Android跨进程通信:Binder机制原理

news2025/1/23 11:13:06

目录

1. Binder到底是什么?

2. 知识储备

2.1 进程空间划分

2.2 进程隔离 & 跨进程通信( IPC )

2.3 内存映射

2.3.1 作用

2.3.2 实现过程

2.3.3 特点

2.3.4 应用场景

2.3.5 实例讲解

① 文件读 / 写操作

② 跨进程通信

3. Binder 跨进程通信机制 模型

3.1 模型原理图

3.2 模型组成角色说明

3.3 模型原理步骤说明

3.4 额外说明

4. Binder机制 在Android中的具体实现原理

步骤1:注册服务

步骤2:获取服务

步骤3:使用服务

步骤1: Client进程 将参数(整数a和b)发送到Server进程

步骤2:Server进程根据Client进要求 调用 目标方法(即加法函数)

步骤3:Server进程 将目标方法的结果(即加法后的结果)返回给Client进程

5. 优点


1. Binder到底是什么?

网上有很多对Binder的定义:Binder是跨进程通信方式、它实现了IBinder接口,是连接 ServiceManager的桥

我认为:对于Binder的定义,在不同场景下其定义不同

在本文的讲解中,按照 大角度 -> 小角度 去分析Binder,即:

先从机制、模型的角度去分析整个Binder跨进程通信机制的模型,其中,会详细分析模型组成中的 Binder驱动

再从源码实现角度,分析 Binder在 Android中的具体实现,从而全方位地介绍 Binder。

2. 知识储备

在讲解Binder前,我们先了解一些Linux的基础知识

2.1 进程空间划分

一个进程空间分为 用户空间 & 内核空间(Kernel),即把进程内 用户 & 内核 隔离开来

二者区别:

  1. 进程间,用户空间的数据不可共享,所以用户空间 = 不可共享空间
  2. 进程间,内核空间的数据可共享,所以内核空间 = 可共享空间

所有进程共用1个内核空间

进程内 用户空间 & 内核空间 进行交互 需通过 系统调用,主要通过函数:

  1. copy_from_user():将用户空间的数据拷贝到内核空间
  2. copy_to_user():将内核空间的数据拷贝到用户空间

2.2 进程隔离 & 跨进程通信( IPC )

  • 进程隔离
    为了保证 安全性 & 独立性,一个进程 不能直接操作或者访问另一个进程,即Android的进程是相互独立、隔离的
  • 跨进程通信( IPC )
    即进程间需进行数据交互、通信
  • 跨进程通信的基本原理

a. 而Binder的作用则是:连接 两个进程,实现了mmap()系统调用,主要负责 创建数据接收的缓存空间 & 管理数据接收缓存
b. 注:传统的跨进程通信需拷贝数据2次,但Binder机制只需1次,主要是使用到了内存映射,具体下面会详细说明

2.3 内存映射

  • 内存映射 在 Linux操作系统中非常重要,因为其涉及到高效的跨进程通信 & 文件操作

关联进程中的1个虚拟内存区域 & 1个磁盘上的对象,使得二者存在映射关系

  1. 上述的映射过程 = 初始化该虚拟内存区域
  2. 虚拟内存区域被初始化后,就会在交换空间中换你来还去
  3. 被映射的对象称为:共享对象(普通文件 / 匿名文件)

2.3.1 作用

若存在上述映射关系,则具备以下特征

  • 在多个进程的虚拟内存区域 已和同1个共享对象 建立映射关系的前提下
  • 若 其中1个进程对该虚拟区域进行写操作
  • 那么,对于 也把该共享对象映射到其自身虚拟内存区域的进程 也是可见的

示意图如下

  1. 假设进程1、2的虚拟内存区域同时映射到同1个共享对象;
  2. 当进程1对其虚拟内存区域进行写操作时,也会映射到进程2中的虚拟内存区域


 

2.3.2 实现过程

  • 内存映射的实现过程主要是通过Linux系统下的系统调用函数:mmap()
  • 该函数的作用 = 创建虚拟内存区域 + 与共享对象建立映射关系
  • 其函数原型、具体使用 & 内部流程 如下
/**
  * 函数原型
  */
void *mmap(void *start, size_t length, int prot, int flags, int fd, off_t offset);

