一篇博客学会系列(2)—— C语言中的自定义类型 :结构体、位段、枚举、联合体

news2024/12/25 12:32:27

目录

 前言

1、结构体

1.1、结构体类型的声明

1.2、特殊的结构体类型声明

1.3、结构体的自引用

1.4、结构体的定义和初始化

1.5、结构体成员变量的调用

1.6、结构体内存对齐 

1.6.1、offsetof

1.6.2、结构体大小的计算

1.6.3、为什么存在内存对齐? 

1.7、 修改默认对齐数

1.8、结构体传参

2、位段 

2.1、什么是位段

2.2、位段的内存分配

2.3、位段的跨平台问题

2.4、位段的应用 

3、枚举

3.1、枚举类型的定义

3.2、枚举的优点 

4、联合体(共用体)

4.1、联合类型的定义

4.2、联合体的特点

4.3、联合大小的计算

 前言

C语言的内置类型有:char、short、int、long、long long、float、double。

而这些内置类型不能够解决所有问题,生活中会存在一些复杂对象。

比如描述一个人,名字、性别、年龄、身高、体重.......

描述一本书,书名、作者、出版社.......

由于会存在复杂对象,因此C语言就支持了自定义类型,这就是这篇博客即将讲到的结构体、位段、枚举、联合体(共用体)。

1、结构体

        结构体是一种用户自定义的数据类型,用来将多个关联的数据项组合到一起,形成一个完整的数据集合。

        数组是一组相同类型元素的集合,而结构体可以包含不同类型的数据,例如整型、字符型、浮点型、数组、指针等等。结构体中的每个数据被称为成员变量

1.1、结构体类型的声明

  • 结构体关键字struct
  • 自定义类型名tag
  • 成员列表member-list
  • 结构体变量名variable-list
struct tag
{
	member-list;
}variable-list;

例如描述一个学生: 

struct Stu
{
	char name[20];//名字
	int age;//年龄
	char sex[5];//性别
	char id[20];//学号
}s1, s2, s3;//分号不能丢 s1,s2,s3是三个结构体变量,为全局变量

int main()
{
	struct Stu s4, s5, s6; //s4,s5,s6是三个结构体变量,为局部变量
	return 0;
}

1.2、特殊的结构体类型声明

匿名结构体类型在定义时没有自定义类型名,并且在定义时就创建了结构体变量(s1)。

特点:因为没有自定义类型名,无法在以后通过自定义类型名进行创建,所以只能在定义时创建结构体变量。

struct 
{
	char name[20];//名字
	int age;//年龄
	char sex[5];//性别
	char id[20];//学号
}s1;//分号不能丢

【易错提醒】 

 下面代码是否可行?

struct 
{
	char name[20];
	int age;
	char sex[5];
	char id[20];
}s1;

struct
{
	char name[20];
	int age;
	char sex[5];
	char id[20];
}* p;

int main()
{
	p = &s1;  //是否可行?
	return 0;
}

【答案 】

不可行, 在编译器看来,虽然两个结构体的成员变量是一样的,但是仍然会认为是两个结构体类型,因此编译器会报警告的。

1.3、结构体的自引用

在结构体中包含一个类型为该结构体本身的成员可以吗?

struct Node
{
	int data;
	struct Node next;
};

其实可以换一种思路:如果可以直接在结构体内包含本身,那么该结构体大小一定是可以用sizeof()计算的,因为如果可行的话就必然会存储在内存中,而存储在内存中的话又必然会有大小。相反如果无法计算大小,就证明该自引用方式不行。

那么当我们运行sizeof计算该结构体大小时候会发现编译器报错了,即证明该自引用方式是错误的。

【正确的结构体自引用】 

因为地址(指针)的大小是确定的,所以可以传递指针来实现结构体的自引用。

struct Node
{
	int data;
	struct Node* next; //结构体指针
};

int main()
{
	printf("%d\n", sizeof(struct Node));
	return 0;
}

1.4、结构体的定义和初始化

struct Point
{
	int x;
	int y;
}p1;
//声明类型的同时定义变量p1
struct Point p2;
//定义结构体变量p2
//初始化:定义变量的同时赋初值。
struct Point p3 = { 1, 2 };

struct Stu    //类型声明
{
	char name[15];//名字
	int age;  //年龄
};
struct Stu s = { "zhangsan", 20 };//初始化

struct Node
{
	int data;
	struct Point p;
	struct Node* next;
}n1 = { 10, {4,5}, NULL };
//结构体嵌套初始化
struct Node n2 = { 20, {5, 6}, NULL };//结构体嵌套初始化

