【C语言深入理解指针(1)】

news2025/1/16 5:48:28

1.内存和地址

1.1内存

在讲内存和地址之前,我们想有个⽣活中的案例:
假设有⼀栋宿舍楼,把你放在楼⾥,楼上有100个房间,但是房间没有编号,你的⼀个朋友来找你玩,如果想找到你,就得挨个房⼦去找,这样效率很低,但是我们如果根据楼层和楼层的房间的情况,给每个房间编上号,如:

1 ⼀楼:101,102,103…
2 ⼆楼:201,202,203…
3 …

有了房间号,如果你的朋友得到房间号,就可以快速的找房间,找到你。

在这里插入图片描述
⽣活中,每个房间有了房间号,就能提⾼效率,能快速的找到房间。

如果把上⾯的例⼦对照到计算中,⼜是怎么样呢?
我们知道计算上CPU(中央处理器)在处理数据的时候,需要的数据是在内存中读取的,处理后的数据也会放回内存中,那我们买电脑的时候,电脑上内存是8GB/16GB/32GB等,那这些内存空间如何⾼效的管理呢?
其实也是把内存划分为⼀个个的内存单元,每个内存单元的⼤⼩取1个字节。
计算机中常⻅的单位(补充):
⼀个⽐特位可以存储⼀个2进制的位1或者0

1 bit - ⽐特位
2 byte - 字节
3 KB
4 MB
5 GB
6 TB
7 PB

1 1byte = 8bit
2 1KB = 1024byte
3 1MB = 1024KB
4 1GB = 1024MB
5 1TB = 1024GB
6 1PB = 1024TB

其中,每个内存单元,相当于⼀个学⽣宿舍,⼀个⼈字节空间⾥⾯能放8个⽐特位,就好⽐同学们
住的⼋⼈间,每个⼈是⼀个⽐特位。每个内存单元也都有⼀个编号(这个编号就相当于宿舍房间的⻔牌号),有了这个内存单元的编号,CPU就可以快速找到⼀个内存空间。

在这里插入图片描述

⽣活中我们把⻔牌号也叫地址,在计算机中我们把内存单元的编号也称为地址
C语⾔中给地址起了新的名字叫:指针。所以我们可以理解为:
内存单元的编号 == 地址 == 指针

1.2 究竟该如何理解编址

在这里插入图片描述

CPU访问内存中的某个字节空间,必须知道这个字节空间在内存的什么位置,⽽因为内存中字节
很多,所以需要给内存进⾏编址(就如同宿舍很多,需要给宿舍编号⼀样)。

计算机中的编址,并不是把每个字节的地址记录下来,⽽是通过硬件设计完成的。

钢琴、吉他 上⾯没有写上“都瑞咪发嗦啦”这样的信息,但演奏者照样能够准确找到每⼀个琴弦
的每⼀个位置,这是为何?因为制造商已经在乐器硬件层⾯上设计好了,并且所有的演奏者都知
道。本质是⼀种约定出来的共识!

硬件编址也是如此

⾸先,必须理解,计算机内是有很多的硬件单元,⽽硬件单元是要互相协同⼯作的。所谓的协
同,⾄少相互之间要能够进⾏数据传递。但是硬件与硬件之间是互相独⽴的,那么如何通信呢?答案很简单,⽤"线"连起来。⽽CPU和内存之间也是有⼤量的数据交互的,所以,两者必须也⽤线连起来。不过,我们今天关⼼⼀组线,叫做地址总线

我们可以简单理解,32位机器有32根地址总线,每根线只有两态,表⽰0,1【电脉冲有⽆】,那么
⼀根线,就能表⽰2种含义,2根线就能表⽰4种含义,依次类推。32根地址线,就能表⽰2^32种含
义,每⼀种含义都代表⼀个地址。地址信息被下达给内存,在内存上,就可以找到该地址对应的数据,将数据在通过数据总线传⼊CPU内寄存器。

2. 指针变量和地址

2.1 取地址操作符(&)

理解了内存和地址的关系,我们再回到C语⾔,在C语⾔中创建变量其实就是向内存申请空间,⽐如:

#include <stdio.h>
int main()
{
 int a = 10;
 return 0;
}

在这里插入图片描述

⽐如,上述的代码就是创建了整型变量a,内存中申请4个字节,⽤于存放整数10,其中每个字节都
有地址,上图中4个字节的地址分别是:

0x006FFD70
0x006FFD71
0x006FFD72
0x006FFD73

那我们如何能得到a的地址呢?
这⾥就得学习⼀个操作符(&)-取地址操作符

#include <stdio.h>
int main()
{
 int a = 10;
 &a;//取出a的地址
 printf("%p\n", &a);
 return 0;
}

在这里插入图片描述

按照我画图的例⼦,会打印处理:006FFD70&a取出的是a所占4个字节中地址较⼩的字节的地
址。

虽然整型变量占⽤4个字节,我们只要知道了第⼀个字节地址,顺藤摸⽠访问到4个字节的数据也是可⾏的。

2.2 指针变量和解引⽤操作符(*)

2.2.1 指针变量

那我们通过取地址操作符(&)拿到的地址是⼀个数值,⽐如:0x006FFD70,这个数值有时候也是需要
存储起来,⽅便后期再使⽤的,那我们把这样的地址值存放在哪⾥呢?答案是:指针变量中。

⽐如:

#include <stdio.h>
int main()
{
 int a = 10;
 int* pa = &a;//取出a的地址并存储到指针变量pa中
 
 return 0;
}

指针变量也是⼀种变量,这种变量就是⽤来存放地址的,存放在指针变量中的值都会理解为地址。

2.2.2 如何拆解指针类型

我们看到pa的类型是 int* ,我们该如何理解指针的类型呢?

int a = 10;
int * pa = &a;

这⾥pa左边写的是 int** 是在说明pa是指针变量,⽽前⾯的 int 是在说明pa指向的是整型(int)类型的对象。

在这里插入图片描述

那如果有⼀个char类型的变量ch,ch的地址,要放在什么类型的指针变量中呢?

char ch = 'w';
pc = &ch;//pc 的类型怎么写呢?

2.2.3 解引用操作符

我们将地址保存起来,未来是要使⽤的,那怎么使⽤呢?
在现实⽣活中,我们使⽤地址要找到⼀个房间,在房间⾥可以拿去或者存放物品。
C语⾔中其实也是⼀样的,我们只要拿到了地址(指针),就可以通过地址(指针)找到地址(指针)指向的对象,这⾥必须学习⼀个操作符叫解引⽤操作符(*)。

#include <stdio.h>

int main()
{
 int a = 100;
 int* pa = &a;
 *pa = 0;
 return 0;
}

上⾯代码中第7⾏就使⽤了解引⽤操作符, *pa 的意思就是通过pa中存放的地址,找到指向的空间,*pa其实就是a变量了;所以*pa = 0,这个操作符是把a改成了0.
有同学肯定在想,这⾥如果⽬的就是把a改成0的话,写成 a = 0; 不就完了,为啥⾮要使⽤指针呢?其实这⾥是把a的修改交给了pa来操作,这样对a的修改,就多了⼀种的途径,写代码就会更加灵活,后期慢慢就能理解了。

2.3 指针变量的大小

前⾯的内容我们了解到,32位机器假设有32根地址总线,每根地址线出来的电信号转换成数字信号后是1或者0,那我们把32根地址线产⽣的2进制序列当做⼀个地址,那么⼀个地址就是32个bit位,需要4个字节才能存储。
如果指针变量是⽤来存放地址的,那么指针变的⼤⼩就得是4个字节的空间才可以。
同理64位机器,假设有64根地址线,⼀个地址就是64个⼆进制位组成的⼆进制序列,存储起来就需要8个字节的空间,指针变的⼤⼩就是8个字节。

#include <stdio.h>
//指针变量的⼤⼩取决于地址的⼤⼩
//32位平台下地址是32个bit位(即4个字节)
//64位平台下地址是64个bit位(即8个字节)
int main()
{
 printf("%zd\n", sizeof(char *));
 printf("%zd\n", sizeof(short *));
 printf("%zd\n", sizeof(int *));
 printf("%zd\n", sizeof(double *));
 return 0;
}

在这里插入图片描述

结论:

• 32位平台下地址是32个bit位,指针变量大小是4个字节
• 64位平台下地址是64个bit位,指针变量大小是8个字节
• 注意指针变量的大小和类型是无关的,只要指针类型的变量,在相同的平台下,大小都是相同的。

