医疗图像分割指标

news2025/2/23 3:14:36

医疗图像其中两种图像格式:MRI(Magnetic Resonance Imaging,磁共振成像)、CT(Computed Tomography,计算机断层),常存成 .nii.gz 格式。都是 3D 的 H × W × L H \times W \times L H×W×L,但不是 RGB,而是类似 grey-scale 图只有一个 channel,如 CT 的值可能是 Hu 值,取值范围可从负几千到正几千,参考 [1]。segmentation label 也相应是 3D 的。
med-planes
这里记录几种分割指标,参考 [2,3],可调 medpy 的包,其文档也有指标列表。记有 C + 1 个类,0 固定是 background,(某个数据的)prediction 和 label Y ^ , Y ∈ { 0 , … , C } H × W × L \hat{Y},Y\in \{0, \dots, C\}^{H \times W \times L} Y^,Y{0,,C}H×W×L,只留下第 c 类的 binary prediction 和 label 为 B ^ c , B c ∈ { 0 , 1 } H × W × L \hat{B}^c,B^c \in \{0, 1\}^{H \times W \times L} B^c,Bc{0,1}H×W×L ∣ ⋅ ∣ |\cdot| 表示非零元素个数, B ^ c , B c \hat{B}^c,B^c B^c,Bc 的 surface / boundray 记为 S ^ c , S c \hat{S}^c, S^c S^c,Sc,是其表面 voxels 的三维索引向量(下标)的集合。

Dice Coefficient

即 F1-scoure[2]。第 c 类的 dice 系数: D C c = 2 ∣ B ^ c ∩ B c ∣ ∣ B ^ c ∣ + ∣ B c ∣ DC_c=\frac{2|\hat{B}^c \cap B^c|}{|\hat{B}^c| + |B^c|} DCc=B^c+Bc2∣B^cBc 调包:medpy.metric.binary.dc。

IoU

即 Jaccard 系数[2]。第 c 类的 IoU: I o U c = ∣ B ^ c ∩ B c ∣ ∣ B ^ c ∪ B c ∣ IoU_c = \frac{|\hat{B}^c \cap B^c|}{|\hat{B}^c \cup B^c|} IoUc=B^cBcB^cBc 调包:medpy.metric.binary.jc。由 [3],IoU 与 dice 系数有确定的转换关系,即等价,所以两者应该用其中一种就行。C 类的 IoU 取平均就是 mIoU: m I o U = ∑ c = 1 C I o U c C mIoU=\frac{\sum_{c=1}^{C}IoU_c}{C} mIoU=Cc=1CIoUc(2023.9.28:不确定算 mIOU 时要不要加上 background)

Sensitivity

即 recall,也叫 TPR(True Positive Rate),非对称。第 c 类的 sensitivity: R c = ∣ B ^ c ∩ B c ∣ ∣ B c ∣ R_c=\frac{|\hat{B}^c \cap B^c|}{|B^c|} Rc=BcB^cBc 调包:medpy.metric.binary.sensitivity 或 medpy.metric.binary.recall。

Specificity

也叫 selectivity、TNR(True Negative Rate),是 sensitivity 的补。第 c 类的 specifity: S P c = ∣ ( 1 − B ^ c ) ∩ ( 1 − B c ) ∣ ∣ ( 1 − B c ) ∣ SP_c = \frac{|(1-\hat{B}^c) \cap (1-B^c)|}{|(1-B^c)|} SPc=(1Bc)(1B^c)(1Bc) 调包:medpy.metric.binary.specificity。