/**
  * 具体使用(用户进程调用mmap())
  * 下述代码即常见了一片大小 = MAP_SIZE的接收缓存区 & 关联到共享对象中(即建立映射)
  */
  mmap(NULL, MAP_SIZE, PROT_READ, MAP_PRIVATE, fd, 0);

/**
  * 内部原理
  * 步骤1:创建虚拟内存区域
  * 步骤2:实现地址映射关系,即:进程的虚拟地址空间 ->> 共享对象
  * 注: 
  *    a. 此时,该虚拟地址并没有任何数据关联到文件中,仅仅只是建立映射关系
  *    b. 当其中1个进程对虚拟内存写入数据时,则真正实现了数据的可见
  */

2.3.3 特点

  • 提高数据的读、写 & 传输的时间性能
    1. 减少了数据拷贝次数
    2. 用户空间 & 内核空间的高效交互(通过映射的区域 直接交互)
    3. 用内存读写 代替 I/O读写
  • 提高内存利用率:通过虚拟内存 & 共享对象

2.3.4 应用场景

在Linux系统下,根据内存映射的本质原理 & 特点,其应用场景在于:

  1. 实现内存共享:如 跨进程通信
  2. 提高数据读 / 写效率 :如 文件读 / 写操作

2.3.5 实例讲解

下面,我将详细讲解 内存映射应用在跨进程通信 & 文件操作的实例

① 文件读 / 写操作
  • 传统的Linux系统文件操作流程如下

  • 使用了内存映射的 文件读 / 写 操作


从上面可看出:使用了内存映射的文件读/写 操作方式效率更加高、性能最好!

② 跨进程通信
  • 传统的跨进程通信

  • 使用了内存映射的 跨进程通信



从上面可看出:使用了内存映射的跨进程通信 效率最高、性能最好!

3. Binder 跨进程通信机制模型

3.1 模型原理图

Binder 跨进程通信机制 模型 基于 Client - Server 模式

3.2 模型组成角色说明

此处重点讲解 Binder驱动的作用 & 原理:

  • 简介

  • 跨进程通信的核心原理

3.3 模型原理步骤说明

3.4 额外说明

说明1:Client进程、Server进程 & Service Manager 进程之间的交互 都必须通过Binder驱动(使用 openioctl文件操作函数),而非直接交互

原因:

  1. Client进程、Server进程 & Service Manager进程属于进程空间的用户空间,不可进行进程间交互
  2. Binder驱动 属于 进程空间的 内核空间,可进行进程间 & 进程内交互

所以,原理图可表示为以下:

虚线表示并非直接交互


说明2: Binder驱动 & Service Manager进程 属于 Android基础架构(即系统已经实现好了);而Client 进程 和 Server 进程 属于Android应用层(需要开发者自己实现)

所以,在进行跨进程通信时,开发者只需自定义Client & Server 进程 并 显式使用上述3个步骤,最终借助 Android的基本架构功能就可完成进程间通信

说明3:Binder请求的线程管理

  • Server进程会创建很多线程来处理Binder请求
  • Binder模型的线程管理 采用Binder驱动的线程池,并由Binder驱动自身进行管理

而不是由Server进程来管理的

  • 一个进程的Binder线程数默认最大是16,超过的请求会被阻塞等待空闲的Binder线程。

所以,在进程间通信时处理并发问题时,如使用ContentProvider时,它的CRUD(创建、检索、更新和删除)方法只能同时有16个线程同时工作

  • 至此,我相信大家对Binder 跨进程通信机制 模型 已经有了一个非常清晰的定性认识
  • 下面,我将通过一个实例,分析Binder跨进程通信机制 模型在 Android中的具体代码实现方式

即分析 上述步骤在Android中具体是用代码如何实现的

4. Binder机制 在Android中的具体实现原理

  • Binder机制在 Android中的实现主要依靠 Binder类,其实现了IBinder 接口,下面会详讲
  • 实例说明:Client进程 需要调用 Server进程的加法函数(将整数a和b相加)

即:

