【图像处理】SIFT角点特征提取原理

news2024/11/24 6:08:25

一、说明

        提起在OpenCV中的特征点提取,可以列出Harris,可以使用SIFT算法或SURF算法来检测图像中的角特征点。本篇围绕sift的特征点提取,只是管中窥豹,而更多的特征点算法有:

  • Harris & Stephens / Shi–Tomasi 角点检测算法
  • Förstner角点检测器;
  • 多尺度 Harris 算子
  • 水平曲线曲率法
  • 高斯的拉普拉斯、高斯的差异和 Hessian 尺度空间兴趣点的行列式
  • 基于 Lindeberg Hessian 特征强度度量的尺度空间兴趣点
  • 仿射自适应兴趣点算子
  • Wang 和 Brady 角点检测算法
  • SUSAN 角点检测器
  • Trajkovic 和 Hedley 角点检测器
  • 基于 AST 的特征检测器
  • 检测器自动合成
  • 时空兴趣点检测器

二、快速(来自加速段测试的功能)

        FAST是一种用于识别图像中的兴趣点的算法。兴趣点具有较高的本地信息含量,理想情况下,它们应该在不同图像之间可重复。FAST算法工作背后的原因是开发一种兴趣点检测器,用于实时帧速率应用,如移动机器人上的SLAM,这些应用的计算资源有限。

        算法如下:

  • 在强度IP的图像中选择一个像素“p‟”。这是要标识为兴趣点的像素。
  • 设置阈值强度值 T。
  • 考虑围绕像素 p 的 16 像素圆圈。
  • 如果需要将 16 个像素检测为兴趣点,则 <> 个连续像素中的“N”个连续像素需要高于或低于值 T。
  • 为了使算法快速,首先将圆的像素 1、5、9 和 13 的强度与 IP 进行比较。从上图中可以明显看出,这四个像素中至少有三个应该满足阈值标准,以便存在兴趣点。
  • 如果四个像素值中的至少三个 — I1 、I5 、I9 I13 不高于或低于 IP + T,则 P 不是兴趣点(角)。在这种情况下,我们拒绝像素 p 作为可能的兴趣点。否则,如果至少三个像素高于或低于 Ip + T,则检查所有 16 个像素。
  • 对图像中的所有像素重复此过程。

2.1 机器学习方法

  • 选择一组图像进行训练,运行FAST算法检测兴趣点

  • 对于每个像素“p‟”,将其周围的 16 个像素存储为向量,并对所有像素重复此操作
  • 现在这是向量 P,它包含所有用于训练的数据。
  • 向量中的每个值都可以采用三种状态。比 p 暗,比 p 亮或与 p 相似。
  • 根据状态的不同,整个向量P将细分为三个子集,Pd,Ps,Pb。
  • 定义一个变量 Kp,如果 p 是兴趣点,则为 true,如果 p 不是兴趣点,则为 false。
  • 使用 ID3 算法(决策树分类器)使用变量 Kp 查询每个子集以获取有关真实类的知识。
  • ID3算法的工作原理是熵最小化。以这样一种方式查询 16 像素,以便以最少的查询数找到真正的类(兴趣点或非兴趣点)。或者换句话说,选择像素x,它具有有关像素的最多信息

  • 递归地将此熵最小化应用于所有三个子集。
  • 当子集的熵为零时终止进程。
  • 决策树学习的这种查询顺序也可用于在其他图像中更快地检测。

2.2 用于移除相邻拐角的非最大抑制

        检测彼此相邻的多个兴趣点是该算法初始版本的其他问题之一。这可以通过在检测到兴趣点后应用非最大抑制来处理。我们为每个检测到的点计算一个评分函数 V。评分函数定义为:“连续弧中像素与中心像素之间的绝对差值之和”。我们比较两个相邻的值并丢弃较低的值。

三、简介 ( 二进制鲁棒独立基本特征 )

