安全基础 --- MySQL数据库解析

news2025/1/9 1:08:47

MySQL的ACID

(1)ACID是衡量事务的四个特性

  • 原子性(Atomicity,或称不可分割性)
  • 一致性(Consistency)
  • 隔离性(Isolation)
  • 持久性(Durability)

(2)解析

原子性:语句要么全执行,要么全不执行,是事务最核心的特性,事务本身就是用原子性来定义的。(实现主要基于 undo log)

持久性:保证事务提交后不会因宕机导致数据丢失。(实现主要基于 redo log)

隔离性:保证事务执行尽可能不受其他事务影响;InooDB默认的隔离级别是RR,RR的实现主要基于锁机制(包含next-key lock)、MVCC(包括数据的隐藏列、基于 undo log 的版本链、ReadView)

一致性:事务追求的最终目标,一致性的实现既需要数据库层面的保障,也需要应用层面的保障

mysql的锁机制

加锁机制:乐观锁和悲观锁

(1)悲观锁

悲观锁:又称悲观并发控制,指的是数据被外界修改持保持态度,整个事务处理中,将数据进行锁定,直到事务处理完毕,才释放锁。

PS:悲观锁认为并发事物会导致问题,屏蔽一切可能违反数据一致性的操作。

特点:完全保证数据的独占性和正确性,因为每次请求都会先对数据进行加锁,然后进行数据操作,最后再解锁,加锁释放锁的过程会有消耗,所以性能不高;

(2)乐观锁

乐观锁:假设认为数据一般情况下不会造成冲突,所以在数据提交更新时候,才回正式对数据的冲突与否进行检查。

实现方式(常见):

  1. 版本号:表中新增一个版本号字段,每次数据更新都会修改版本号。更新数据会检查数据库中版本号与之前读取版本号是否一致,一致则允许修改
  2. 时间戳:类似于版本号的方式,使用数据库时间戳来实现。更新数据时会检查时间戳是否与之前读取的一致
  3. 基于字段判断:使用WHERE字句加上之前读取的字段值进行判断。更新行数为0,则表示数据已被其他事务修改,发生冲突

在提交更新之前检查是否有其他事务已经修改了该记录,如果发现修改,则会回滚更新并重试事务。否则,它会将更新提交到数据库。

兼容性:共享锁和排它锁

(1)排它锁

排它锁:又被称为写锁(简称X锁)。不能与其它事务共存,如一个事务获取了一个数据行的排它锁,其他事务就不能获取该行的其他锁,包括共享锁和排它锁。

实质:排他锁指的是一个事务在一行数据加上排他锁后,其他事务不能再在其上加其他的锁

实现:

打开第一个命令行界面

set autocommit=0; ---> 关闭自动提交
select * from users where from id=1 for update; ---> 查询语句的同时增加排它锁

打开第二个命令行界面


进程阻塞,不会再去动这个进程,除非上级事务提交


上级事务已提交

查询结果显示

存在问题:用户的体验和性能。如果用排它锁锁住,所有的读、请求都会堵塞在这里,对系统压力较大。n等多个进程全部堵塞,在等待中,释放后这些进程就会开始竞争,其中一个进程竞争到,其他进程相当于什么都没干,系统性能已消耗。 ---  惊群效应

惊群效应:当你往一群鸽子中间扔一块食物,虽然最终只有一个鸽子抢到食物,但所有鸽子都会被惊动来争夺,没有抢到食物的鸽子只好回去继续睡觉, 等待下一块食物到来。这样,每扔一块食物,都会惊动所有的鸽子,即为惊群。

(2)共享锁

共享锁:又被称为读锁(简称S锁)。多个事务对于同一数据可以共享一把锁,都能访问到数据,但是仅只读不能修改。

共享锁相对更好理解一点,就是多个事务只能读数据不能改数据。

实现:

打开第一个命令界面

select * from users where id=1 lock in share mode; --->  做共享锁

打开第二个命令界面

update users set username='oupeng' where id=1; ---> 更新users表中id=1的username

存在问题:修改数据时,该共享锁认为该线程一定会被一定会被多个线程争抢,读线程不受影响,

PS:共享锁和排它锁都属于悲观锁

mysql事务隔离级别

MySQL 事务都是指在 InnoDB 引擎下

(1)级别分类

mysql有四个事务隔离级别,每个级别都有字符或数字编号

  • 读未提交(READ-UNCOMMITTED)| 0 :存在脏读,不可重复读,幻读的问题
  • 读已提交(READ-COMMITTED) | 1:解决脏读的问题,存在不可重复读,幻读的问题
  • 可重复读(REPEATABLE-READ) | 2:解决脏读,不可重复读的问题,存在幻读的问题,默认隔离级别,使用MVVC机制,实现可重复读
  • 序列化(SERIALIZABLE) | 3:解决脏读,不可重复读,幻读的问题,保证事务安全,但完全串行执行,性能最低