  1. Client进程 需要传两个整数给 Server进程
  2. Server进程 需要把相加后的结果 返回给Client进程
  • 具体步骤
    下面,我会根据Binder 跨进程通信机制 模型的步骤进行分析

步骤1:注册服务

  • 过程描述
    Server进程 通过Binder驱动 向 Service Manager进程 注册服务
  • 代码实现
    Server进程 创建 一个 Binder 对象
  1. Binder 实体是 Server进程 在 Binder 驱动中的存在形式
  2. 该对象保存 Server 和 ServiceManager 的信息(保存在内核空间中)
  3. Binder 驱动通过 内核空间的Binder 实体 找到用户空间的Server对象
  • 代码分析
    
    Binder binder = new Stub();
    // 步骤1:创建Binder对象 ->>分析1

    // 步骤2:创建 IInterface 接口类 的匿名类
    // 创建前,需要预先定义 继承了IInterface 接口的接口 -->分析3
    IInterface plus = new IPlus(){

          // 确定Client进程需要调用的方法
          public int add(int a,int b) {
               return a+b;
         }

          // 实现IInterface接口中唯一的方法
          public IBinder asBinder(){ 
                return null ;
           }
};
          // 步骤3
          binder.attachInterface(plus,"add two int");
         // 1. 将(add two int,plus)作为(key,value)对存入到Binder对象中的一个Map<String,IInterface>对象中
         // 2. 之后,Binder对象 可根据add two int通过queryLocalIInterface()获得对应IInterface对象(即plus)的引用,可依靠该引用完成对请求方法的调用
        // 分析完毕,跳出


<-- 分析1:Stub类 -->
    public class Stub extends Binder {
    // 继承自Binder类 ->>分析2

          // 复写onTransact()
          @Override
          boolean onTransact(int code, Parcel data, Parcel reply, int flags){
          // 具体逻辑等到步骤3再具体讲解,此处先跳过
          switch (code) { 
                case Stub.add: { 

                       data.enforceInterface("add two int"); 

                       int  arg0  = data.readInt();
                       int  arg1  = data.readInt();

                       int  result = this.queryLocalIInterface("add two int") .add( arg0,  arg1); 

                        reply.writeInt(result); 

                        return true; 
                  }
           } 
      return super.onTransact(code, data, reply, flags); 

}
// 回到上面的步骤1,继续看步骤2

<-- 分析2:Binder 类 -->
 public class Binder implement IBinder{
    // Binder机制在Android中的实现主要依靠的是Binder类,其实现了IBinder接口
    // IBinder接口:定义了远程操作对象的基本接口,代表了一种跨进程传输的能力
    // 系统会为每个实现了IBinder接口的对象提供跨进程传输能力
    // 即Binder类对象具备了跨进程传输的能力

        void attachInterface(IInterface plus, String descriptor);
        // 作用:
          // 1. 将(descriptor,plus)作为(key,value)对存入到Binder对象中的一个Map<String,IInterface>对象中
          // 2. 之后,Binder对象 可根据descriptor通过queryLocalIInterface()获得对应IInterface对象(即plus)的引用,可依靠该引用完成对请求方法的调用

        IInterface queryLocalInterface(Stringdescriptor) ;
        // 作用:根据 参数 descriptor 查找相应的IInterface对象(即plus引用)

        boolean onTransact(int code, Parcel data, Parcel reply, int flags);
        // 定义:继承自IBinder接口的
        // 作用:执行Client进程所请求的目标方法(子类需要复写)
        // 参数说明:
        // code:Client进程请求方法标识符。即Server进程根据该标识确定所请求的目标方法
        // data:目标方法的参数。(Client进程传进来的,此处就是整数a和b)
        // reply:目标方法执行后的结果(返回给Client进程)
         // 注:运行在Server进程的Binder线程池中;当Client进程发起远程请求时,远程请求会要求系统底层执行回调该方法

        final class BinderProxy implements IBinder {
         // 即Server进程创建的Binder对象的代理对象类
         // 该类属于Binder的内部类
        }
        // 回到分析1原处
}

<-- 分析3:IInterface接口实现类 -->

 public interface IPlus extends IInterface {
          // 继承自IInterface接口->>分析4
          // 定义需要实现的接口方法,即Client进程需要调用的方法
         public int add(int a,int b);
// 返回步骤2
}

<-- 分析4:IInterface接口类 -->
// 进程间通信定义的通用接口
// 通过定义接口,然后再服务端实现接口、客户端调用接口,就可实现跨进程通信。
public interface IInterface
{
    // 只有一个方法:返回当前接口关联的 Binder 对象。
    public IBinder asBinder();
}
  // 回到分析3原处

