问题&#xff08;过程中深入一下C递归程序栈编译和执行&#xff09; 首先&#xff0c;事情是这样的&#xff1a;问题是求二叉树的根节点到某个节点的路径。 方法自然很多&#xff1a;树的后序遍历&#xff0c;图的BFS、DFS遍历等等。 这里&#xff0c;为了快…

CentOS 7 上编译和安装 SQLite 3.9.0

文章目录 可能报错分析详细安装过程 可能报错分析 报错如下&#xff1a; django.core.exceptions.ImproperlyConfigured: SQLite 3.9.0 or later is required (found 3.7.17). 原因&#xff1a;版本为3.7.太低了&#xff0c;需要升级到3.9.0至少 详细安装过程 1.安装所需的…

c语言:通讯录管理系统(增删查改)

前言&#xff1a;在大多数高校内&#xff0c;都是通过设计一个通讯录管理系统来作为c语言课程设计&#xff0c;通过一个具体的系统设计将我们学习过的结构体和函数等知识糅合起来&#xff0c;可以很好的锻炼学生的编程思维&#xff0c;本文旨在为通讯录管理系统的设计提供思路和…

【STM32基础 CubeMX】PWM输出

文章目录 前言一、PWM是什么&#xff1f;二、CubeMX配置PWM三、代码分析3.1 CubeMX生成代码3.2 PWM的几个库函数HAL_TIM_PWM_Start 3.3 PWM回调函数3.4 占空比占空比是什么__HAL_TIM_SET_COMPARE设置占空比 四、呼吸灯示例总结 前言 STM32微控制器是一系列功能强大的微控制器&…

unordered_map/unordered_set的学习[unordered系列]

文章目录 1.老生常谈_遍历2.性能测试3.OJ训练3.1存在重复元素3.2两个数组的交集Ⅱ3.3两句话中的不常见单词3.4两个数组的交集3.5在长度2N的数组中找出重复N次的元素 1.老生常谈_遍历 #pragma once #define _CRT_SECURE_NO_WARNINGS #include <iostream> #include <l…

红黑树(有图解)

目录 介绍 概念 性质 模拟实现 结点定义 插入 保证平衡的原因 一般情况 特殊情况(uncle为黑) uncle不存在 旋转方式 右旋 迭代器 -- 代码 介绍 概念 红黑树是一种自平衡的二叉搜索树 它是在每个节点上引入额外的颜色信息,通过对任何一条从根到叶子的路径…

项目管理之高效合作

序 一件事能不能做成&#xff0c;和你有什么关系&#xff1f;靠的是你的努力吗&#xff1f;还是说靠的只是一个运气&#xff1f; 就像买彩票一样&#xff0c;你觉得中奖和个人努力有没有关系&#xff1b;就像和高考一样&#xff0c;你觉得考上北大清华和个人努力有没有关系&…

IDEA git操作技巧大全,持续更新中

作者简介 目录 1.创建新项目 2.推拉代码 3.状态标识 5.cherry pick 6.revert 7.squash 8.版本回退 9.合并冲突 1.创建新项目 首先我们在GitHub上创建一个新的项目&#xff0c;然后将这个空项目拉到本地&#xff0c;在本地搭建起一个maven项目的骨架再推上去&#xff0…

两条链表相同位数相加[中等]

优质博文IT-BLOG-CN 一、题目 给你两个非空的链表&#xff0c;表示两个非负的整数。它们每位数字都是按照逆序的方式存储的&#xff0c;并且每个节点只能存储一位数字。请你将两个数相加&#xff0c;并以相同形式返回一个表示和的链表。你可以假设除了数字0之外&#xff0c;这…