源码参考:https://download.csdn.net/download/weixin_55163060/88382816
安装opengl库
sudo apt install libglu1-mesa-dev freeglut3-dev mesa-common-dev
安装opengl工具包
sudo apt install mesa-utils
检查opengl版本信息(桌面终端执行)
sudo glxinfo | grep "OpenGL version"
显示:OpenGL version string: 3.3 (Compatibility Profile) Mesa 20.0.8
安装glfw窗口管理器
sudo apt-get install cmake xorg-dev libglu1-mesa-dev
wget https://sourceforge.net/projects/glfw/files/glfw/3.3.5/glfw-3.3.5.zip(wget https://github.com/glfw/glfw/releases/download/3.3.5/glfw-3.3.5.zip)
unzip glfw-3.3.5.zip
cd glfw-3.3.5
mkdir build
cd build
cmake -DCMAKE_INSTALL_PREFIX=/usr/local ..
make -j8
sudo make install
【window.c】
#include <GLFW/glfw3.h>
#include <stdio.h>
int main(void)
{
GLFWwindow* window;
/* Initialize the library */
if (!glfwInit())
return -1;
/* Create a windowed mode window and its OpenGL context */
window = glfwCreateWindow(640, 480, "Hello World", NULL, NULL);
if (!window)
{
glfwTerminate();
return -1;
}
/* Make the window's context current */
glfwMakeContextCurrent(window);
/* Loop until the user closes the window */
while (!glfwWindowShouldClose(window))
{
//glClearColor()命令指定了清除背景时用的颜色值,这里的(1,0,0,1)代表RGB中的红色,末尾的1表示不透明度
glClearColor(1.0, 0.0, 0.0, 1.0);
/* Render here */
glClear(GL_COLOR_BUFFER_BIT);
/* Swap front and back buffers */
glfwSwapBuffers(window);
/* Poll for and process events */
glfwPollEvents();
}
glfwTerminate();
return 0;
}
编译
gcc -o window window.c -lglfw3 -lGL -lX11 -lm -lpthread -ldl
执行显示一个红色窗口
【linmath.h】
https://github.com/datenwolf/linmath.h/blob/master/linmath.h
一个精简的线性数学库,旨在进行图形编程。 支持vec3,vec4,mat4x4和四元数
【GLAD库】(初始化后调用gl函数编译不会报错)
https://glad.dav1d.de/
GLAD是用来管理OpenGL的函数指针的,所以在调用任何OpenGL的函数之前我们需要初始化GLAD。GLAD也可以使OpenGL基础渲染变得简单。
【triangle.c】
//! [code]
#include "glad.h"
#define GLAD_GL_IMPLEMENTATION
#include <GL/gl.h>
//#include "glad.h"
#define GLFW_INCLUDE_NONE
#include <GLFW/glfw3.h>
#include "linmath.h"
#include <stdlib.h>
#include <stddef.h>
#include <stdio.h>
typedef struct Vertex
{
vec2 pos;
vec3 col;
} Vertex;
static const Vertex vertices[3] =
{
{ { -0.6f, -0.4f }, { 1.f, 0.f, 0.f } },
{ { 0.6f, -0.4f }, { 0.f, 1.f, 0.f } },
{ { 0.f, 0.6f }, { 0.f, 0.f, 1.f } }
};
static const char* vertex_shader_text =
"#version 330\n"
"uniform mat4 MVP;\n"
"in vec3 vCol;\n"
"in vec2 vPos;\n"
"out vec3 color;\n"
"void main()\n"
"{\n"
" gl_Position = MVP * vec4(vPos, 0.0, 1.0);\n"
" color = vCol;\n"
"}\n";
static const char* fragment_shader_text =
"#version 330\n"
"in vec3 color;\n"
"out vec4 fragment;\n"
"void main()\n"
"{\n"
" fragment = vec4(color, 1.0);\n"
"}\n";
static void error_callback(int error, const char* description)
{
fprintf(stderr, "Error: %s\n", description);
}
static void key_callback(GLFWwindow* window, int key, int scancode, int action, int mods)
{
if (key == GLFW_KEY_ESCAPE && action == GLFW_PRESS)
glfwSetWindowShouldClose(window, GLFW_TRUE);
}
