OpenCV读取RGB图像
在OpenCV中,读取的图片默认是HWC格式,即按照高度、宽度和通道数的顺序排列图像尺寸的格式。我们看最后一个维度是C,因此最小颗粒度是C。
例如,一张形状为256×256×3的RGB图像,在OpenCV中读取后的格式为[256, 256, 3],其中最后一个维度表示图像的通道数。在OpenCV中,可以通过cv2.imread()函数读取图片,该函数的返回值是一个NumPy数组,表示读取的图像像素值。
需要注意的是,OpenCV读取的图像像素值是按照BGR顺序排列的,而不是RGB顺序。因此,如果需要将OpenCV读取的图像转换为RGB顺序,可以使用cv2.cvtColor()函数进行转换。
OpenCV读取一张RGB图像时,它会将像素数据按照BGR的顺序排列,对于一张3×3的RGB图像,其像素信息在内存中的排列方式如下所示:
[
[[B G R] [B G R] [B G R]],
[[B G R] [B G R] [B G R]],
[[B G R] [B G R] [B G R]], ]
可知,每一个像素点都由三个值组成,分别表示该像素点在蓝色、绿色和红色通道中的颜色值,而整张图像的像素数据则按照BGR
的顺序排列。
在PyTorch中读取RGB图像
PyTorch接收的RGB图像通常采用CHW格式。在PyTorch中,RGB图像的像素值通常采用浮点数的形式表示,并且像素值的范围通常是[0, 1]或[-1, 1]。
一般pytorch中的tensor,即网络的输入,要转换为plane的格式,即rrrgggbbb。
[
[[R R R] [R R R] [R R R]],
[[G G G] [G G G] [G G G]],
[[B B B] [B B B] [B B B]], ]
在PyTorch中,模型接收的RGB图像通常采用CHW格式,即按照通道数、高度和宽度的顺序排列像素信息的方式。
具体来说,假设某个像素点的坐标为(i, j),其在内存中的存储位置可以表示为:
offset = i * W * C + j * C
其中,i表示该像素点在第二维中的位置,j表示该像素点在第三维中的位置,C表示通道数,W表示宽度。这个公式可以计算出该像素点在内存中的偏移量,从而可以访问该像素点的RGB值。
实验
1 生成一张图片
from PIL import Image
import numpy as np
import matplotlib.pyplot as plt
# 用随机数模拟一张图像
image = np.random.randint(256, size=60)
image = image.reshape((5,4,3))
image_hwc = np.uint8(image)
# 展示图像
image_show = Image.fromarray(image_hwc)
plt.imshow(image_show)
plt.show()
# 打印图像像素值,[h, w, c]格式
print(image_hwc)
# 打印像素值,[c, h, w]格式
image_chw = np.transpose(image_hwc, (2,0,1))
print(image_chw)
以上代码模拟生成的图像如下图所示,图中有5行4列总共20个像素。
上图的所有像素及其像素值如下图所示,[h, w, c]格式。可以看出,最里层的括号内为单个像素在三个通道上的像素值。
我们看这种维度的一个方法是:看最后一个维度的含义,[h,w,c]最后一个维度是3,因此意味着最小的颗粒度维度是3。
如果以[c, h, w]格式表示的话,应该是下图这样的:
看最后一个维度的含义,[c,h,w]最后一个维度是w(我们实验中是4),因此意味着最小的颗粒度维度是4。
我们想象,一束光通过三棱镜后分解为彩色光,我们取出其中一个频段的数据,把这个频段的数据进行二维排列,就是该通道的情况。
2 CHW和HWC的本质
本质是一个规范,排列多维度的数据的规范,换句话说,就是定义了一个数据类型的结构体。
转换过程
- 其实数据可以看做是一堆无序的数据,轴的存在让这些数据按照一定层级及次序排布
- 转换前的数据是这样排布的,先按照图像高分成3堆,对这3堆的每一堆按照图像图像宽分2堆,分好的2堆分别按照通道数分成3堆
- 转换后的数据排布顺序变了,它先按照通道数分成3堆,分好的3堆各自按照图像高分成3堆,再按照图像宽分成2堆。
参考
https://blog.csdn.net/hh1357102/article/details/130622666
https://zhuanlan.zhihu.com/p/476310426