3. 指针变量类型的意义

指针变量的⼤⼩和类型⽆关,只要是指针变量,在同⼀个平台下,⼤⼩都是⼀样的,为什么还要有各种各样的指针类型呢?
其实指针类型是有特殊意义的,我们接下来继续学习。

3.1 指针的解引用

对⽐,下⾯2段代码,主要在调试时观察内存的变化。

//代码1
#include <stdio.h>
int main()
{
 int n = 0x11223344;
 int *pi = &n; 
 *pi = 0; 
 return 0;
}
//代码2
#include <stdio.h>
int main()
{
 int n = 0x11223344;
 char *pc = (char *)&n;
 *pc = 0;
 return 0;
}

调试我们可以看到,代码1会将n的4个字节全部改为0,但是代码2只是将n的第⼀个字节改为0。
结论: 指针的类型决定了,对指针解引⽤的时候有多⼤的权限(⼀次能操作⼏个字节)。
⽐如: char* 的指针解引⽤就只能访问⼀个字节,⽽ int* 的指针的解引⽤就能访问四个字节。

3.2 指针±整数

先看⼀段代码,调试观察地址的变化。

#include <stdio.h>
int main()
{
int n = 10;
char *pc = (char*)&n;
int *pi = &n;
 
printf("%p\n", &n);
printf("%p\n", pc);
printf("%p\n", pc+1);
printf("%p\n", pi);
printf("%p\n", pi+1);
return 0;
}

代码运⾏的结果如下:
在这里插入图片描述

我们可以看出, char* 类型的指针变量+1跳过1个字节, int* 类型的指针变量+1跳过了4个字节。
这就是指针变量的类型差异带来的变化。
结论: 指针的类型决定了指针向前或者向后⾛⼀步有多⼤(距离)。

4. const修饰指针

4.1 const修饰变量

变量是可以修改的,如果把变量的地址交给⼀个指针变量,通过指针变量的也可以修改这个变量。
但是如果我们希望⼀个变量加上⼀些限制,不能被修改,怎么做呢?这就是const的作⽤。

 #include <stdio.h>
 int main()
 {
 int m = 0;
 m = 20;//m是可以修改的
 const int n = 0;
 n = 20;//n是不能被修改的
 return 0;
}

上述代码中n是不能被修改的,其实n本质是变量,只不过被const修饰后,在语法上加了限制,只要我们在代码中对n就⾏修改,就不符合语法规则,就报错,致使没法直接修改n。

但是如果我们绕过n,使⽤n的地址,去修改n就能做到了,虽然这样做是在打破语法规则。

#include <stdio.h>
int main()
{
 const int n = 0;
 printf("n = %d\n", n);
 int*p = &n;
 *p = 20;
 printf("n = %d\n", n);
 return 0;
}

输出结果:
在这里插入图片描述

我们可以看到这⾥⼀个确实修改了,但是我们还是要思考⼀下,为什么n要被const修饰呢?就是为了不能被修改,如果p拿到n的地址就能修改n,这样就打破了const的限制,这是不合理的,所以应该让p拿到n的地址也不能修改n,那接下来怎么做呢?

4.2 const修饰指针变

我们看下⾯代码,来分析

#include <stdio.h>
//代码1
void test1()
{
 int n = 10;
 int m = 20;
 int *p = &n;
 *p = 20;//ok?
 p = &m; //ok?
}
void test2()
{
 //代码2
 int n = 10;
 int m = 20;
 const int* p = &n;
 *p = 20;//ok?
 p = &m; //ok?
}
void test3()
{
 int n = 10;
 int m = 20;
 int *const p = &n;
 *p = 20; //ok?
 p = &m; //ok?
}
void test4()
{
 int n = 10;
 int m = 20;
 int const * const p = &n;
 *p = 20; //ok?
 p = &m; //ok?
}
int main()
{
 //测试⽆const修饰的情况
 test1();
 //测试const放在*的左边情况
 test2();
 //测试const放在*的右边情况
 test3();
 //测试*的左右两边都有const
 test4();
 return 0;
}

结论:const修饰指针变量的时候

• const如果放在的左边,修饰的是指针指向的内容,保证指针指向的内容不能通过指针来改变。但是指针变量本⾝的内容可变。
• const如果放在
的右边,修饰的是指针变量本⾝,保证了指针变量的内容不能修改,但是指针指向的内容,可以通过指针改变。