        BRIEF 提供了一个快捷方式,可以直接查找二进制字符串而无需查找描述符。它采用平滑的图像补丁,并以独特的方式选择一组nd(x,y)位置对(在论文中解释)。然后对这些位置对进行一些像素强度比较。例如,设第一个位置对为 p 和 q。如果 I(p) <I(q) ,则其结果为 1,否则为 0。这适用于所有 nd 位置对以获取 nd 维位串。此 nd 可以是 128、256 或 512。因此,一旦我们得到这个,我们就可以使用汉明距离来匹配这些描述符。

OpenCV中的简介

import numpy as np
import cv2
from matplotlib import pyplot as plt

img = cv2.imread('simple.jpg',0)

# Initiate STAR detector
star = cv2.FeatureDetector_create("STAR")

# Initiate BRIEF extractor
brief = cv2.DescriptorExtractor_create("BRIEF")

# find the keypoints with STAR
kp = star.detect(img,None)

# compute the descriptors with BRIEF
kp, des = brief.compute(img, kp)

print brief.getInt('bytes')
print des.shape 

四、SIFT(尺度不变特征变换)

        它是一种检测图像中突出、稳定的特征点的技术。对于每个这样的点,它都提供了一组不变的旋转和缩放特征。

        SIFT算法有四个步骤:

•确定显著特征点(也称为关键点)的大致位置和比例

•优化其位置和规模

•确定每个关键点的方向。

•确定每个关键点的描述符。

五、大致位置

        SIFT算法使用高斯差,这是LoG的近似值。此过程针对高斯金字塔中图像的不同八度音阶完成。一旦找到此DoG,就会在比例和空间上搜索图像的局部极值。这基本上意味着关键点在该比例中得到最好的表示。

5.1 关键点本地化

        一旦找到潜在的关键点位置,就必须对其进行优化以获得更准确的结果。他们使用尺度空间的泰勒级数展开来获得更准确的极值位置,如果该极值的强度小于阈值(根据论文为0.03),则被拒绝。此阈值在 OpenCV 中称为 contrastThreshold

        DoG对边缘的响应更高,因此也需要去除边缘。为此,使用了类似于哈里斯角检测器的概念。他们使用2x2的Hessian矩阵(H)来计算主曲率。所以这里我们使用一个简单的函数:如果这个比率大于阈值,则该关键点将被丢弃。因此,它消除了任何低对比度的关键点和边缘关键点,剩下的就是强烈的兴趣点。

5.2 指定方向

        现在为每个关键点分配一个方向,以实现图像旋转的不变性。根据比例在关键点位置周围选取邻域,并在该区域计算梯度大小和方向。将创建具有 36 个箱(覆盖 360 度)的方向直方图。它由梯度幅度和高斯加权圆形窗口加权,σ等于关键点刻度的 1.5 倍。取直方图中的最高峰,任何高于 80% 的峰值也被认为是计算方向的。它创建具有相同位置和比例但方向不同的关键点。它有助于匹配的稳定性。

5.3 每个关键点的描述符

        现在,关键点描述符已创建。在关键点周围拍摄一个 16x16 的邻域。它分为 16 个 4x4 大小的子块。对于每个子块,创建一个 8 箱方向的直方图。它表示为向量以形成关键点描述符。除此之外,还采取了一些措施来实现对照明变化、旋转等的鲁棒性。

六、应用:匹配SIFT描述符

        通过识别其最近的邻居来匹配两个图像之间的关键点。但在某些情况下,第二个最接近的匹配可能非常接近第一个。这可能是由于噪音或其他一些原因而发生的。在这种情况下,将采用最近距离与第二近距离的比率。如果大于 0.8,则拒绝它们。它消除了大约 90% 的错误匹配,而只丢弃了 5% 的正确匹配。

        用于创建全景视图的 SIFT

OpenCV 中的 SIFT

import cv2
import numpy as np

img = cv2.imread('home.jpg')
gray= cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)

sift = cv2.SIFT()
kp = sift.detect(gray,None)

img=cv2.drawKeypoints(gray,kp)

cv2.imwrite('sift_keypoints.jpg',img) 

