借鉴
Pandas 常用函数 | 菜鸟教程Pandas 常用函数 以下列出了 Pandas 常用的一些函数及使用实例: 读取数据 函数说明 pd.read_csv(filename)读取 CSV 文件; pd.read_excel(filename)读取 Excel 文件; pd.read_sql(query, connection_object)从 SQL 数据库读取数据; pd.read_json(json_string)从 JSON 字符串中读取数据; pd.read_..https://www.runoob.com/pandas/pandas-functions.html
安装
pip3 install pandas -i https://pypi.douban.com/simple
数据结构
Series与DataFrame的区别
DataFrame 和 Series 是 Pandas 库中两个重要的数据结构,它们具有以下区别:
DataFrame:
- DataFrame 是一个二维表格,由行和列组成。
- 每列可以是不同的数据类型(整数、浮点数、字符串等)。
- DataFrame 可以被认为是由多个 Series 组成的字典。
- 可以通过列名来访问和操作数据。
- 常用于处理结构化的、表格状的数据。
Series:
- Series 是一个一维标记数组,类似于带有索引的列表。
- 每个元素都具有唯一的标签(索引),默认从 0 开始。
- Series 中的数据类型可以是任意类型(整数、浮点数、字符串等)。
- 可以通过索引来访问和操作数据。
- 常用于处理一维的、列状的数据。
因此,可以将 DataFrame 视为一个表格,其中每列是一个 Series,而每个 Series 都具有相同的索引,它们在一起形成了一个完整的数据集。
Series
Pandas Series 类似表格中的一个列(column),类似于一维数组,可以保存任何数据类型。
Series 由索引(index)和列组成,函数如下:
pandas.Series( data, index, dtype, name, copy)参数说明:
data:一组数据(ndarray 类型)。
index:数据索引标签,如果不指定,默认从 0 开始。
dtype:数据类型,默认会自己判断。
name:设置名称。
copy:拷贝数据,默认为 False。
创建一个简单的 Series 实例:
import pandas as pd
a = [1, 2, 3]
myvar = pd.Series(a)
print(myvar[1])
输出结果如下:
我们可以根据索引值读取数据:
从上图可知,如果没有指定索引,索引值就从 0 开始,
import pandas as pd
a = [1, 2, 3]
myvar = pd.Series(a)
print(myvar[1])
输出结果如下:
2
我们可以指定索引值,如下实例:
import pandas as pd
a = ["Google", "Runoob", "Wiki"]
myvar = pd.Series(a, index = ["x", "y", "z"])
print(myvar)
输出结果如下:
根据索引值读取数据:
import pandas as pd
a = ["Google", "Runoob", "Wiki"]
myvar = pd.Series(a, index = ["x", "y", "z"])
print(myvar["y"])
输出结果如下:
Runoob
我们也可以使用 key/value 对象,类似字典来创建 Series:
import pandas as pd
sites = {1: "Google", 2: "Runoob", 3: "Wiki"}
myvar = pd.Series(sites)
print(myvar)
输出结果如下:
从上图可知,字典的 key 变成了索引值。
如果我们只需要字典中的一部分数据,只需要指定需要数据的索引即可,如下实例:
import pandas as pd
sites = {1: "Google", 2: "Runoob", 3: "Wiki"}
myvar = pd.Series(sites, index = [1, 2])
print(myvar)
输出结果如下:
设置 Series 名称参数:
import pandas as pd
sites = {1: "Google", 2: "Runoob", 3: "Wiki"}
myvar = pd.Series(sites, index = [1, 2], name="RUNOOB-Series-TEST" )
print(myvar)
输出结果如下:
DataFrame
DataFrame 是一个表格型的数据结构,它含有一组有序的列,每列可以是不同的值类型(数值、字符串、布尔型值)。DataFrame 既有行索引也有列索引,它可以被看做由 Series 组成的字典(共同用一个索引)。
DataFrame 构造方法如下:
pandas.DataFrame( data, index, columns, dtype, copy)
参数说明:
data:一组数据(ndarray、series, map, lists, dict 等类型)。
index:索引值,或者可以称为行标签。
columns:列标签,默认为 RangeIndex (0, 1, 2, …, n) 。
dtype:数据类型。
copy:拷贝数据,默认为 False。
Pandas DataFrame 是一个二维的数组结构,类似二维数组。
实例 - 使用列表创建
import pandas as pd
data = [['Google',10],['Runoob',12],['Wiki',13]]
df = pd.DataFrame(data,columns=['Site','Age'],dtype=float)
print(df)
输出结果如下:
实例 - 使用 ndarrays 创建
以下实例使用 ndarrays 创建,ndarray 的长度必须相同, 如果传递了 index,则索引的长度应等于数组的长度。如果没有传递索引,则默认情况下,索引将是range(n),其中n是数组长度。ndarrays 可以参考:NumPy Ndarray 对象
import pandas as pd
data = {'Site':['Google', 'Runoob', 'Wiki'], 'Age':[10, 12, 13]}
df = pd.DataFrame(data)
print (df)
输出结果如下:
实例 - 使用字典创建
import pandas as pd
data = [{'a': 1, 'b': 2},{'a': 5, 'b': 10, 'c': 20}]
df = pd.DataFrame(data)
print (df)
输出结果为:
没有对应的部分数据为 NaN。
Pandas 可以使用 loc 属性返回指定行的数据,
如果没有设置索引,第一行索引为 0,第二行索引为 1,以此类推:
import pandas as pd
data = {
"calories": [420, 380, 390],
"duration": [50, 40, 45]
}
# 数据载入到 DataFrame 对象
df = pd.DataFrame(data)
# 返回第一行
print(df.loc[0])
# 返回第二行
print(df.loc[1])
输出结果如下:
注意:返回结果其实就是一个 Pandas Series 数据。
也可以返回多行数据,使用 [[ ... ]] 格式,... 为各行的索引,以逗号隔开:
返回第一行和第二行
import pandas as pd
data = {
"calories": [420, 380, 390],
"duration": [50, 40, 45]
}
# 数据载入到 DataFrame 对象
df = pd.DataFrame(data)
# 返回第一行和第二行
print(df.loc[[0, 1]])
输出结果为:
注意:返回结果其实就是一个 Pandas DataFrame 数据。
我们可以指定索引值,如下实例:
import pandas as pd
data = {
"calories": [420, 380, 390],
"duration": [50, 40, 45]
}
df = pd.DataFrame(data, index = ["day1", "day2", "day3"])
print(df)
输出结果为:
Pandas 可以使用 loc 属性返回指定索引对应到某一行:
import pandas as pd
data = {
"calories": [420, 380, 390],
"duration": [50, 40, 45]
}
df = pd.DataFrame(data, index = ["day1", "day2", "day3"])
# 指定索引
print(df.loc["day2"])