5. 指针运算

指针的基本运算有三种,分别是:
• 指针± 整数
• 指针-指针
• 指针的关系运算

5.1 指针± 整数

因为数组在内存中是连续存放的,只要知道第⼀个元素的地址,顺藤摸⽠就能找到后⾯的所有元素。

int arr[10] = {1,2,3,4,5,6,7,8,9,10};

在这里插入图片描述

#include <stdio.h>
 //指针+- 整数
 int main()
 {
 int arr[10] = {1,2,3,4,5,6,7,8,9,10};
 int *p = &arr[0];
 int i = 0;
 int sz = sizeof(arr)/sizeof(arr[0]);
 for(i=0; i<sz; i++)
 {
 printf("%d ", *(p+i));//p+i 这⾥就是指针+整数
 }
 return 0;
 }

5.2 指针-指针

//指针-指针
#include <stdio.h>
int my_strlen(char *s)
{
 char *p = s;
 while(*p != '\0' )
 p++;
 return p-s;
}
int main()
{
 printf("%d\n", my_strlen("abc"));
 return 0;
}

5.3 指针的关系运算

//指针的关系运算
#include <stdio.h>
int main()
{
 int arr[10] = {1,2,3,4,5,6,7,8,9,10};
 int *p = &arr[0];
 int i = 0;
 int sz = sizeof(arr)/sizeof(arr[0]);
 while(p<arr+sz) //指针的⼤⼩⽐较
 {
 printf("%d ", *p);
 p++;
 }
 return 0;
}

6. 野指针

概念: 野指针就是指针指向的位置是不可知的(随机的、不正确的、没有明确限制的)

6.1 野指针成因

1. 指针未初始化

#include <stdio.h>
int main()
{ 
 int *p;//局部变量指针未初始化,默认为随机值
 *p = 20;
 return 0;
}

2. 指针越界访问

#include <stdio.h>
int main()
{
 int arr[10] = {0};
 int *p = &arr[0];
 int i = 0;
 for(i=0; i<=11; i++)
 {
 //当指针指向的范围超出数组arr的范围时,p就是野指针
 *(p++) = i;
 }
 return 0;
}

3. 指针指向的空间释放

#include <stdio.h>
int* test()
{
 int n = 100;
 return &n;
}
int main()
{
 int*p = test();
 printf("%d\n", *p);
 return 0;
}

6.2 如何规避野指针

6.2.1 指针初始化

如果明确知道指针指向哪⾥就直接赋值地址,如果不知道指针应该指向哪⾥,可以给指针赋NULL.
NULL 是C语⾔中定义的⼀个标识符常量,值是0,0也是地址,这个地址是⽆法使⽤的,读写该地址会报错。

 #ifdef __cplusplus
 #define NULL 0
 #else
 #define NULL ((void *)0)
 #endif

初始化如下:

#include <stdio.h>
int main()
{
 int num = 10;
 int*p1 = &num;
 int*p2 = NULL;
 
 return 0;
}

6.2.2 小心指针越界

⼀个程序向内存申请了哪些空间,通过指针也就只能访问哪些空间,不能超出范围访问,超出了就是越界访问。

6.2.3 指针变量不再使⽤时,及时置NULL,指针使⽤之前检查有效性

当指针变量指向⼀块区域的时候,我们可以通过指针访问该区域,后期不再使⽤这个指针访问空间的时候,我们可以把该指针置为NULL。因为约定俗成的⼀个规则就是:只要是NULL指针就不去访问,同时使⽤指针之前可以判断指针是否为NULL。

我们可以把野指针想象成野狗,野狗放任不管是⾮常危险的,所以我们可以找⼀棵树把野狗拴起来,就相对安全了,给指针变量及时赋值为NULL,其实就类似把野狗栓前来,就是把野指针暂时管理起来。

不过野狗即使拴起来我们也要绕着⾛,不能去挑逗野狗,有点危险;对于指针也是,在使⽤之前,我们也要判断是否为NULL,看看是不是被拴起来起来的野狗,如果是不能直接使⽤,如果不是我们再去使⽤。

int main()
{
 int arr[10] = {1,2,3,4,5,67,7,8,9,10};
 int *p = &arr[0];
 for(i=0; i<10; i++)
 {
 *(p++) = i;
 }
 //此时p已经越界了,可以把p置为NULL
 p = NULL;
 //下次使⽤的时候,判断p不为NULL的时候再使⽤
 //...
 p = &arr[0];//重新让p获得地址
 if(p != NULL) //判断
 {
 //...
 }
 return 0;
}