int main(void)
{
glfwSetErrorCallback(error_callback);
if (!glfwInit())
exit(EXIT_FAILURE);
glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3);
glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3);
glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE);
GLFWwindow* window = glfwCreateWindow(640, 480, "OpenGL Triangle", NULL, NULL);
if (!window)
{
glfwTerminate();
exit(EXIT_FAILURE);
}
glfwSetKeyCallback(window, key_callback);
glfwMakeContextCurrent(window);
if (!gladLoadGLLoader((GLADloadproc)glfwGetProcAddress))
{
return -1;
}
glfwSwapInterval(1);
// NOTE: OpenGL error checks have been omitted for brevity
GLuint vertex_buffer;
glGenBuffers(1, &vertex_buffer);
glBindBuffer(GL_ARRAY_BUFFER, vertex_buffer);
glBufferData(GL_ARRAY_BUFFER, sizeof(vertices), vertices, GL_STATIC_DRAW);
const GLuint vertex_shader = glCreateShader(GL_VERTEX_SHADER);
glShaderSource(vertex_shader, 1, &vertex_shader_text, NULL);
glCompileShader(vertex_shader);
const GLuint fragment_shader = glCreateShader(GL_FRAGMENT_SHADER);
glShaderSource(fragment_shader, 1, &fragment_shader_text, NULL);
glCompileShader(fragment_shader);
const GLuint program = glCreateProgram();
glAttachShader(program, vertex_shader);
glAttachShader(program, fragment_shader);
glLinkProgram(program);
const GLint mvp_location = glGetUniformLocation(program, "MVP");
const GLint vpos_location = glGetAttribLocation(program, "vPos");
const GLint vcol_location = glGetAttribLocation(program, "vCol");
GLuint vertex_array;
glGenVertexArrays(1, &vertex_array);
glBindVertexArray(vertex_array);
glEnableVertexAttribArray(vpos_location);
glVertexAttribPointer(vpos_location, 2, GL_FLOAT, GL_FALSE,
sizeof(Vertex), (void*) offsetof(Vertex, pos));
glEnableVertexAttribArray(vcol_location);
glVertexAttribPointer(vcol_location, 3, GL_FLOAT, GL_FALSE,
sizeof(Vertex), (void*) offsetof(Vertex, col));
while (!glfwWindowShouldClose(window))
{
int width, height;
glfwGetFramebufferSize(window, &width, &height);
const float ratio = width / (float) height;
glViewport(0, 0, width, height);
glClear(GL_COLOR_BUFFER_BIT);
mat4x4 m, p, mvp;
mat4x4_identity(m);
mat4x4_rotate_Z(m, m, (float) glfwGetTime());
mat4x4_ortho(p, -ratio, ratio, -1.f, 1.f, 1.f, -1.f);
mat4x4_mul(mvp, p, m);
glUseProgram(program);
glUniformMatrix4fv(mvp_location, 1, GL_FALSE, (const GLfloat*) &mvp);
glBindVertexArray(vertex_array);
glDrawArrays(GL_TRIANGLES, 0, 3);
glfwSwapBuffers(window);
glfwPollEvents();
}
glfwDestroyWindow(window);
glfwTerminate();
exit(EXIT_SUCCESS);
}
//! [code]
编译
gcc -o triangle glad.c triangle.c -lglfw3 -lGL -lX11 -lm -lpthread -ldl
执行程序显示旋转的三角形
【YUV描述】
一般RGB用于渲染,YUV用于传输。
YUV4:4:4:完全采用表示每个像素点都有一个Y,U,V。一个YUV占 8+8+8 = 24bits,3个字节。
YUV4:2:2: 就是2:1的水平取样,垂直完全采样,表示水平的两个像素有两个Y但是只有一个U一个V的采用格式。一个YUV占 8+4+4 = 16bits 2个字节。
YUV4:2:0:就是2:1的水平取样,2:1的垂直采样,表示上下左右四个像素点有4个Y但是只取一个U和一个V,一个YUV占 8+2+2 = 12bits 1.5个字节