七、SURF(加速 - 强大的功能)

        获取 SURF 描述符分为两个阶段,首先检测 SURF 点,然后在 SURF 点提取描述符。SURF点的检测利用了尺度空间理论。为了检测SURF点,使用快速黑森矩阵。黑森矩阵的行列式用于决定是否可以选择一个点作为兴趣点。在图像 I 中,点 X 处的 Hessian 矩阵由下式定义:

        在对图像执行卷积之前,需要对高斯二阶导数进行离散化。Dxx、Dyy 和 Dxy 表示框滤波器与图像的卷积。这些近似的二阶高斯导数计算是通过使用积分图像快速进行的。

        通过更改框过滤器的大小来分析图像的比例空间。通常,Box 滤波器以默认大小 9x9 开头,对应于 σ= 1.2 的高斯导数。过滤器大小稍后会放大到 15x15、21x21、27x27 等大小。在每个尺度上计算黑森矩阵的近似行列式,并应用 333 个邻域中的非极大抑制来求最大值。SURF 点的位置和比例 s 是用最大值获得的。

        获得的SURF点的方向使用Haar小波响应进行分配。在 SURF 点附近,即半径 6s 以内,在 x 和 y 方向上计算哈尔小波响应。使用这些响应,确定主要方向。在主导方向上,构建了一个以SURF点为中心的20s大小的正方形。这分为44个子区域。在这些子区域中,在55个规则放置的采样点处计算水平和垂直Haar小波响应dx和dy。这些响应以特定的区间相加,得到 Σdx , Σdy。此外,这些响应的绝对值以特定区间求和,得到 Σ|dx|, Σ|dy|.使用这些值,为每个子区域构造一个 4 维特征向量 V = (Σdx, Σdy, Σ|dx| , Σ|dy|)。因此,每个提取的 SURF 点都与一个 4x(4x4) 描述符相关联,该描述符是一个 64 维描述符。此 64 维描述符用于执行匹配操作。

八、ORB (定向快速和旋转简报)

        ORB基本上是FAST关键点检测器和BRIEF描述符的融合,并进行了许多修改以增强性能。首先,它使用 FAST 查找关键点,然后应用 Harris 角度量来查找其中的前 N 个点。它还使用金字塔来生成多尺度特征。

ORB的算法:

        它计算角位于中心的修补程序的强度加权质心。矢量从此角点到质心的方向给出了方向。为了提高旋转不变性,用 x 和 y 计算弯矩,它们应该在半径为 r 的圆形区域中,其中 r 是补丁的大小。现在对于描述符,ORB 使用 BRIEF 描述符。BRIEF是旋转不变的,因此ORB根据关键点的方向来操纵BRIEF。对于位置 xi,yi 处的 n 个二进制测试的任何特征集,定义一个 2 x n 矩阵 S,其中包含这些像素的坐标。然后利用贴片的方向θ,找到它的旋转矩阵,旋转S得到转向(旋转)版本Sθ。

        随着轮换的不变,BRIEF变得更加分散。ORB 在所有可能的二元检验中运行贪婪搜索,以找到方差高且均值接近 0.5 且不相关的检验。结果称为 rBRIEF。对于描述符匹配,使用了在传统LSH基础上改进的多探针LSH。

OpenCV 中的 ORB:

import numpy as np
import cv2
from matplotlib import pyplot as plt

img = cv2.imread('simple.jpg',0)

# Initiate STAR detector
orb = cv2.ORB()

# find the keypoints with ORB
kp = orb.detect(img,None)

# compute the descriptors with ORB
kp, des = orb.compute(img, kp)

# draw only keypoints location,not size and orientation
img2 = cv2.drawKeypoints(img,kp,color=(0,255,0), flags=0)
plt.imshow(img2),plt.show() 

使用 ORB 进行图像匹配

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1050118.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