6.2.4 避免返回局部变量的地址

如果造成野指针的第3个例⼦。

7. assert断⾔

assert.h 头⽂件定义了宏 assert() ,⽤于在运⾏时确保程序符合指定条件,如果不符合,就报
错终⽌运⾏。这个宏常常被称为 “断言”

assert(p != NULL);

上⾯代码在程序运⾏到这⼀⾏语句时,验证变量 p 是否等于 NULL 。如果确实不等于 NULL ,程序
继续运⾏,否则就会终⽌运⾏,并且给出报错信息提⽰。
assert() 宏接受⼀个表达式作为参数。如果该表达式为真(返回值⾮零), assert() 不会产⽣
任何作⽤,程序继续运⾏。如果该表达式为假(返回值为零), assert() 就会报错,在标准错误
stderr 中写⼊⼀条错误信息,显⽰没有通过的表达式,以及包含这个表达式的⽂件名和⾏号。
assert() 的使⽤对程序员是⾮常友好的,使⽤ assert() 有⼏个好处:它不仅能⾃动标识⽂件和
出问题的⾏号,还有⼀种⽆需更改代码就能开启或关闭 assert() 的机制。如果已经确认程序没有问
题,不需要再做断⾔,就在 #include <assert.h> 语句的前⾯,定义⼀个宏 NDEBUG

#define NDEBUG
#include <assert.h>

然后,重新编译程序,编译器就会禁⽤⽂件中所有的 assert() 语句。如果程序⼜出现问题,可以移
除这条 #define NDBUG 指令(或者把它注释掉),再次编译,这样就重新启⽤了 assert()
句。
assert() 的缺点是,因为引⼊了额外的检查,增加了程序的运⾏时间。
⼀般我们可以在debug中使⽤,在release版本中选择禁⽤assert就⾏,在VS这样的集成开发环境中,在release版本中,直接就是优化掉了。这样在debug版本写有利于程序员排查问题,在release版本不影响⽤⼾使⽤时程序的效率。

8. 指针的使⽤和传址调用

8.1 传址调用

学习指针的⽬的是使⽤指针解决问题,那什么问题,⾮指针不可呢?
例如:写⼀个函数,交换两个整型变量的值
⼀番思考后,我们可能写出这样的代码:

#include <stdio.h>
void Swap1(int x, int y)
{
 int tmp = x;
 x = y;
 y = tmp;
}

int main()
{
 int a = 0;
 int b = 0;
 scanf("%d %d", &a, &b);
 printf("交换前:a=%d b=%d\n", a, b);
 Swap1(a, b);
 printf("交换后:a=%d b=%d\n", a, b);
 return 0;
}

当我们运⾏代码,结果如下:
在这里插入图片描述

我们发现其实没产⽣交换的效果,这是为什么呢?
调试⼀下,试试呢?

在这里插入图片描述

我们发现在main函数内部,创建了a和b,a的地址是0x00cffdd0,b的地址是0x00cffdc4,在调⽤
Swap1函数时,将a和b传递给了Swap1函数,在Swap1函数内部创建了形参x和y接收a和b的值,但是x的地址是0x00cffcec,y的地址是0x00cffcf0,x和y确实接收到了a和b的值,不过x的地址和a的地址不⼀样,y的地址和b的地址不⼀样,相当于x和y是独⽴的空间,那么在Swap1函数内部交换x和y的值,⾃然不会影响a和b,当Swap1函数调⽤结束后回到main函数,a和b的没法交换。Swap1函数在使⽤的时候,是把变量本⾝直接传递给了函数,这种调⽤函数的⽅式我们之前在函数的时候就知道了,这种叫传值调用

结论:实参传递给形参的时候,形参会单独创建⼀份临时空间来接收实参,对形参的修改不影响实参。所以Swap是失败的了。

那怎么办呢?
我们现在要解决的就是当调⽤Swap函数的时候,Swap函数内部操作的就是main函数中的a和b,直接将a和b的值交换了。那么就可以使⽤指针了,在main函数中将a和b的地址传递给Swap函数,Swap函数⾥边通过地址间接的操作main函数中的a和b就好了。