planar的YUV格式表示先连续存储所有像素点的Y,再紧接着存储所有的U,再就是V。Y、U和V组件存储为三个独立的数组中。
packed的YUV格式表示每个像素点的YUV是连续交替存储的,先存储像素点1的YUV再存在像素点2的YUV像素点。Y、U和V组件存储在一个数组中。每个像素点的Y,U,V是连续交错存储的
YUV420P(YU12和YV12)格式
YU12:安卓的模式。存储顺序是先存Y,再存U,最后存V。YYYYYYYY UUVV (I420格式)
YV12:存储顺序是先存Y,再存V,最后存U。YYYYYYYY VVUU
YUV420SP(NV12和NV21)格式
NV12 是 IOS 中有的模式,它的存储顺序是先存 Y 分量,再 UV 进行交替存储。
NV21 是 安卓 中有的模式,它的存储顺序是先存 Y 分量,在 VU 交替存储
【h264转YUV命令】
ffmpeg -i C:\Users\Administrator\Desktop\test.h264 -y -an -frames 1 -s 1920x1080 out.yuv
pause
【GLSL】
OpenGL着色语言(OpenGL Shading Language)是用来在OpenGL中着色编程的语言,也即开发人员写的短小的自定义程序,他们是在图形卡的GPU (Graphic Processor Unit图形处理单元)上执行的,代替了固定的渲染管线的一部分,使渲染管线中不同层次具有可编程性。比如:视图转换、投影转换等。GLSL(GL Shading Language)的着色器代码分成2个部分:Vertex Shader(顶点着色器)和Fragment(片断着色器),有时还会有Geometry Shader(几何着色器)。负责运行顶点着色的是顶点着色器。它可以得到当前OpenGL 中的状态,GLSL内置变量进行传递。GLSL其使用C语言作为基础高阶着色语言,避免了使用汇编语言或硬件规格语言的复杂性。
【yuv_show.cpp】
#include<string>
#include<fstream>
#include<sstream>
#include<iostream>
#include<stdio.h>
#include "glad.h"
#include <GLFW/glfw3.h>
typedef unsigned char BYTE;
const unsigned int SCR_WIDTH = 500;
const unsigned int SCR_HEIGHT = 600;
const int len = 1920*1080 * 3/2;
BYTE YUVdata [len];
unsigned int VBO = 0;
unsigned int VAO = 0;
unsigned int EBO = 0;
unsigned int texturePIC = 0;
int shaderProgram = 0;
GLuint texIndexarray[3];
GLuint texUniformY = 99;
GLuint texUniformU = 99;
GLuint texUniformV = 99;
void LoadPicture()
{
glGenTextures(3, texIndexarray);//生成三个纹理索引
glBindTexture(GL_TEXTURE_2D, texIndexarray[0]);
//为bind的纹理设置环绕,过滤方式
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glBindTexture(GL_TEXTURE_2D, texIndexarray[1]);
//为bind的纹理设置环绕,过滤方式
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glBindTexture(GL_TEXTURE_2D, texIndexarray[2]);
//为bind的纹理设置环绕,过滤方式
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
//使用着色器程序,返回采样器的序号
glUseProgram(shaderProgram);//该语句必须要有;安装 指定着色器程序
texUniformY = glGetUniformLocation(shaderProgram, "dataY");
texUniformU = glGetUniformLocation(shaderProgram, "dataU");
texUniformV = glGetUniformLocation(shaderProgram, "dataV");
----------加载数据--------------------------------------------------------
FILE* fp = fopen("./out.yuv","rb+");//I420
int returns =fread(YUVdata,1,len,fp);
int w = 1920;
int h = 1080;
int ysize = w*h;
int uvsize = w * h / 4;
void* uptr = &YUVdata[ysize];
void* vptr = &YUVdata[ysize * 5 / 4];
//---------------------------------------------------------------------------
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, texIndexarray[0]);// texindexarray[0] =1
//使用GL_red表示单通道,glfw3里边没有YUV那个GL属性;
glTexImage2D(GL_TEXTURE_2D, 0 , GL_RED, w, h ,0, GL_RED,GL_UNSIGNED_BYTE ,YUVdata);
glUniform1i(texUniformY,0); //通过 glUniform1i 的设置,保证每个 uniform 采样器对应着正确的纹理单元;注意这里不能用tesindexarray[0];
glActiveTexture(GL_TEXTURE1);
glBindTexture(GL_TEXTURE_2D, texIndexarray[1]);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RED, w/2, h/2, 0, GL_RED, GL_UNSIGNED_BYTE,uptr);