注册服务后,Binder驱动持有 Server进程创建的Binder实体

步骤2:获取服务

  • Client进程 使用 某个 service前(此处是 相加函数),须 通过Binder驱动 向 ServiceManager进程 获取相应的Service信息
  • 具体代码实现过程如下:


此时,Client进程与 Server进程已经建立了连接

步骤3:使用服务

Client进程 根据获取到的 Service信息(Binder代理对象),通过Binder驱动 建立与 该Service所在Server进程通信的链路,并开始使用服务

  • 过程描述
    1. Client进程 将参数(整数a和b)发送到Server进程
    2. Server进程 根据Client进程要求调用 目标方法(即加法函数)
    3. Server进程 将目标方法的结果(即加法后的结果)返回给Client进程
  • 代码实现过程

步骤1: Client进程 将参数(整数a和b)发送到Server进程

// 1. Client进程 将需要传送的数据写入到Parcel对象中
// data = 数据 = 目标方法的参数(Client进程传进来的,此处就是整数a和b) + IInterface接口对象的标识符descriptor
  android.os.Parcel data = android.os.Parcel.obtain();
  data.writeInt(a); 
  data.writeInt(b); 

  data.writeInterfaceToken("add two int");;
  // 方法对象标识符让Server进程在Binder对象中根据"add two int"通过queryLocalIInterface()查找相应的IInterface对象(即Server创建的plus),Client进程需要调用的相加方法就在该对象中

  android.os.Parcel reply = android.os.Parcel.obtain();
  // reply:目标方法执行后的结果(此处是相加后的结果)

// 2. 通过 调用代理对象的transact() 将 上述数据发送到Binder驱动
  binderproxy.transact(Stub.add, data, reply, 0)
  // 参数说明:
    // 1. Stub.add:目标方法的标识符(Client进程 和 Server进程 自身约定,可为任意)
    // 2. data :上述的Parcel对象
    // 3. reply:返回结果
    // 0:可不管

// 注:在发送数据后,Client进程的该线程会暂时被挂起
// 所以,若Server进程执行的耗时操作,请不要使用主线程,以防止ANR


// 3. Binder驱动根据 代理对象 找到对应的真身Binder对象所在的Server 进程(系统自动执行)
// 4. Binder驱动把 数据 发送到Server 进程中,并通知Server 进程执行解包(系统自动执行)

步骤2:Server进程根据Client进要求 调用 目标方法(即加法函数)

// 1. 收到Binder驱动通知后,Server 进程通过回调Binder对象onTransact()进行数据解包 & 调用目标方法
  public class Stub extends Binder {

          // 复写onTransact()
          @Override
          boolean onTransact(int code, Parcel data, Parcel reply, int flags){
          // code即在transact()中约定的目标方法的标识符

          switch (code) { 
                case Stub.add: { 
                  // a. 解包Parcel中的数据
                       data.enforceInterface("add two int"); 
                        // a1. 解析目标方法对象的标识符

                       int  arg0  = data.readInt();
                       int  arg1  = data.readInt();
                       // a2. 获得目标方法的参数
                      
                       // b. 根据"add two int"通过queryLocalIInterface()获取相应的IInterface对象(即Server创建的plus)的引用,通过该对象引用调用方法
                       int  result = this.queryLocalIInterface("add two int") .add( arg0,  arg1); 
                      
                        // c. 将计算结果写入到reply
                        reply.writeInt(result); 
                        
                        return true; 
                  }
           } 
      return super.onTransact(code, data, reply, flags); 
      // 2. 将结算结果返回 到Binder驱动


步骤3:Server进程 将目标方法的结果(即加法后的结果)返回给Client进程

  // 1. Binder驱动根据 代理对象 沿原路 将结果返回 并通知Client进程获取返回结果
  // 2. 通过代理对象 接收结果(之前被挂起的线程被唤醒)

    binderproxy.transact(Stub.ADD, data, reply, 0);
    reply.readException();;
    result = reply.readInt();
          }
}
  • 总结
    下面,我用一个原理图 & 流程图来总结步骤3的内容

5. 优点

对比 Linux (Android基于Linux)上的其他进程通信方式(管道、消息队列、共享内存、
信号量、Socket),Binder 机制的优点有:

特别地,对于从模型结构组成的Binder驱动来说:

  • 整个Binder模型的原理步骤 & 源码分析

该博主相关文章写的都很好,非常推荐阅读,原文链接:

Android跨进程通信:图文详解 Binder机制 原理_android binder机制_Carson带你学Android的博客-CSDN博客

操作系统:图文详解 内存映射 - 简书

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1041226.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【Java 基础篇】Java 图书管理系统详解

介绍 图书管理系统是一种用于管理图书信息、借阅记录、用户信息等的软件系统。它可以帮助图书馆、书店或个人管理和组织图书资源&#xff0c;提供了方便的借阅和查询功能。在这篇博客中&#xff0c;我们将详细介绍如何使用Java编程语言创建一个简单的图书管理系统。 功能需求…

SpringMVC 学习(一)Servlet

1. Hello Servlet (1) 创建父工程 删除src文件夹 引入一些基本的依赖 <!--依赖--> <dependencies><dependency><groupId>junit</groupId><artifactId>junit</artifactId><version>4.12</version><scope>test<…

大模型lora微调-chatglm2

通义千问大模型微调源码&#xff08;chatglm2 微调失败&#xff0c;训练通义千问成功&#xff09;&#xff1a;GitHub - hiyouga/LLaMA-Efficient-Tuning: Easy-to-use LLM fine-tuning framework (LLaMA-2, BLOOM, Falcon, Baichuan, Qwen, ChatGLM2)Easy-to-use LLM fine-tun…

STM32存储左右互搏 I2C总线读写FRAM MB85RC1M

STM32存储左右互搏 I2C总线读写FRAM MB85RC1M 在较低容量存储领域&#xff0c;除了EEPROM的使用&#xff0c;还有铁电存储器FRAM的使用&#xff0c;相对于EEPROM, 同样是非易失性存储单元&#xff0c;FRAM支持更高的访问速度&#xff0c; 其主要优点为没有EEPROM持续写操作跨页…

day06_循环

今日内容 零、 复习昨日 一、循环 二、流程控制关键词 零、 复习昨日 8个基本数据类型 变量的使用步骤 1)声明2)赋值3)使用 声明,数据类型 变量名 不一定非得是基本类型 int a; String s; Scanner scanner;赋值,只要符合类型(能默认转换)就能赋值 int a 1; double d 1; Scann…

uni-app问题记录

一、启动问题记录 1. 报错1 解决办法: 开启微信开发者工具服务端口 2. 报错2:调用getLocation获取位置信息时报错以下内容 {errMsg: “getLocation:fail the api need to be declared in the requiredPrivateInfos field in app.json/ext.json”} 解决办法: manifest.json文…

到广阔的边缘市场去,浪潮信息首次发布全栈边缘计算软硬件新品

出品 | CSDN 云计算 智慧时代&#xff0c;一切皆计算&#xff0c;早已不再是一句口号。据国际研究机构 IDC 数据显示&#xff0c;2023 年超过 50%的企业新增 IT 基础设施会部署在边缘&#xff0c;而 Gartner 研究显示&#xff0c;到 2025 年&#xff0c;超过 75%的数据生成和数…

【ROS入门】使用 ROS 服务(Service)机制实现同步请求与答复

文章结构 任务要求话题模型实现步骤自定义srv定义srv文件编辑配置文件编译 自定义srv调用vscode配置编写服务端实现编写客户端实现 执行启动roscore编译启动客户端和服务端编译启动roscore启动节点 任务要求 编写代码实现 ROS 中的服务请求与答复: 创建服务端&#xff0c;注册…

vue中使用富文本编辑器,@tinymce/tinymce-vue

富文本就是在后台管理系统中常见的录入带格式的内容&#xff0c;如&#xff1a;表格&#xff0c;字体加粗&#xff0c;斜体&#xff0c;文字颜色等等&#xff0c;就像一个word一样。类似于这样的效果&#xff1a; 我们使用通用在线编辑器tinymce。支持vue和react。 1. 安装 np…

opencv形态学-腐蚀

opencv形态学-腐蚀 腐蚀就是取每一个位置结构元领域内最小值作为该位置的输出灰度值&#xff1b; 结构元有很多&#xff0c;一般采用矩形&#xff0c;圆 解析 下图左测是原始图片的灰阶&#xff0c;右边是经过3X3矩形腐蚀后的结果&#xff0c;我们拿19,44,99进行分析&#…