#include <stdio.h>
void Swap2(int*px, int*py)
{
 int tmp = 0;
 tmp = *px;
 *px = *py;
 *py = tmp;
}
int main()
{
 int a = 0;
 int b = 0;
 scanf("%d %d", &a, &b);
 printf("交换前:a=%d b=%d\n", a, b);
 Swap1(&a, &b);
 printf("交换后:a=%d b=%d\n", a, b);
 return 0;
}

⾸先看输出结果:

在这里插入图片描述

我们可以看到实现成Swap2的⽅式,顺利完成了任务,这⾥调⽤Swap2函数的时候是将变量的地址传递给了函数,这种函数调⽤⽅式叫:传址调用

8.2 strlen的模拟实现

//计数器⽅式
int my_strlen(const char * str)
{
 int count = 0;
 assert(str);
 while(*str)
 {
 count++;
 str++;
 }
 return count;
}
int main()
{
 int len = my_strlen("abcdef");
 printf("%d\n", len);
 return 0;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1052463.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

学校安全用电管理系统解决方案

随着科技的发展和进步&#xff0c;电力已成为我们日常生活和学习的重要支柱。然而&#xff0c;电力的使用也带来了一定的安全风险。特别是对于学校这个复杂而又活跃的环境&#xff0c;安全用电管理系统的角色显得尤为重要。 一、学校用电管理系统的现状 目前&#xff0…

2023-09-28 LeetCode每日一题(花期内花的数目)

2023-09-28每日一题 一、题目编号 2251. 花期内花的数目二、题目链接 点击跳转到题目位置 三、题目描述 给你一个下标从 0 开始的二维整数数组 flowers &#xff0c;其中 flowers[i] [starti, endi] 表示第 i 朵花的 花期 从 starti 到 endi &#xff08;都 包含&#xf…

JSP学习笔记【三】——JQuery

前言 在写项目的时候需要动态对某组件的属性进行调整&#xff0c;我看网上的教程都是使用document.getElementById等&#xff0c;但我在eclipse编写.jsp文件的时候&#xff0c;却提示document cannot be resolved。由于我对jsp没有系统的了解以及无人可咨询&#xff0c;网上也…

【DTEmpower案例操作教程】向导式建模

DTEmpower是由天洑软件自主研发的一款通用的智能数据建模软件&#xff0c;致力于帮助工程师及工科专业学生&#xff0c;利用工业领域中的仿真、试验、测量等各类数据进行挖掘分析&#xff0c;建立高质量的数据模型&#xff0c;实现快速设计评估、实时仿真预测、系统参数预警、设…

XSS详解

XSS一些学习记录 XXS短标签、属性、事件、方法短标签属性事件函数弹窗函数一些对于绕过有用的函数一些函数使用payload收集 浏览器编码问题XML实体编码URL编码JS编码混合编码 一些绕过方法利用constructor原型污染链构造弹框空格绕过圆括号过滤绕过其他的一些绕过 参考 XXS短标…

ThinkPHP 配置跨域请求,使用TP的内置跨域类配置,小程序和web网页跨域请求的区别及格式说明

TP 内置的跨域配置类 AllowCrossDomain TP 框架提供的内置类&#xff1a; \think\middleware\AllowCrossDomain::class 开启跨域 <?php// 全局中间件定义文件return [// 全局请求缓存// \think\middleware\CheckRequestCache::class,// 多语言加载// \think\middleware\L…

联邦学习-Tensorflow实现联邦模型AlexNet on CIFAR-10

目录 Client端 Server端 扩展 Client.py Server.py Dataset.py Model.py 分享一种实现联邦学习的方法&#xff0c;它具有以下优点&#xff1a; 不需要读写文件来保存、切换Client模型 不需要在每次epoch重新初始化Client变量 内存占用尽可能小&#xff08;参数量仅翻一…

前端JavaScript入门到精通,javascript核心进阶ES6语法、API、js高级等基础知识和实战 —— Web APIs(三)

思维导图 全选案例 大按钮控制小按钮 小按钮控制大按钮 css伪类选择器checked <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8"><meta http-equiv"X-UA-Compatible" content"IEedge"><…

面试题:说一下SpringBoot的自动配置原理

文章目录 引言工作原理剖析EnableAutoConfiguration自动配置生效总结 引言 不论在工作中&#xff0c;亦或是求职面试&#xff0c;Spring Boot已经成为我们必知必会的技能项。除了某些老旧的政府项目或金融项目持有观望态度外&#xff0c;如今的各行各业都在飞速的拥抱这个已经…