glUniform1i(texUniformU, 1);
glActiveTexture(GL_TEXTURE2);
glBindTexture(GL_TEXTURE_2D, texIndexarray[2]);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RED, w/2, h/2, 0, GL_RED, GL_UNSIGNED_BYTE,vptr);
glUniform1i(texUniformV,2);
glUseProgram(0);
}
void render()
{
glBindVertexArray(VAO);
glUseProgram(shaderProgram);
glDrawElements(GL_TRIANGLES,6,GL_UNSIGNED_INT,0);
//glDrawArrays(GL_TRIANGLE_FAN,0,4);也可
glUseProgram(0);
glBindVertexArray(0);
}
void initmodule()
{
//做个一模型;正方形;映射了顶点坐标和纹理坐标的对应关系
float vertexs[] = {
//顶点坐标-------纹理坐标(屏幕坐标翻转)
1.0f, 1.0f, 0.0f, 1.0f, 0.0f,
1.0f, -1.0f, 0.0f, 1.0f, 1.0f,
-1.0f, -1.0f, 0.0f, 0.0f, 1.0f,
-1.0f, 1.0f, 0.0f, 0.0f, 0.0f
};
//一个正方形是由两个三角形得来的;记录顶点的索引顺序
unsigned int indexs[] = {
0,1,3,
1,2,3,
};
//做VAO
glGenVertexArrays(1,&VAO);
glBindVertexArray(VAO);
//做VBO
glGenBuffers(1, &VBO);
glBindBuffer(GL_ARRAY_BUFFER, VBO);
//创建显存空间
glBufferData(GL_ARRAY_BUFFER,sizeof(vertexs), vertexs, GL_STATIC_DRAW);
//设置索引缓冲
glGenBuffers(1,&EBO);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER,EBO);
glBufferData(GL_ELEMENT_ARRAY_BUFFER,sizeof(indexs),indexs,GL_STATIC_DRAW); //加载纹理图片,生成纹理
LoadPicture();
//设置第0个锚点,3个点,不需要归一化,跨度5个float可以读下一个点
glVertexAttribPointer(0,3,GL_FLOAT,GL_FALSE,5*sizeof(float),(void*)0);
//打开顶点
glEnableVertexAttribArray(0);
//纹理属性设置,纹理在第一个锚点上(指定顶点数据)
glVertexAttribPointer(1,2, GL_FLOAT, GL_FALSE, 5 * sizeof(float), (void*)(3 * sizeof(float)));
//打开纹理
glEnableVertexAttribArray(1);
//解除绑定VBO
glBindBuffer(GL_ARRAY_BUFFER,0);
//解绑VAO
glBindVertexArray(0);
}
void initshader(const char* verpath,const char* fragpath)
{
//编译shader,并记录shaderID
std::string VerCode("");
std::string fregCode("");
//读文件
std::ifstream vShaderFile;
std::ifstream fShaderFile;
vShaderFile.exceptions(std::ifstream::failbit | std::ifstream::badbit);
fShaderFile.exceptions(std::ifstream::failbit | std::ifstream::badbit);
try
{
vShaderFile.open(verpath);
fShaderFile.open(fragpath);
std::stringstream vsstream, fsstream;
vsstream << vShaderFile.rdbuf();
fsstream << fShaderFile.rdbuf();
VerCode = vsstream.str();
fregCode = fsstream.str();
}
catch (const std::exception&)
{
std::cout << "read file error" << std::endl;
}
const char* vshader = VerCode.c_str();
const char* fshader = fregCode.c_str();
//shader 编译连接
unsigned int vertexID = 0, fragID = 0;
char infoLog[512];//存储错误信息
int successflag = 0;
vertexID = glCreateShader(GL_VERTEX_SHADER);
glShaderSource(vertexID,1,&vshader,NULL );
glCompileShader(vertexID);
//获取编译是否成功
glGetShaderiv(vertexID,GL_COMPILE_STATUS,&successflag);
if (!successflag)
{
glGetShaderInfoLog(vertexID,512,NULL,infoLog);
std::string errstr(infoLog);
std::cout << "v shader err"<<infoLog;
}
//frag
fragID = glCreateShader(GL_FRAGMENT_SHADER);
glShaderSource(fragID, 1, &fshader, NULL);
glCompileShader(fragID);
//获取编译是否成功
glGetShaderiv(fragID, GL_COMPILE_STATUS, &successflag);
if (!successflag)
{