Flink CDC MySQL同步MySQL错误记录

1、启动 Flink SQL [appuserwhtpjfscpt01 flink-1.17.1]$ bin/sql-client.sh2、新建源表 问题1&#xff1a;Encountered “(” 处理方法&#xff1a;去掉int(11)&#xff0c;改为int Flink SQL> CREATE TABLE t_user ( > uid int(11) NOT NULL AUTO_INCREMENT COMME…

关于DDR协议的一些操作的理解4

address 1.DDR中的地址&#xff0c;下表中的*4/ *8/ *16表示的是颗粒位宽。不同位宽的颗粒的行列地址的分步是不一样的。图中的page size表示的就是一行所存储的内容&#xff0c;以64MB*16格式为例&#xff0c;一行一共有10列&#xff0c;每一列存储16bit&#xff0c;也就是2B…

每日一题 146. LRU 缓存

难度&#xff1a;中等 由于周日没做&#xff0c;今天又是困难题&#xff0c;所以假装今天是周日 思路&#xff1a; 在字典结构的基础之上完成三个要求显然题目要求构建一个有序字典&#xff08;当然不使用OrderedDict&#xff09;&#xff0c;由于 key 是唯一的&#xff0c;…

TLS/SSL(六) 非对称密码应用 PKI 证书体系

一 PKI 证书体系 概念&#xff1a; PKI、CA、数字证书、证书链、数字签名之前讲解的公钥不同于https站点所获取的证书,公钥只是数字证书的一部分信息说明&#xff1a; 以下内容仅作为个人笔记 华为云证书管理服务 CCM ① 基础 PKI目前有一系列标准规范定义,主要包括: ② …

lv5 嵌入式开发-6 线程的取消和互斥

目录 1 线程通信 – 互斥 2 互斥锁初始化 – pthread_mutex_init 3 互斥锁销毁 pthread_mutex_destroy 4 申请锁 – pthread_mutex_lock 5 释放锁 – pthread_mutex_unlock 6 读写锁 7 死锁的避免 8 条件变量&#xff08;信号量&#xff09; 9 线程池概念和实现 9.1 …

全栈工程师必须要掌握的前端JavaScript技能

作为一名全栈工程师&#xff0c;在日常的工作中&#xff0c;可能更侧重于后端开发&#xff0c;如&#xff1a;C#&#xff0c;Java&#xff0c;SQL &#xff0c;Python等&#xff0c;对前端的知识则不太精通。在一些比较完善的公司或者项目中&#xff0c;一般会搭配前端工程师&a…

暗月中秋靶场活动writeup

前言 暗月在中秋节搞了个靶场活动&#xff0c;一共有4个flag&#xff0c;本着增长经验的想法参加了本次活动&#xff0c;最终在活动结束的时候拿到了3个flag&#xff0c;后面看了其他人的wp也复现拿到第四个flag。过程比较曲折&#xff0c;所以记录一下。 靶场地址 103.108.…

【sgUploadTileImage】自定义组件:浏览器端生成瓦片图,并转换为File文件序列上传瓦片图

特性&#xff1a; 支持自定义瓦片图尺寸支持显示预览最小尺寸100x100像素大小&#xff0c;切换为实际切割尺寸支持获取切割后的文件Files数组 sgUploadTileImage源码 <template><div :class"$options.name"><div class"sg-ctrl"><di…

使用datax将数据从InfluxDB抽取到TDengine过程记录

1. 编写InfluxDB数据查询语句 select time as ts,device as tbname, ip,device as district_code from "L2_CS" limit 1000 2. 创建TDengine表 create database if not exists sensor; create stable if not exists sensor.water(ts timestamp, ip varchar(50), …

App Inventor 2 模拟sleep函数

App Inventor 2 原生没有 sleep 及相关函数&#xff0c;需要模拟实现&#xff0c;经过测试这里给出一个既简单又相对高效率的实现方案&#xff1a; 需要用到计时器组件&#xff1a; 实现代码如下&#xff1a; 代码原理非常简单&#xff0c;就是计算好要 sleep 到的时刻&#x…