查看会话的事务隔离级别:

select @@global.tx_isolation, @@tx_isolation;

默认的隔离级别为可重复读

(2)解决实际问题

  • 脏读(Dirty Read)
    脏读指的是读到了其他事务未提交的数据,未提交意味着这些数据可能会回滚,也就是可能最终不会存到数据库中,也就是不存在的数据。读到了并一定最终存在的数据,这就是脏读。
  • 可重复读(Repeatable Read)
    可重复读指的是在一个事务内,最开始读到的数据和事务结束前的任意时刻读到的同一批数据都是一致的。通常针对数据更新(UPDATE)操作。
  • 不可重复读(Non-Repeatable Read)
    对比可重复读,不可重复读指的是在同一事务内,不同的时刻读到的同一批数据可能是不一样的,可能会受到其他事务的影响,比如其他事务改了这批数据并提交了。通常针对数据更新(UPDATE)操作。
  • 幻读(Phantom Read)
    幻读多是针对数据插入(INSERT)操作来说的。事务 A 按照一定条件进行数据读取, 期间事务 B 插入了相同搜索条件的新数据,事务 A 再次按照原先条件进行读取时,发现了事务 B 新插入的数据,称为幻读
脏读演示

<1> 开启A,B两个窗口,进行如下操作:

show variables like 'autocommit';  ----  查看当前的自动提交是否开启
set autocommit = off; --- 关闭自动提交

set session transaction isolation level read uncommitted; --> 设置当前会话隔离级别为“读未提交”
select @@tx_isolation; --> 查看当前隔离级别

start transcation; --- 开启事务,(begin; -- 显式开启事务)

<2> 修改数据进行查询

B:update users set username='123456' where id=1; --- 修改id=1的username为123456
A:select * from users where id=1; --- 在A窗口查询id=1的数据 



事务未关闭,显示数据已被更改,此时出现的问题即为脏读。

不可重复读演示

<1> 关闭A,B的自动提交机制,使用读已提交隔离级别,开启事务



<2> 修改数据进行查询

B:update users set username='oupengaaa' where id=1; --- 修改id=1的username为oupengaaa
A:select * from users where id=1; --- 在A窗口查询id=1的数据



​​​​​​id=1的username未发生改变,当B窗口修改事务后未使用(commit;)提交,所以事务未发生改变。

在B窗口提交后,在A窗口进行查询

存在问题:不可重复读 --- 同一事物内,最开始读到的数据和事务结束前任意时刻读到的数据不一致。

可重复读演示

<1> 关闭A,B的自动提交机制,使用可重复读隔离级别,开启事务



<2> 修改数据进行查询

B:update users set username='oupeng1234' where id=1; --- 修改id=1的username为oupeng1234
A:select * from users where id=1; --- 在A窗口查询id=1的数据



​​​​​​id=1的username未发生改变

B窗口提交后继续查看,依旧未改变

A窗口使用(commit;)提交,查询数据改变情况

存在问题:可重复读可能产生幻读问题,幻读问题很少出现。

可重复读的实现机制:MVCC --- 多版本并发控制,类似于乐观锁的实现机制

多版本并发控制(MVCC)是一种用来解决读-写冲突的无锁并发控制,也就是为事务分配单向增长的时间戳,为每个修改保存一个版本,版本与事务时间戳关联,读操作只读该事务开始前的数据库的快照。

幻读演示(可重复读环境下)

事务T1:

事务T2:

只要 T1 和 T2 时刻执行产生的结果集是不相同的,那就发生了幻读的问题,比如:

  • T1 时间执行的结果是有 5 条行记录,而 T2 时间执行的结果是有 6 条行记录,那就发生了幻读的问题。

  • T1 时间执行的结果是有 5 条行记录,而 T2 时间执行的结果是有 4 条行记录,也是发生了幻读的问题。

由此,可把幻读理解为:select 某记录是否存在,不存在,准备插入此记录,但执行 insert 时发现此记录已存在,无法插入,此时就发生了幻读。

(3)mysql 幻读问题

MVCC + gap Lock

幻读是指在一个事务中,由于其他事务的并发操作,导致同一个查询在不同时间点返回不同的结果集。简单来说,幻读就是一个事务在读取数据的过程中,发现了一些“幻影”数据,这些数据在事务开始时不存在,但在事务结束时却突然出现了