1.5、结构体成员变量的调用

  • 结构体变量名.成员变量名
  • 结构体指针->成员变量名

1.6、结构体内存对齐 

  • 我们已经掌握了结构体的基本使用了。
  • 现在我们深入讨论一个问题:计算结构体的大小。
  • 这也是一个特别热门的考点: 结构体内存对齐

如果两个结构体的成员变量都一致,那么他们的大小会一样吗?

struct S1
{
	char c1;
	int i;
	char c2;
};

struct S2
{
	char c1;
	char c2;
	int i;
};

int main()
{
	printf("%d\n", sizeof(struct S1));   //结构体大小为多少?
	printf("%d\n", sizeof(struct S2));   //结构体大小为多少?
	return 0;
}

【运行结果】 

出乎意料的是,S1的大小是12,而S2的大小是8,它们的大小啊是不一致的,这是为什么呢?下面我们介绍一个宏offsetof,用这个宏来探究什么导致了S1和S2大小不一。

1.6.1、offsetof

宏offsetof用于计算结构体成员相较于起始位置的偏移量,返回的就是偏移量。

【计算S1】

首先c1、c2占一个字节,i占四个字节。然后用offsetof计算出偏移量为0、4、8。

而S1总大小又为12,那么将c1、i、c2按照偏移量存入内存中后可以观察到,如果S1为12,那么将有6个字节的空间被浪费(红色区域),这是为什么呢?

【计算S2】

 S2计算的大小是8,那么将成员变量按照偏移量存入内存中后,可以观察到被浪费了2个字节的空间(红色区域),为什么会出现浪费的空间,而且浪费的空间还不一样呢?下面将为大家讲解结构体内存对齐。

1.6.2、结构体大小的计算

首先得掌握结构体的对齐规则:

  1. 第一个成员在与结构体变量偏移量为0的地址处。
  2. 其他成员变量要对齐到某个数字(对齐数)的整数倍的地址处。
  • 对齐数 = 编译器默认的一个对齐数 与 该成员大小的较小值
  • VS中默认的值为8
  • Linux中没有默认对齐数,对齐数就是成员自身的大小。

     3. 结构体总大小为最大对齐数(每个成员变量都有一个对齐数)的整数倍。

     4. 如果嵌套了结构体的情况,嵌套的结构体对齐到自己的最大对齐数的整数倍处,结构体的整体大小就是所有最大对齐数(含嵌套结构体的对齐数)的整数倍。

那么当我们知道了对齐数这个东西之后,我们就来试着自己计算一下s1和s2的大小。 

 【手动计算S1】

  • 第一个成员c1直接放在0偏移处。
  • i的自身大小为4,vs默认对齐数为8,较小值就为4,因此要放到4的整数倍的位置上,即跳过(浪费)3个字节放在4偏移处,占4个字节。
  • c2自身大小为1,vs默认对齐数为8,较小值就为1,因此要放到1的整数倍的位置上,任何数都是1的整数倍,因此直接放在i后面就可以了。
  • 此时还没结束结构体总大小为最大对齐数(每个成员变量都有一个对齐数)的整数倍。c1对齐数1,i对齐数4,c2对齐数1,因此最大对齐数为4,此时大小为9,需要再浪费3个空间,使结构体总大小到达12成为4的倍数,这就完成了一次结构体的计算。

【手动计算S2】 

  • 第一个成员c1直接放在0偏移处。
  • c2自身大小为1,vs默认对齐数为8,较小值就为1,因此要放到1的整数倍的位置上,任何数都是1的整数倍,因此直接放在c1后面就可以了。
  • i的自身大小为4,vs默认对齐数为8,较小值就为4,因此要放到4的整数倍的位置上,即跳过(浪费)2个字节放在4偏移处,占4个字节。
  • 此时还没结束,结构体总大小为最大对齐数(每个成员变量都有一个对齐数)的整数倍。c1对齐数1,i对齐数4,c2对齐数1,因此最大对齐数为4。但是此时的大小刚好就为4的倍数,因此不需要在浪费其他空间了,结构体大小就为8。

1.6.3、为什么存在内存对齐? 