一种节约存储空间的技术——数据压缩

数据压缩是指&#xff1a;通过特定的算法&#xff0c;将计算的中的文件大小得到降低的一种机制。 目前生活中最常见的应用例子&#xff0c;比如&#xff1a;你通过聊天软件将一张图片发送给好友&#xff0c;再选择发送图片的时候&#xff0c;有一个选项为是否发送原图&#xf…

FL Studio21.1电脑试用体验版音乐制作软件

我一直以来对音乐艺术都很感兴趣。最近我接触到了一款名为 FL Studio 的电脑版音乐制作软件&#xff0c;深感其强大功能和广泛适用性。通过使用这款软件&#xff0c;我不仅深入了解了音乐制作的过程与技巧&#xff0c;也加深了对音乐创作的理解。 FL Studio 最初是一款针对 MI…

Flutter笔记 - ListTile组件及其用法

Flutter笔记 ListTile组件及其用法 作者&#xff1a;李俊才 &#xff08;jcLee95&#xff09;&#xff1a;https://blog.csdn.net/qq_28550263 邮箱 &#xff1a;291148484163.com 本文地址&#xff1a;https://blog.csdn.net/qq_28550263/article/details/133411883 目 录 1. …

leetCode 213. 打家劫舍 II 动态规划 房间连成环怎么偷呢?

213. 打家劫舍 II - 力扣&#xff08;LeetCode&#xff09; 你是一个专业的小偷&#xff0c;计划偷窃沿街的房屋&#xff0c;每间房内都藏有一定的现金。这个地方所有的房屋都 围成一圈 &#xff0c;这意味着第一个房屋和最后一个房屋是紧挨着的。同时&#xff0c;相邻的房屋装…

【Java 进阶篇】深入理解 SQL 聚合函数

在 SQL 数据库中&#xff0c;聚合函数是一组强大的工具&#xff0c;用于处理和分析数据。它们可以帮助您对数据进行统计、计算总和、平均值、最大值、最小值等操作。无论您是数据库开发者、数据分析师还是希望更好地了解 SQL 数据库的用户&#xff0c;了解聚合函数都是非常重要…

三个要点,掌握Spring Boot单元测试

单元测试是软件开发中不可或缺的重要环节&#xff0c;它用于验证软件中最小可测试单元的准确性。结合运用Spring Boot、JUnit、Mockito和分层架构&#xff0c;开发人员可以更便捷地编写可靠、可测试且高质量的单元测试代码&#xff0c;确保软件的正确性和质量。 一、介绍 本文…

(SAR)Sentinel-1影像自动下载

基于ASF网站提供的python代码&#xff0c;实现Sentinel-1影像的自动下载&#xff1b; 1、登录ASF网站 登录Sentinel-1影像ASF网站&#xff1a;https://search.asf.alaska.edu/&#xff1b; 点击网站最右侧Sign in图标&#xff0c;进行用户注册&#xff1b; 注册完用户之后&…

基于Vue+ELement实现增删改查案例与表单验证(附源码)

&#x1f389;&#x1f389;欢迎来到我的CSDN主页&#xff01;&#x1f389;&#x1f389; &#x1f3c5;我是Java方文山&#xff0c;一个在CSDN分享笔记的博主。&#x1f4da;&#x1f4da; &#x1f31f;推荐给大家我的专栏《ELement》。&#x1f3af;&#x1f3af; &#x1…

I2C外设

I2C的总结 I2C优点&#xff1a; 接口线少只有两根线&#xff0c;控制方式简单&#xff0c;通信速率较高&#xff1b; I2C 是飞利浦公司开发的两线式串行总线&#xff1b; I2C缺点&#xff1a; 硬件比较复杂&#xff0c;稳定性不太好&#xff0c;程序移植有点麻烦&#xff…