两种解决方案

<1> 针对快照读(普通select语句):通过 MVCC 方式解决了幻读。MVCC 是一种在并发事务执行过程中管理数据版本的机制。它通过为每个事务分配唯一的事务 ID 和版本号来跟踪数据的变化。

<2> 针对当前读(select ... for update 等语句):是通过 next-key lock(记录锁+间隙锁)方式解决了幻读,因为当执行 select ... for update 语句的时候,会加上 next-key lock,如果有其他事务在 next-key lock 锁范围内插入了一条记录,那么这个插入语句就会被阻塞,无法成功插入,所以就很好了避免幻读问题。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1050774.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【IDEA】使用idea调试时查看对象集合的值

1、在实体类上添加toString方法 2、在要查看集合的地方右键View as→toString 3、View Text复制对象集合的值 4、复制map集合的值同理

ThemeForest – Canvas 7.2.0 – 多用途 HTML5 模板

ThemeForest 上的 HTML 网站模板受到全球数百万客户的喜爱。与包含网站所有页面并允许您在 WP 仪表板中自定义字体和样式的 WordPress 主题不同&#xff0c;这些设计模板是用 HTML 构建的。您可以在 HTML 编辑器中编辑模板&#xff0c;但不能在 WordPress 上编辑模板&#xff0…

多网卡场景数据包接收时ip匹配规则

多网卡场景数据包接收时ip匹配规则 mac地址匹配规则 接收数据包时数据包中的目的mac地址匹配接收网卡的mac地址后&#xff0c;数据包才会继续被传递到网络层处理 ip地址匹配规则 图1&#xff1a; 参见&#xff1a;https://zhuanlan.zhihu.com/p/529160026?utm_id0 图2&am…

在vue使用wangEditor(简单使用)

wangEditor不同的版本使用方法都不一样&#xff0c;这里以目前最新的参考官网方法使用2023-09-28 首先安装&#xff0c;参考官网&#xff0c;注意editor跟editor-for-vue两个都要装 yarn add wangeditor/editor # 或者 npm install wangeditor/editor --saveyarn add wangedit…

云安全之访问控制的常见攻击及防御

访问控制攻击概述 访问控制漏洞即应用程序允许攻击者执行或者访问某种攻击者不具备相应权限的功能或资源。 常见的访问控制可以分为垂直访问控制、水平访问控制及多阶段访问控制 (上下文相关访问控制)&#xff0c;与其相应的访问控制漏洞为也垂直越权漏洞(普通用户可以访问或…

ElasticSearch - 在 微服务项目 中基于 RabbitMQ 实现 ES 和 MySQL 数据异步同步(考点)

目录 一、数据同步 1.1、什么是数据同步 1.2、解决数据同步面临的问题 1.3、解决办法 1.3.1、同步调用 1.3.2、异步通知&#xff08;推荐&#xff09; 1.3.3、监听 binlog 1.3、基于 RabbitMQ 实现数据同步 1.3.1、需求 1.3.2、在“酒店搜索服务”中 声明 exchange、…

【C++】vector的介绍 | 常见接口的使用

目录 vector的介绍 常见接口 构造函数 尾插push_back() vector的遍历 1.用方括号下标 遍历&#xff1a; 2.调用at()来访问&#xff1a; 3.用迭代器遍历&#xff1a; 4.范围for遍历&#xff1a; vector空间 vector增删查改 覆盖assign() 查找find() 插入insert() …

css自学框架之幻灯片展示效果

这一节&#xff0c;我自学了焦点图效果(自动播放&#xff0c;圆点控制)&#xff0c;首先看一下效果&#xff1a; 下面我们还是老思路&#xff0c;css展示学习三个主要步骤&#xff1a;一是CSS代码&#xff0c;二是Javascript代码&#xff0c;三是Html代码。 一、css代码主要如…

【JavaEE】锁策略

文章目录 前言1. 乐观锁和悲观锁2. 重量级锁和轻量级锁3. 自旋锁和挂起等待锁4. 公平锁和非公平锁5. 可重入锁和非可重入锁6. 读写锁Java synchronized 分别对应哪些锁策略1. 乐观锁和悲观锁2. 重量级锁和轻量级锁3. 自旋锁和挂起等待锁4. 公平锁和非公平锁5. 可重入锁和非可重…