        当我们了解完结构体内存对齐之后,我们还有一个问题:什么会存在内存对齐呢 ?

大部分的参考资料中都涉及到两种原因

1. 平台原因(移植原因):
        不是所有的硬件平台都能访问任意地址上的任意数据的;某些硬件平台只能在某些地址处取某些特定类型的数据,否则抛出硬件异常

2. 性能原因:
        数据结构(尤其是栈)应该尽可能地在自然边界上对齐。原因在于,为了访问未对齐的内存,处理器需要作两次内存访问;而对齐的内存访问仅需要一次访问。

总体来说: 

结构体的内存对齐是拿空间来换取时间的做法。

 

 那在设计结构体的时候,我们既要满足对齐,又要节省空间,如何做到:

让占用空间小的成员尽量集中在一起。例如上面作为例子使用的S1和S2,它们的成员一模一样,但是S1和S2所占空间的大小有了一些区别,就是因为S2将小的成员放在了一起。

struct S1
{
	char c1;
	int i;
	char c2;
};                      //结构体大小12

struct S2
{
	char c1;
	char c2;
	int i;
};                      //结构体大小8

1.7、 修改默认对齐数

之前我们见过了 #pragma 这个预处理指令,这里我们再次使用,可以改变我们的默认对齐数。

#include <stdio.h>
#pragma pack(8)//设置默认对齐数为8

struct S1
{
	char c1;
	int i;
	char c2;
};
#pragma pack()//取消设置的默认对齐数,还原为默认


#pragma pack(1)//设置默认对齐数为1
struct S2
{
	char c1;
	int i;
	char c2;
};
#pragma pack()//取消设置的默认对齐数,还原为默认

int main()
{	//输出的结果是什么?
	printf("%d\n", sizeof(struct S1));
	printf("%d\n", sizeof(struct S2));
	return 0;
}

 【运行结果】

这里非常好理解,对齐数设置为8的情况我们在上面已经计算过了,那么设置为1的时候就等于没有对齐了,因为任何数都是1的整数倍,所以直接就等于1+4+1 = 6。

1.8、结构体传参

 下面的 print1 和 print2 函数哪个好些?

struct S
{
	int data[1000];
	int num;
};
struct S s = { {1,2,3,4}, 1000 };
//结构体传参
void print1(struct S s)
{
	printf("%d\n", s.num);
}
//结构体地址传参
void print2(struct S* ps)
{
	printf("%d\n", ps->num);
}
int main()
{
	print1(s);  //传结构体
	print2(&s); //传地址
	return 0;
}

【答案】

首选 print2 函数,因为函数传参的时候,参数是需要压栈,会有时间和空间上的系统开销。
如果传递一个结构体对象的时候,结构体过大,参数压栈的的系统开销比较大,所以会导致性能的下降。

2、位段 

 位段的出现是为了节省空间的。

2.1、什么是位段

位段的“位”,就是二进制位的“位”。位段的声明和结构是类似的,有两个不同:

  1. 位段的成员必须是 int、unsigned int 或signed int 。在 C99之后,也可以是其他类型,但基本上也都是int、char这些整型家族的类型。
  2. 位段的成员名后边有一个冒号和一个数字
struct A
{
	int _a : 2;  //_a占用2个bit位的空间
	int _b : 5;  //_b占用5个bit位的空间
	int _c : 10; //_c占用10个bit位的空间
	int _d : 30; //_d占用30个bit位的空间
};

int main()
{
	printf("%d\n", sizeof(struct A));
	return 0;
}


//提示:1个字节等于8个bit位

 

正常情况下四个int类型开辟出来的大小为16个字节,但是如果使用上面的代码实现的话只用了8个字节,下面就来讲解一下位段的内存分配。

2.2、位段的内存分配

  1. 位段的成员可以是 int unsigned int signed int 或者是 char (属于整形家族)类型
  2. 位段的空间上是按照需要以4个字节( int )或者1个字节( char )的方式来开辟的。
  3. 位段涉及很多不确定因素,位段是不跨平台的,注重可移植的程序应该避免使用位段
struct S
{
	char a : 3;
	char b : 4;
	char c : 5;
	char d : 4;
};


int main()
{
	struct S s = { 0 };

	s.a = 10;
	s.b = 12;
	s.c = 3;
	s.d = 4;

	int ret = sizeof(struct S);
	printf("%d\n", ret);
	return 0;
}

 【运行结果】Visual Studio 2022环境下测试结果

结果为3个字节。

疑问3+4+5+4 = 16bit位,1个字节等于8个bit位,为什么不是开辟2个字节呢?