Average (Symmetric) Surface Distance

由 [4],第 c 类的 average surface distance: A S D ( S ^ c , S c ) = ∑ p ∈ S ^ p c d s ( p , S c ) / ∣ S ^ c ∣ ASD(\hat{S}^c, S^c) = \sum_{p \in \hat{S}^c_p} d_s(p,S^c) \big/ |\hat{S}^c| ASD(S^c,Sc)=pS^pcds(p,Sc)/S^c 其中 d s ( ⋅ , ⋅ ) d_s(\cdot,\cdot) ds(,) 是点到点集(此处是表面 S)距离: d s ( p , S ) = min ⁡ q ∈ S d ( p , q ) d_s(p,S)=\min_{q \in S} d(p,q) ds(p,S)=qSmind(p,q) p , q ∈ { 1 , … , W } × { 1 , … , H } × { 1 , … , L } p,q \in \{1,\dots,W\} \times \{1,\dots,H\} \times \{1,\dots,L\} p,q{1,,W}×{1,,H}×{1,,L} 是三维索引向量(下标), d ( ⋅ , ⋅ ) d(\cdot,\cdot) d(,) 是欧氏距离。就是对 S ^ \hat{S} S^ 中属于此 object 表面的每一个 voxel,都算一下它到 S 的距离,然后取平均。调包:medpy.metric.binary.asd。

ASD 不对称,一般会用 ASSD: A S S D ( S ^ c , S c ) = A S D ( S ^ c , S c ) + A S D ( S c , S ^ c ) 2 ASSD(\hat{S}^c, S^c) = \frac{ASD(\hat{S}^c, S^c) + ASD(S^c, \hat{S}^c)}{2} ASSD(S^c,Sc)=2ASD(S^c,Sc)+ASD(Sc,S^c) 调包:medpy.metric.binary.assd。有些文章也会将 ASSD 简叫成 ASD,感觉可以无脑只用 ASSD。

Hausdorff Distance

由 [2,4],第 c 类的 Hausdorff 距离: H D ( S ^ c , S c ) = max ⁡ { sup ⁡ p ∈ S ^ c d s ( p , S c ) , sup ⁡ p ∈ S c d s ( p , S ^ c ) } HD(\hat{S}^c,S^c)=\max\left\{ \sup_{p \in \hat{S}^c} d_s(p, S^c), \sup_{p \in S^c} d_s(p, \hat{S}^c) \right\} HD(S^c,Sc)=max{pS^csupds(p,Sc),pScsupds(p,S^c)} 调包:medpy.metric.binary.hd。

Code

  • 分割模型应该一般 predict 的都是 (C+1)-way softmax prediction,即 Y ^ \hat{Y} Y^
from collections import defaultdict
import numpy as np
from medpy.metric.binary import dc, jc, hd, assd, sensitivity, specificity

def evaluate(Y_pred, Y_true, n_classes):
    """"medical segmentation evaluation
    Input:
        Y_pred, Y_true: [H, W, L], in {0, ..., n_classes - 1}
        n_classes: int
    Output:
        res: {<metric_name>: [<class_0>, ..., class_nc-1]}
    """
    metric_names = ("dice", "sensitivity", "specificity", "assd", "hd")#, "iou")
    metric_fn    = (dc, sensitivity, specificity, assd, hd)#, jc)
    res = defaultdict(list)
    for c in range(n_classes):
        B_pred_c = (Y_pred == c).astype(np.uint8)
        B_c      = (Y_true == c).astype(np.uint8)
        for metr, fn in zip(metric_names, metric_fn):
        	res[metr].append(fn(B_pred_c, B_c))

    return res

References

  1. 亨氏单位
  2. 常用的医学图像分割评价指标
  3. 医学图像分割常用指标及代码(pytorch)
  4. (MIA 2022) Rethinking adversarial domain adaptation: Orthogonal decomposition for unsupervised domain adaptation in medical image segmentation - paper, github

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1051106.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

数字孪生智慧能源:风光储一体化能源中心

自“双碳”目标提出以来&#xff0c;我国能源产业不断朝着清洁低碳化、绿色化的方向发展。其中&#xff0c;风能、太阳能等可再生能源在促进全球能源可持续发展、共建清洁美丽世界中被寄予厚望。风能、太阳能具有波动性、间歇性、随机性等特点&#xff0c;主要通过转化为电能再…

jvm内存分配与回收策略

自动内存管理 解决两个问题 自动给对象分配内存 对象一般堆上分配&#xff08;而实际上也有可能经过即时编译后被拆散为标量类型并间接地在栈上分配&#xff09; 新生对象通常会分配在新生代&#xff0c;少数情况下&#xff08;例如对象大小超过一定阈值&#xff09;也可能…

