【STM32笔记】HAL库I2C通信配置、读写操作及通用函数定义

news2024/12/23 13:56:05

【STM32笔记】HAL库I2C通信配置、读写操作及通用函数定义

文章目录

  • I2C协议
  • I2C配置
  • I2C操作
    • 判断I2C是否响应
    • I2C读写
  • 附录:Cortex-M架构的SysTick系统定时器精准延时和MCU位带操作
    • SysTick系统定时器精准延时
      • 延时函数
        • 阻塞延时
        • 非阻塞延时
    • 位带操作
      • 位带代码
        • 位带宏定义
        • 总线函数
      • 一、位带操作理论及实践
      • 二、如何判断MCU的外设是否支持位带

I2C协议

I2C有两条线 SDA和SCL 是一种半双工协议
SDA(串行数据线)和SCL(串行时钟线)都是双向I/O线,接口电路为开漏输出。需通过上拉电阻接电源VCC。当总线空闲时,两根线都是高电平,连接总线的外同器件都是CMOS器件,输出级也是开漏电路。在总线上消耗的电流很小,因此,总线上扩展的器件数量主要由电容负载来决定,因为每个器件的总线接口都有一定的等效电容。而线路中电容会影响总线传输速度。当电容过大时,有可能造成传输错误。所以,其负载能力为400pF,因此可以估算出总线允许长度和所接器件数量。
在这里插入图片描述
I2C从机地址一般有7位(也有更多位的) 对应127个设备 还有一个是广播地址
每次传输时 主机都需要先发送I2C地址和一个读写位(共8位) 读写位一般是1为读 0为写
比如M24C32的I2C从机地址和读写位:
在这里插入图片描述
对于此芯片:
读取存储的从机地址为:0x50
读取标识页面的从机地址为:0x58
WC引脚接地,存储可以进行写操作
地址长度为16位
存储地址:0x0000-0x0FFF,即4096个Bytes,32K-Bits
标识页面地址:0x0000-0x001F,即32个Bytes
标识页面在进行写操作时,b10为0,即add &= ~(1<<10)
在这里插入图片描述
在这里插入图片描述
其中 大部分设备都支持随机地址读写(先发从机地址 再发寄存器地址 然后再发一次从机地址+读写位 最后发数据)
顺序读写基本上所有的都支持(先发从机地址+读写 再发数据)

I2C配置

在CubeMX中的I2C配置如下:
在这里插入图片描述
其中 主要从机地址这个设置不用配置 因为在调用I2C函数时 也要重新写入从机地址

I2C操作

在HAL库中 可以采用以下几组函数进行读写操作

HAL_I2C_Mem_Write  //随机地址写入
HAL_I2C_Mem_Read  //随机地址读取
HAL_I2C_Master_Transmit  //当前地址发送
HAL_I2C_Master_Receive  //当前地址接收

以及一个判断是否有响应的函数:

HAL_I2C_IsDeviceReady

这几个函数都需要传入从机地址 但这里的从机地址是移位以后的
如果说 从机地址为7位0x3F
则传入的从机地址应位(0x3F<<1)&0xFF

其中 大部分设备都支持随机地址读写(先发从机地址 再发寄存器地址 然后再发一次从机地址+读写位 最后发数据)
顺序读写基本上所有的都支持(先发从机地址+读写 再发数据)

判断I2C是否响应

/*!
 * @brief       	判断I2C设备是否可以响应	
 *
 * @param 	[in]	hi2c: I2C_HandleTypeDef 变量地址
 *					[in]	DevAddress: 从机地址,7位从机地址,向右对齐					
 *
 * @return				返回bool类型,为true表示可以响应
 */
bool I2C_Judge(I2C_HandleTypeDef *hi2c,uint16_t DevAddress)
{
	DevAddress=(DevAddress<<1)&0xFF;
	if(HAL_I2C_IsDeviceReady(hi2c,DevAddress,5,0x00ff)==HAL_OK)
	{
		return true;
	}
	else
	{
		return false;
	}
}

I2C读写


/*!
 * @brief       	对I2C设备进行写入	
 *
 * @param 	[in]	hi2c: I2C_HandleTypeDef 变量地址
 *					[in]	DevAddress: 从机地址,7位从机地址,向右对齐
 *					[in]	add: 从机寄存器地址,8位地址
 *					[in]	add_length: 为1表示1Byte(8位),为2表示2Byte(16位)
 *					[in]	pData: 数据变量地址
 *					[in]	x: 写入数据个数
 *					[in]	prologue_flag: 序言标志
 *								当prologue_flag为true时,先发送从机地址,再写入寄存器地址,再发一次从机地址后,再写入数据(随机地址写入)
 *								当prologue_flag为false时,直接发送从机地址后就写入数据(当前地址写入),此时不会发送从机寄存器地址
 *
 * @return				true/false 发送是否成功
 */
bool I2C_Write_x(I2C_HandleTypeDef *hi2c,uint16_t DevAddress,uint16_t add,uint16_t add_length,uint8_t *pData,uint8_t x,bool prologue_flag)
{
	DevAddress=(DevAddress<<1)&0xFF;
	