我们可以在内存存放的值中找到答案。

图解可以得出结论:当空间不够存放下一个成员时,剩下的空间不会被使用,而是会开辟另外一个空间然后将内容存放到新开辟的空间中去,因此上述代码的结果才会是是3而不是2。

2.3、位段的跨平台问题

  1. int 位段被当成有符号数还是无符号数是不确定的。
  2. 位段中最大位的数目不能确定。(16位机器最大16,32位机器最大32,写成27,在16位机器会出问题。)
  3. 位段中的成员在内存中从左向右分配,还是从右向左分配标准尚未定义。
  4. 当一个结构包含两个位段,第二个位段成员比较大,无法容纳于第一个位段剩余的位时,是舍弃剩余的位还是利用,这是不确定的。

总结:

跟结构相比,位段可以达到同样的效果,但是可以很好的节省空间,但是有跨平台的问题存在。

2.4、位段的应用 

网络协议栈,网络底层传输数据。

在当今的互联网时代下,通过网络传输数据已经非常普遍了,那么大家有没有想过,当我们发送的一条短信,一条微信消息时,网络传输部分是怎样处理的,它是只传输了消息本身吗?当然不是,一条最简单的消息都要包含许多其他的数据,比如这条消息的发出时间,发送者的ip地址,发送对象的ip地址等等等等。一条消息包含了那么多数据,那么如果没有位段的出现,就会导致单条消息传输的体积过大,会导致网络负载过大,不利于我们的日常使用和服务器的数据存储。使用位段就能很好的压缩体积大小,使得消息更加小而轻便。

3、枚举

枚举,顾名思义就是一一列举,把可能值都一一列举。

比如我们现实生活中:

  • 一周的星期一到星期日是有限的7天,可以一一列举。
  • 性别有:男、女、保密,也可以一一列举。
  • 月份有12个月,也可以一一列举

3.1、枚举类型的定义

以下定义的 enum Day , enum Sex , enum Color 都是枚举类型。
{}中的内容是枚举类型的可能取值,也叫枚举常量 。

enum Day//星期
{
	Mon,   //枚举的可能取值是默认从0开始的。
	Tues,
	Wed,
	Thur,
	Fri,
	Sat,
	Sun
};

enum Sex//性别
{
	MALE,
	FEMALE,
	SECRET
};

enum Color//颜色
{
	RED,
	GREEN,
	BLUE
};

这些可能取值都是有值的,默认从0开始,一次递增1,当然在定义的时候也可以赋初值。

例如: 

enum Color//颜色
{
    RED=1,
    GREEN=2,
    BLUE=4
};

3.2、枚举的优点 

我们可以使用 #define 定义常量,为什么非要使用枚举?
枚举的优点

  1. 增加代码的可读性和可维护性
  2. 和#define定义的标识符比较枚举有类型检查,更加严谨。
  3. 防止了命名污染(封装)
  4. 便于调试
  5. 使用方便,一次可以定义多个常量

4、联合体(共用体)

4.1、联合类型的定义

联合也是一种特殊的自定义类型
这种类型定义的变量也包含一系列的成员,特征是这些成员公用同一块空间(所以联合也叫共用体)。
比如:

union Un
{
	char c;
	int i;
};

4.2、联合体的特点

联合的成员是共用同一块内存空间的,这样一个联合变量的大小,至少是最大成员的大小(因为联合至少得有能力保存最大的那个成员)。同时因为共用一块内存空间,所以同一时间只能使用一个。

union Un
{
	char c;
	int i;
};

int main()
{
	union Un un;
	printf("%d\n", sizeof(un));
	printf("%p\n", &(un));
	printf("%p\n", &(un.c));
	printf("%p\n", &(un.i));
	return 0;
}

 

4.3、联合大小的计算

  • 联合的大小至少是最大成员的大小。
  • 当最大成员大小不是最大对齐数的整数倍的时候,就要对齐到最大对齐数的整数倍。
union Un
{
	char c[5];  //大小为5,对齐数为1
	int i;      //大小为4,对齐数为4
};

int main()
{
	printf("%zd\n", sizeof(union Un));
	return 0;
}

 【运行结果】

最大成员大小为5,但是最大对齐数是4,所以需要对齐到8。

如果觉得作者写的不错,求给博主一个大大的点赞支持一下,你们的支持是我更新的最大动力!