[H5动画制作系列 ]变量,帧频,监听器等的生命周期基础测试

模式:按照上述抓图,actions层&#xff0c;1帧,写初始化代码,10帧写返回代码到2帧代码,2-10帧之间一直循环。1帧及10帧代码如下&#xff1a; 如果程序在1-10之间循环,会反复创建变量i,多个监听器等。所以,第一帧最好执行一次即可&#xff0c;程序在2-10帧之间一直循环。

《Upload-Labs》01. Pass 1~13

Upload-Labs 索引前言Pass-01题解 Pass-02题解总结 Pass-03题解总结 Pass-04题解 Pass-05题解总结 Pass-06题解总结 Pass-07题解总结 Pass-08题解总结 Pass-09题解 Pass-10题解 Pass-11题解 Pass-12题解总结 Pass-13题解 靶场部署在 VMware - Win7。 靶场地址&#xff1a;https…

Leetcode290. 单词规律

给定一种规律 pattern 和一个字符串 s &#xff0c;判断 s 是否遵循相同的规律。 这里的 遵循 指完全匹配&#xff0c;例如&#xff0c; pattern 里的每个字母和字符串 s 中的每个非空单词之间存在着双向连接的对应规律。 解题思路&#xff1a;哈希 力扣&#xff08;LeetCode&…

软件测试中的测试工具和自动化测试

1. 测试工具 测试工具也分为不同人员使用的 开发人员&#xff1a;测试框架&#xff0c;编写测试用例&#xff1b;各类线上dump分析工具如windgb&#xff1b;开发时的集成IDE工具如Visual Studio&#xff0c;idea等等 面向不同测试需求的测试工具 软件测试是软件开发生命周期…

网络子网划分练习

网络子网划分练习 1.背景&#xff1a; 在一个仓储企业网络拓朴结构如图1-所示&#xff0c;该企业占地500亩。有五层办公楼1栋&#xff0c;大型仓库10栋。每栋仓库内、外部配置视频监控16台&#xff0c;共计安装视频监控160台&#xff0c;Switch A、服务器、防火墙、管理机、Rou…

UE4/5数字人MetaHuman通过已有动画进行修改

目录 通过已有动画修改动画 开始制作 创建一个关卡序列 将动画序列烘焙到控制绑定 打开我们自己创建的动画序列 之后便是烘焙出来 通过已有动画修改动画 首先架设我们已经有相关的MetaHuman的动画&#xff0c;但是这个动画因为是外部导入进来的&#xff0c;所以可能会出…

基于微信小程序的刷题考试系统设计与实现(适用于各类考试类、答题类程序)

文章目录 前言系统主要功能&#xff1a;具体实现截图论文参考详细视频演示为什么选择我自己的网站自己的小程序&#xff08;小蔡coding&#xff09;有保障的售后福利 代码参考源码获取 前言 &#x1f497;博主介绍&#xff1a;✌全网粉丝10W,CSDN特邀作者、博客专家、CSDN新星计…

C/C++跨平台构建工具CMake入门

文章目录 1.概述2.环境准备2.1 安装编译工具2.2 安装CMake 3.编译一个示例程序总结 1.概述 本人一直对OpenGL的3d渲染很感兴趣&#xff0c;但是苦于自己一直是Android开发&#xff0c;没有机会接触这方面的知识。就在最近吗&#xff0c;机会来了&#xff0c;以前一个做3D渲染的…