Scala第八章节

Scala第八章节 scala总目录 章节目标 能够使用trait独立完成适配器, 模板方法, 职责链设计模式能够独立叙述trait的构造机制能够了解trait继承class的写法能够独立完成程序员案例 1. 特质入门 1.1 概述 有些时候, 我们会遇到一些特定的需求, 即: 在不影响当前继承体系的情…

基于Java的图书管理系统设计与实现(源码+lw+部署文档+讲解等)

文章目录 前言具体实现截图论文参考详细视频演示为什么选择我自己的网站自己的小程序&#xff08;小蔡coding&#xff09;有保障的售后福利 代码参考源码获取 前言 &#x1f497;博主介绍&#xff1a;✌全网粉丝10W,CSDN特邀作者、博客专家、CSDN新星计划导师、全栈领域优质创作…

JavaScript系列从入门到精通系列第十篇:JavaScript中的相等运算符与条件运算符

文章目录 一&#xff1a;相等运算符 1&#xff1a; 2&#xff1a;! 3&#xff1a;与! (一)&#xff1a; (二)&#xff1a;! 二&#xff1a;条件运算符 1&#xff1a;语法 2&#xff1a;使用 3&#xff1a;容易挨打的写法 一&#xff1a;相等运算符 用于比较两个值是…

前端框架介绍

一、node.js 配置淘宝镜像源 npm config set registry https://registry.npm.taobao.org可以使用npm config list命令来确认镜像地址是否已成功更改。 如果需要将配置的镜像恢复为默认的npm官方源,可以执行以下命令: npm config delete registry二、vue 1、创建Vue项目 …

算法的时间复杂度分析习题专题

之前写了一篇重点是讲理论&#xff0c;今天重点在于对于题目的分析 题目难度不分先后&#xff0c;有题目来源会直接给出链接或者位置 第一题&#xff1a;消失的数字 题目来源&#xff1a;LeetCode消失的数字 分析 第一种思路分析&#xff1a; 参考代码&#xff1a; #include …

RTSP协议抓包及讲解

文章目录 前言一、RTSP 亲手搭建直播点播1、数据源为视频文件2、数据源为摄像头①、搭建 RTSP 流媒体服务器②、客户端拉流 二、RTSP 协议简介三、手撕 RTSP 协议1、Wireshark 抓包①、搭建环境②、wireshark 抓包 2、RTSP 交互流程①、OPTIONS②、DESCRIBE③、SETUP④、PLAY⑤…

全面横扫:dlib Python API在Linux和Windows的配置方案

前言 在计算机视觉和人工智能领域&#xff0c;dlib是一个备受推崇的工具库。它为开发者提供了强大的图像处理、机器学习和深度学习功能。在计算机视觉项目中&#xff0c;配置dlib Python API是一个重要的初始步骤。本文将引导读者详细了解在Linux和Windows系统上安装和配置dli…

【算法分析与设计】动态规划(下)

目录 一、最长公共子序列1.1 最长公共子序列的结构1.2 子问题的递归结构1.3 计算最优值1.4 举例说明1.5 算法的改进 二、最大子段和2.1 代码2.2 最大子段和问题的分治算法2.3 代码2.4 分治算法的时间复杂度2.5 最大子段和问题的动态规划算法 三、凸多边形最优三角剖分3.1 三角剖…

Flutter笔记:关于应用程序中提交图片作为头像

Flutter笔记 关于应用程序中提交图片作为头像 作者&#xff1a;李俊才 &#xff08;jcLee95&#xff09;&#xff1a;https://blog.csdn.net/qq_28550263 邮箱 &#xff1a;291148484163.com 本文地址&#xff1a;https://blog.csdn.net/qq_28550263/article/details/133418554…

raw智能照片处理工具DxO PureRAW mac介绍

DxO PureRAW Mac版是一款raw智能照片处理工具&#xff0c;该软件采用了智能技术&#xff0c;以解决影响所有RAW文件的七个问题&#xff1a;去马赛克&#xff0c;降噪&#xff0c;波纹&#xff0c;变形&#xff0c;色差&#xff0c;不想要的渐晕&#xff0c;以及缺乏清晰度。 Dx…

软件测试之单元测试自动化入门基础

单元测试自动化 所谓的单元测试(Unit Test)是根据特定的输入数据&#xff0c;针对程序代码中的最小实体单元的输入输出的正确性进行验证测试的过程。所谓的最小实体单元就是组织项目代码的最基本代码结构&#xff1a;函数&#xff0c;类&#xff0c;模块等。在Python中比较知名…