如果觉得作者写的不错,求给博主一个大大的点赞支持一下,你们的支持是我更新的最大动力!

如果觉得作者写的不错,求给博主一个大大的点赞支持一下,你们的支持是我更新的最大动力!

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1050149.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

C理解(一):内存与位操作

本文主要探讨C语言的内存和为操作操作相关知识。 冯诺依曼结构和哈佛结构 冯诺依曼结构&#xff1a;数据和代码放在一起,便于读取和修改,安全性低 哈佛结构是&#xff1a;数据和代码分开存放,安全性高,读取和修麻烦 内存 内存是用来存储全局变量、局…

chatgpt,神经网络与拥塞控制

chatgpt 是一个巨大的带答案的完形填空题库&#xff0c;它可以回答几乎所有的文字类问题&#xff0c;不保证完全正确&#xff0c;但大致正确。它是怎么做到的&#xff1f; 它怎么知道我要问什么&#xff0c;如果它知道我要问什么&#xff0c;那么问题的不同表达形式它也一定知…

如何利用AI算法+EasyCVR视频监控技术打造鱼塘养殖监管方案

对鱼塘养殖行业来说&#xff0c;养殖区域面积大、管理难&#xff0c;经常会遇到偷钓者、盗窃鱼苗、非法入侵等监管难题。传统的人工监管模式不仅耗费人力成本&#xff0c;而且监管效率低下&#xff0c;无法满足当前养殖户的需求。因此&#xff0c;搭建智能化的远程视频监控系统…

Linux 基本语句_5_创建静态库|动态库

静态库 创建主函数&#xff1a;main.c 应用函数&#xff1a;add.c、sub.c、mul.c 创建calc.h文件作为头文件 生成可执行文件*.o文件 gcc -c add.c -o add.o ....包装*.o文件为静态库 ar -rc libmymath.a add.o sub.o mul.o编译静态库并指明创建静态库的位置 sudo gcc mai…

原型、原型链、判断数据类型

目录 作用 原型链 引用类型&#xff1a;__proto__(隐式原型)属性&#xff0c;属性值是对象函数&#xff1a;prototype(原型)属性&#xff0c;属性值是对象 Function&#xff1a;本身也是函数 相关方法 person.prototype.isPrototypeOf(stu) Object.getPrototypeOf(objec…

论企业IPV4和IPV6网络融合互通网络规划设计

01、IPv6改造问题及整体改造思路 随着“十四五”期间国家政策对IPv6深化改造及规模部署的推动&#xff0c;在IPv6改造过程中出现了越来越多的系统性问题&#xff0c;如图1所示。 图1 关于IPv6改造的各种疑问 所有跨设备通信的IT软硬件系统均需要处理IP地址&#xff0c;各领域…

Android SDK目录结构

目录结构如下&#xff1a; 1&#xff1a;add-ons 该目录中存放 Android 的扩展库&#xff0c;比如 Google Maps&#xff0c;但若未选择安装 Google API&#xff0c;则该目录为空。 2&#xff1a;build-tools 编译工具目录&#xff1a;保存了Android开发常用的工具&#xff0…

【.NET源码解读】Configuration组件及自动更新

Configuration组件是.NET中一个核心的、非常重要的组件。它提供了一种方便的机制&#xff0c;用于从配置文件、环境变量、命令行参数等各种数据源中读取和配置应用程序&#xff0c;以满足不同环境下应用程序的需求。 在本篇文章中&#xff0c;将会介绍Configuration的基本用法…

使用Visual Studio调试排查Windows系统程序audiodg.exe频繁弹出报错

VC常用功能开发汇总&#xff08;专栏文章列表&#xff0c;欢迎订阅&#xff0c;持续更新...&#xff09;https://blog.csdn.net/chenlycly/article/details/124272585C软件异常排查从入门到精通系列教程&#xff08;专栏文章列表&#xff0c;欢迎订阅&#xff0c;持续更新...&a…

智慧燃气平台的总体架构到底应怎样设计?