自定义v-resize指令并发布到NPM

自定义Vite库并发布到NPM 封装useResize 用于监听绑定元素的宽高变化&#xff0c;当元素宽高发生变化时触发回调并获取最新的宽高 新建项目 结合上面学到的 Hook 和 自定义指令封装一个监听元素宽高变化的指令&#xff0c;并发布到 npm 项目结构 useResize ├…

jQuery核心卷

目录 一.jQuery引用 二.jQuery语法 三.元素的属性 1.attr()方法 2.使用removeAttr()方法删除HTML元素的属性 3.使用text()方法设置HTML元素的文本内容 四.CSS元素控制 1.使用css()方法获取和设置css属性 2.与CSS类别有关的方法 3.获取和设置HTML元素的尺寸 4.获取和…

html 边缘融合加载

html 代码 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><title>边缘融合加载</title><style>* {margin: 0;padding: 0;box-sizing: border-box;}body {height: 100vh;padding-bottom: 80px;b…

No141.精选前端面试题,享受每天的挑战和学习

🤍 前端开发工程师(主业)、技术博主(副业)、已过CET6 🍨 阿珊和她的猫_CSDN个人主页 🕠 牛客高级专题作者、在牛客打造高质量专栏《前端面试必备》 🍚 蓝桥云课签约作者、已在蓝桥云课上架的前后端实战课程《Vue.js 和 Egg.js 开发企业级健康管理项目》、《带你从入…

【STM32】IAP升级00 预备知识

IAP&#xff08;In Application Programming&#xff09;简介 Flash够大的情况下&#xff0c;上电后的程序通过修改 MSP 的方式&#xff0c;可以在一块Flash上存在多个功能差异的程序。 IAP是为了在执行正常功能前&#xff0c;为了升级功能&#xff0c;提前运行的一段程序。这…

26608-2011 工业用回收一氯甲烷 学习笔记

声明 本文是学习GB-T 26608-2011 工业用回收一氯甲烷. 而整理的学习笔记,分享出来希望更多人受益,如果存在侵权请及时联系我们 1 范围 本标准规定了工业用回收一氯甲烷的要求、试验方法、检验规则及标志、包装、运输、贮存及安全。 本标准适用于副产回收生产的工业用一氯甲…

一些杂题(9.23)

八月赛 A. Extra Large Knapsack 我的思路 是否可行只要看所有异或在一起是否为0就可以了 可行的方案只要有一个在第一个包里&#xff0c;剩下的都在第二个包里就可以了 注意&#xff1a;n1的时候不可行&#xff0c;要特判 代码 #include<bits/stdc.h> using name…

手写Hystrix基本原理

本文已收录于专栏 《中间件合集》 目录 概念说明什么是HystrixHystrix解决的问题 提供服务工作流程代码实现HystrixSDKMyHystrixCommand注解MyHystrixProperty注解MyAspect注解解释器 发送请求端引入Hystrix的依赖调用代码 接收请求端执行效果发送请求端 总结提升 概念说明 什…

树莓集团又一力作,打造天府蜂巢成都直播产业园样板工程

树莓集团再次推出惊艳之作&#xff0c;以打造成都天府蜂巢直播产业园为目标。该基地将充分展现成都直播产业园的巨大潜力与无限魅力&#xff0c;成为一个真正的产业园样板工程。 强强联手 打造未来 成都天府蜂巢直播产业园位于成都科学城兴隆湖高新技术服务产业园内&#xff0…

毕业设计选题之Java+springboot线上蔬菜销售与配送系统(源码+调试+开题+lw)

&#x1f495;&#x1f495;作者&#xff1a;计算机源码社 &#x1f495;&#x1f495;个人简介&#xff1a;本人七年开发经验&#xff0c;擅长Java、Python、PHP、.NET、微信小程序、爬虫、大数据等&#xff0c;大家有这一块的问题可以一起交流&#xff01; &#x1f495;&…

基于Java的药品管理系统设计与实现(源码+lw+部署文档+讲解等)

文章目录 前言具体实现截图论文参考详细视频演示为什么选择我自己的网站自己的小程序&#xff08;小蔡coding&#xff09;有保障的售后福利 代码参考源码获取 前言 &#x1f497;博主介绍&#xff1a;✌全网粉丝10W,CSDN特邀作者、博客专家、CSDN新星计划导师、全栈领域优质创作…