glGetShaderInfoLog(fragID, 512, NULL, infoLog);
std::string errstr(infoLog);
std::cout << "f shader err"<<infoLog;
}
//链接
shaderProgram = glCreateProgram();
glAttachShader(shaderProgram,vertexID);
glAttachShader(shaderProgram,fragID);
glBindAttribLocation(shaderProgram, 0, "aPos");
glBindAttribLocation(shaderProgram, 1, "texCoord");
glLinkProgram(shaderProgram);
glGetProgramiv(shaderProgram,GL_LINK_STATUS,&successflag);
if (!successflag)
{
glGetShaderInfoLog(shaderProgram, 512, NULL, infoLog);
std::string errstr(infoLog);
std::cout << "link error";
}
//编译完成后,可以把中间的步骤程序删除
glDeleteShader(vertexID);
glDeleteShader(fragID);
}
void processInput(GLFWwindow *window)
{
if (glfwGetKey(window, GLFW_KEY_ESCAPE) == GLFW_PRESS)
{
//将窗口设置为关闭,跳出循环
glfwSetWindowShouldClose(window, true);
}
}
void framebuffer_size_callback(GLFWwindow* window, int width, int height)
{
glViewport(0, 0, width, height);
}
int main()
{
//glfw初始化
glfwInit();
glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3);
glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3);
glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE);
//glfw创建窗口
GLFWwindow* window = glfwCreateWindow(500, 600, "LearnOpenGL", NULL, NULL);
if (window == NULL)
{
printf("创建窗口失败");
//终止
glfwTerminate();
return -1;
}
//显示窗口
glfwMakeContextCurrent(window);
//设置回调,当窗口大小调整后将调用该回调函数
glfwSetFramebufferSizeCallback(window, framebuffer_size_callback);
// glad初始化
if (!gladLoadGLLoader((GLADloadproc)glfwGetProcAddress))
{
printf("加载失败");
return -1;
}
initshader("vertexShader.glsl", "fragmentShader.glsl");//先编译着色器
initmodule();
// 使用循环达到循环渲染效果
while (!glfwWindowShouldClose(window))
{
//自定义输入事件
processInput(window);
glClearColor(0.0f,0.0f,0.0f,1.0f);
glClear(GL_COLOR_BUFFER_BIT);
render();
//交互缓冲区,否则显示空白
glfwSwapBuffers(window);
//输入输出事件,否则无法对窗口进行交互
glfwPollEvents();
}
//终止渲染 关闭并清理glfw本地资源
glfwTerminate();
return 0;
}
【vertexShader.glsl】
#version 330 core
layout(location = 0) in vec3 aPos;
layout(location = 1) in vec2 texCoord;
out vec2 TexCoord;
void main()
{
gl_Position = vec4(aPos.x,aPos.y,aPos.z,1.0);
TexCoord = texCoord;
};
【fragmentShader.glsl】
#version 330 core
layout(location = 0) out vec4 FragColor;
in vec2 TexCoord;
uniform sampler2D dataY;
uniform sampler2D dataU;
uniform sampler2D dataV;
vec3 yuv;
vec3 rgb;
void main()
{
yuv.x = texture2D(dataY, TexCoord).r-0.0625;
yuv.y = texture2D(dataU, TexCoord).r-0.5;
yuv.z = texture2D(dataV, TexCoord).r-0.5;
rgb = mat3(1, 1, 1,
0, -0.18732, 1.8556,
1.57481, -0.46813, 0) * yuv;
FragColor = vec4(rgb.x, rgb.y,rgb.z,1);
};
【编译】
g++ -o yuv_show glad.c yuv_show.cpp -lglfw3 -lGL -lX11 -lm -lpthread -ldl
【运行】
1、报错:v shader err0:2(1): error: shader output explicit location requires GL_ARB_separate_shader_objects extension or GLSL 4.20
原因:fragmentShader.glsl和vertexShader.glsl搞反了
2、报错:段错误
解决方法:sudo ./yuv_show
注:render()函数中增加LoadPicture()并修改其为读取不同的yuv数据可以实现视频流的播放。