关键词&#xff1a;智慧燃气、智慧燃气平台、智能燃气、智能监控 智慧燃气平台功能设计的一些方向和思考&#xff1a; 1、资源统一&#xff0c;管理调度 城市燃气智慧调度运营管理平台收集并且整理出每个业务系统信息&#xff0c;并且根据所整理出的信息结果制定出标准规范&…

Excel·VBA分列、字符串拆分

看到一篇博客《VBA&#xff0c;用VBA进行分列&#xff08;拆分列&#xff09;的2种方法》&#xff0c;使用VBA对字符串进行拆分 目录 Excel分列功能将字符串拆分为二维数组&#xff0c;Split函数举例 将字符串拆分为一维数组&#xff0c;正则表达式举例 Excel分列功能 Sub 测…

windows下使用VS2019 + CMake 进行Qt开发记录

windows下使用VS2019 CMake 进行Qt开发 前言一、准备工作二、VS2019 cmake3.20 Qt1.VS2019新建一个cmake工程2.修改CMakelist.txt3.运行测试 总结 前言 注意&#xff1a;本文讲的是vs2019 cmake的方式开发Qt程序。 常言道&#xff1a;工欲善其事必先利其器。工具利用的好…

数字货币的一些隐私保护问题

常见的数字货币基本模型 代表数字货币的不同架构和交易验证方式。 Account Based 基于账户的数字货币模型。主要特点 账户地址&#xff1a;每个用户都有一个唯一的账户地址&#xff0c;类似于银行账户号码。这个地址用来标识用户的身份&#xff0c;并用于接收、存储和发送…

多线程学习(C/C++)

1.进程 运行着的程序就是进程 进程的特性:1.独立性 2.动态性 3.并发性 (1)进程的状态 进程一共有五种状态分别为:创建态,就绪态,运行态,阻塞态(挂起态),退出态(终止态)其中创建态和退出态维持的时间是非常短的,稍纵即逝。我们主要是需要将就绪态, 运行态, 挂起态,三者…

7.网络原理之TCP_IP(上)

文章目录 1.网络基础1.1认识IP地址1.2子网掩码1.3认识MAC地址1.4一跳一跳的网络数据传输1.5总结IP地址和MAC地址1.6网络设备及相关技术1.6.1集线器&#xff1a;转发所有端口1.6.2交换机&#xff1a;MAC地址转换表转发对应端口1.6.3主机&#xff1a;网络分层从上到下封装1.6.4主…

文件的编译与链接

目录 翻译环境与链接环境&#xff1a; 翻译环境&#xff1a; 编译器部分&#xff1a; 预处理&#xff1a; 编译&#xff1a; 词法分析&#xff1a; 语法分析&#xff1a; 语义分析&#xff1a; 汇编&#xff1a; 小总结&#xff1a; 链接器部分&#xff1a; 运行环境…

LLMS: 将模型与人类价值观对齐Aligning models with human values

欢迎回来。让我们回到 生成式 AI 项目的生命周期。 上周&#xff0c;你 仔细研究了一种叫做微调的技术。 使用 指令&#xff08;包括路径方法&#xff09;进行微调的目标是 进一步训练 模型&#xff0c;以便它们更好地理解 类似人类的提示并 生成更多类似人类的响应。 与基…

2023版 STM32实战5 基本定时器中断

基本定时器简介与特性 -1-时钟可分频 -2-计数模式只可以选择累加 -3-只可以用来定时&#xff08;含中断&#xff09; 查看时钟源 如图定时器7的时钟最大为72MHZ 定时时间的计算 通用定时器的时间计算公式为 Tout &#xff08;&#xff08;arr1&#xff09;&#xff08;psc1&…

[Framework] Android Binder 工作原理

Binder 是 Android 系统中主要的 IPC 通信方式&#xff0c;其性能非常优异。但是包括我在内的很多开发者都对它望而却步&#xff0c;确实比较难&#xff0c;每次都是看了忘&#xff0c;忘了看&#xff0c;但是随着工作的时间约来越长&#xff0c;每次看也都对 Binder 有新的认识…

【图像处理】SIFT角点特征提取原理

一、说明 提起在OpenCV中的特征点提取&#xff0c;可以列出Harris&#xff0c;可以使用SIFT算法或SURF算法来检测图像中的角特征点。本篇围绕sift的特征点提取&#xff0c;只是管中窥豹&#xff0c;而更多的特征点算法有&#xff1a; Harris & Stephens / Shi–Tomasi 角点…