题目难度: 中等
原题链接
今天继续更新 Leetcode 的剑指 Offer(专项突击版)系列, 大家在公众号 算法精选 里回复
剑指offer2
就能看到该系列当前连载的所有文章了, 记得关注哦~
题目描述
给定一个二叉树的 根节点 root,请找出该二叉树的 最底层 最左边 节点的值。
假设二叉树中至少有一个节点。
示例 1:
- 输入: root = [2,1,3]
- 输出: 1
示例 2:
- 输入: [1,2,3,4,null,5,6,null,null,7]
- 输出: 7
提示:
- 二叉树的节点个数的范围是 [1,10^4]
- -2^31 <= Node.val <= 2^31 - 1
题目思考
- 如何找出最底层?
解决方案
思路
- 分析题目, 不难发现这道题和上一道题Leetcode 剑指 Offer II 045. 找树左下角的值非常类似, 只是把要求的最底层的最左节点换成了每一层的最右节点
- 所以我们同样可以使用经典的按层 BFS 来解决, 具体思路如下:
- 记录下当前层的节点边界, 并将当前层最后一个节点的值加入最终结果
- 然后当前层的子节点都加入队列后, 将队列更新为从下一层节点起点开始
- 这样队列变空后的最终结果就是整个二叉树的右视图
- 具体实现细节如下:
- 使用一个队列存储节点
- 接下来开始循环, 记录当前队列长度 curlen
- 然后遍历前 curlen 个节点, 并将它们的左右非空子节点追加到队列结尾
- 另外当前层最后一个遍历到的节点就是其最右节点, 将它的值追加到 res 中
- 当前层遍历结束时, 下层的起点下标自然就是 curlen, 所以只需要将队列切片成 curlen 及以后的部分即可
- 最终当队列没有元素时则说明所有节点都遍历过了, 退出循环
- 此时 res 保存的正是每一层最右节点的值
- 由于这里是树, 所以每个节点只可能被加入队列访问一次, 无需额外的 visit 集合
- 下面的代码就对应了上面的整个过程, 并且有详细的注释, 方便大家理解
复杂度
- 时间复杂度 O(N): 需要遍历每个节点一遍
- 空间复杂度 O(N): 需要存储所有节点到对应的层
代码
class Solution:
def rightSideView(self, root: TreeNode) -> List[int]:
# 按层BFS
res = []
if not root:
# 根节点为空, 返回空列表
return res
# 队列初始化为第一层, 即根节点
q = [root]
while q:
# 记录当前层的节点个数curlen
curlen = len(q)
# 将当前层最右侧的值加入最终结果中
res.append(q[-1].val)
# 只遍历当前层的节点, 即前curlen个
for node in q[:curlen]:
# 左右子节点非空时, 将其追加到队列中
if node.left:
q.append(node.left)
if node.right:
q.append(node.right)
# 将队列更新成下一层的节点
q = q[curlen:]
# 最终res就是整个二叉树的右视图
return res
大家可以在下面这些地方找到我~😊
我的 GitHub
我的 Leetcode
我的 CSDN
我的知乎专栏
我的头条号
我的牛客网博客
我的公众号: 算法精选, 欢迎大家扫码关注~😊