TouchGFX之字体缓存

使用二进制字体需要将整个字体加载到存储器。 在某些情况下&#xff0c;如果字体很大&#xff0c;如大字号中文字体&#xff0c;则这样做可能不可取。 字体缓存使应用能够从外部存储器只能加载显示字符串所需的字母。 这意味着整个字体无需保存到在可寻址闪存或RAM上&#xff…

JMM与JUC

1.JMM 问题1&#xff1a;请你谈谈你对Volatile的理解 Volatile 是java虚拟机提供轻量级的同步机制 1. 保证可见性 2. 不保证原子性 3. 禁止指令重排 1.1、什么是JMM JMM Java内存模型 不存在的东西&#xff0c;概念&#xff01;约定 &#xff01; 1.2、关于JMM的一些同…

python使用mitmproxy和mitmdump抓包之拦截和修改包(四)

我认为mitmproxy最强大的地方&#xff0c;就是mitmdump可以结合python代码&#xff0c;灵活拦截和处理数据包。 首先&#xff0c;mitmdump的路径如下&#xff1a;&#xff08;使用pip3 install mitmproxy安装的情况&#xff0c;参考我的文章python使用mitmproxy和mitmdump抓包…

【C++数据结构】二叉树搜索树【完整版】

目录 一、二叉搜索树的定义 二、二叉搜索树的实现&#xff1a; 1、树节点的创建--BSTreeNode 2、二叉搜索树的基本框架--BSTree 3、插入节点--Insert 4、中序遍历--InOrder 5、 查找--Find 6、 删除--erase 完整代码&#xff1a; 三、二叉搜索树的应用 1、key的模型 &a…

Arthas学习(1)

1.Arthas作用 Arthas是Alibaba开源的Java诊断工具。 作用&#xff1a;当遇到以下类似问题时&#xff0c;可以帮助我们解决&#xff1a; 1.这个类从哪个jar包加载的&#xff1f;为什么会报各种类相关的Exception? 2.我改的代码为什么没有执行到&#xff1f;难道是我没提交&am…

浅谈AVL树

文章目录 1.介绍1.1定义1.2来源1.3概念1.特性2.平衡因子[ Balance Factor-- _bf ] 2.BST>AVL1.示例分析2.情况分类3.代码剖析3.1左左型-右单旋3.2右右型-左单旋3.3左右型-左右旋3.4右左型:右左旋3.5总图 3.完整代码3.1AVLTree.h3.2Test.cpp 1.介绍 1.1定义 AVL树 – 平衡二…

CVE-2020-11978 Apache Airflow 命令注入漏洞分析与利用

简介 漏洞软件&#xff1a;Apache Airflow影响版本&#xff1a;< 1.10.10 环境 Vulhub 漏洞测试靶场 复现步骤 进入 /root/vulhub/airflow/CVE-2020-11978/ 目录运行以下命令启动环境 # 初始化数据库 docker compose run airflow-init # 开启服务 docker compose up -…

字符串常量池位于JVM哪里

Java6 和6之前&#xff0c;常量池是存放在方法区&#xff08;永久代&#xff09;中的。Java7&#xff0c;将常量池是存放到了堆中。Java8 之后&#xff0c;取消了整个永久代区域&#xff0c;取而代之的是元空间。运行时常量池和静态常量池存放在元空间中&#xff0c;而字符串常…

web:[ACTF2020 新生赛]Upload

题目 点进页面&#xff0c;是一个文件上传&#xff0c;能联想到getshell 先尝试随便上传一个文件试试 显示上传的文件以jpg、png、gif结尾的图片 构造一句话木马&#xff0c;再将文件后缀改为jpg <?php eval($_POST[1234]);?> 显示上传成功&#xff0c;但是显示无法…

MySQL学习笔记24

MySQL的物理备份&#xff1a; xtrabackup备份介绍&#xff1a; xtrabackup优缺点&#xff1a; 优点&#xff1a; 1、备份过程快速、可靠&#xff08;因为是物理备份&#xff09;&#xff1b;直接拷贝物理文件。 2、支持增量备份&#xff0c;更为灵活&#xff1b; 3、备份…