Leetcode205. 同构字符串

力扣&#xff08;LeetCode&#xff09;官网 - 全球极客挚爱的技术成长平台 给定两个字符串 s 和 t &#xff0c;判断它们是否是同构的。 如果 s 中的字符可以按某种映射关系替换得到 t &#xff0c;那么这两个字符串是同构的。 每个出现的字符都应当映射到另一个字符&#xff0…

Zygisk-IL2CppDumper对抗方案

众所周知&#xff0c;Unity引擎中有两种脚本编译器&#xff0c;分别是 Mono 和 IL2CPP 。这两种脚本编译器各有优势&#xff0c;同时也存在一些安全性问题&#xff0c;本文将从游戏安全角度对其进行分析并提供对策。 Mono 是由跨平台的开源.NET 实现&#xff0c;它允许开发者使…

Node.js安装教程【附安装包资源】

文章目录 安装包下载安装流程配置环境变量检查Node.js是否安装成功指定全局模块和模块缓存的路径设置淘宝镜像全局安装cnpm&#xff08;这一步可以选择是否执行&#xff09; 安装包下载 安装包下载 安装流程 修改安装路径 配置环境变量 看看环境变量里面是否有Node.js的…

Caused by: java.net.UnknownHostException: nacos

我这边的原因很简单&#xff0c;因为使用nacos作为配置中心&#xff0c;编写配置文件的时候&#xff0c;文件名称漏了.yml后缀 改成test.yml就好了。粗心造成的错&#xff0c;有时候比代码错误更难排查。。。

用于自然语言处理的 Python:理解文本数据

一、说明 Python是一种功能强大的编程语言&#xff0c;在自然语言处理&#xff08;NLP&#xff09;领域获得了极大的普及。凭借其丰富的库集&#xff0c;Python 为处理和分析文本数据提供了一个全面的生态系统。在本文中&#xff0c;我们将介绍 Python for NLP 的一些基础知识&…

闲置手机电脑流量变现项目

在之前的文章中&#xff0c;我曾经介绍过一个叫Traffmonetizer的国外流量挂机项目&#xff0c;但是经过这段时间的测试。总体来说&#xff0c;收益非常差&#xff0c;并且没有相关的网络配置教程。 上一篇文章直达&#xff1a;流量挂机赚钱项目Traffmonetizer_Yokon_D的博客-C…

程序员的浪漫:如何用java代码画❤️表白呢?

有位小伙伴说&#xff0c;看到一个帖子&#xff0c;一个计算机博士接亲时&#xff0c;要求现场写代码&#xff0c;5分钟做出一个爱心。我们就看看如何用java设计出心形的代码。 我找了一下&#xff0c;发现方法竟然很多&#xff0c;我们就来见识一下&#xff0c;最后我们看一下…

论文字体,Word字体大小对照换算表(字号、磅、英寸、像素)

Word字体大小对照换算表(字号、磅、英寸、像素) https://blog.csdn.net/QAQ_King/article/details/128776411

设计模式之抽象工厂模式--创建一系列相关对象的艺术(简单工厂、工厂方法、到抽象工厂的进化过程,类图NS图)

目录 概述概念适用场景结构类图 衍化过程业务需求基本的数据访问程序工厂方法实现数据访问程序抽象工厂实现数据访问程序简单工厂改进抽象工厂使用反射抽象工厂反射配置文件衍化过程总结 常见问题总结 概述 概念 抽象工厂模式是一种创建型设计模式&#xff0c;它提供了一种将相…

rabbitMQ死信队列快速编写记录

文章目录 1.介绍1.1 什么是死信队列1.2 死信队列有什么用 2. 如何编码2.1 架构分析2.2 maven坐标2.3 工具类编写2.4 consumer1编写2.5 consumer2编写2.6 producer编写 3.整合springboot3.1 架构图3.2 maven坐标3.3 构建配置类&#xff0c;创建exchange&#xff0c;queue&#x…

OpenCV查找和绘制轮廓:findContours和drawContours

1 任务描述&#xff1a; 绘制图中粗线矩形的2个边界&#xff0c;并找到其边界的中心线 图1 原始图像 2.函数原型 findContours( InputOutputArray image, OutputArrayOfArrays contours, OutputArray hierarchy, int mode, …