	uint16_t MemAddSize=1;	
	
	if(pData==NULL || x==0)
	{
		return false;
	}
	
	if(prologue_flag)
	{
		switch(add_length)
		{
			case 1:MemAddSize=I2C_MEMADD_SIZE_8BIT;break;
			case 2:MemAddSize=I2C_MEMADD_SIZE_16BIT;break;
			default:MemAddSize=I2C_MEMADD_SIZE_8BIT;break;
		}
		if(HAL_I2C_Mem_Write(hi2c,DevAddress,add,MemAddSize,pData,x,0xFFFF)==HAL_OK)
		{
			return true;
		}
		else
		{
			return false;
		}
	}	
	else
	{
		if(HAL_I2C_Master_Transmit(hi2c,DevAddress,pData,x,0xFFFF)==HAL_OK)
		{
			return true;
		}
		else
		{
			return false;
		}
	}
}

/*!
 * @brief       	对I2C设备进行读取   	
 *
 * @param 	[in]	hi2c: I2C_HandleTypeDef 变量地址
 *					[in]	DevAddress: 从机地址,7位从机地址,向右对齐
 *					[in]	add: 从机寄存器地址,8/16位地址
 *					[in]	add_length: 为1表示1Byte(8位),为2表示2Byte(16位)
 *					[in]	y: 读取数据个数,最大为4,若大于4,则返回0
 *					[in]	prologue_flag: 序言标志
 *								当prologue_flag为true时(随机地址读取)
 *								当prologue_flag为false时(当前地址读取),此时从机寄存器地址无效
 *
 * @return				dat: I2C读取数据返回
 */
uint32_t I2C_Read_y(I2C_HandleTypeDef *hi2c,uint16_t DevAddress,uint16_t add,uint16_t add_length,uint8_t y,bool prologue_flag)
{
	DevAddress=(DevAddress<<1)&0xFF;
	uint8_t pData[y];
	memset(pData,0,sizeof(pData));
	uint32_t dat=0;
	uint16_t MemAddSize=0;
	
	if(y>4 || y==0)
	{
		return 0;
	}
	
	if(prologue_flag)
	{
		switch(add_length)
		{
			case 1:MemAddSize=I2C_MEMADD_SIZE_8BIT;break;
			case 2:MemAddSize=I2C_MEMADD_SIZE_16BIT;break;
			default:MemAddSize=I2C_MEMADD_SIZE_8BIT;break;
		}
		HAL_I2C_Mem_Read(hi2c,DevAddress,add,MemAddSize,pData,y,0xFFFF);
	}	
	else
	{
		HAL_I2C_Master_Receive(hi2c,DevAddress,pData,y,0xFFFF);
	}
	
	for(uint8_t i=0;i<y;i++)
	{
		dat|=pData[i]<<(8*(y-1-i));
	}
	
	return dat;
}

在I2C读写中函数中 给了一个标志位 用于定义是随机地址读写还是当前地址读写

附录:Cortex-M架构的SysTick系统定时器精准延时和MCU位带操作

SysTick系统定时器精准延时

延时函数

SysTick->LOAD中的值为计数值
计算方法为工作频率值/分频值
比如工作频率/1000 则周期为1ms

以ADuCM4050为例:

#include "ADuCM4050.h"

void delay_ms(unsigned int ms)
{
	SysTick->LOAD = 26000000/1000-1; // Count from 255 to 0 (256 cycles)  载入计数值 定时器从这个值开始计数
	SysTick->VAL = 0; // Clear current value as well as count flag  清空计数值到达0后的标记
	SysTick->CTRL = 5; // Enable SysTick timer with processor clock  使能52MHz的系统定时器
	while(ms--)
	{
		while ((SysTick->CTRL & 0x00010000)==0);// Wait until count flag is set  等待
	}
	SysTick->CTRL = 0; // Disable SysTick  关闭系统定时器
}
void delay_us(unsigned int us)
{
	SysTick->LOAD = 26000000/1000/1000-1; // Count from 255 to 0 (256 cycles)  载入计数值 定时器从这个值开始计数
	SysTick->VAL = 0; // Clear current value as well as count flag  清空计数值到达0后的标记
	SysTick->CTRL = 5; // Enable SysTick timer with processor clock  使能52MHz的系统定时器
	while(us--)
	{
		while ((SysTick->CTRL & 0x00010000)==0);// Wait until count flag is set  等待
	}
	SysTick->CTRL = 0; // Disable SysTick  关闭系统定时器
}

其中的52000000表示芯片的系统定时器频率 32系列一般为外部定时器频率的两倍

Cortex-M架构SysTick系统定时器阻塞和非阻塞延时

阻塞延时

首先是最常用的阻塞延时

void delay_ms(unsigned int ms)
{
	SysTick->LOAD = 50000000/1000-1; // Count from 255 to 0 (256 cycles)  载入计数值 定时器从这个值开始计数
	SysTick->VAL = 0; // Clear current value as well as count flag  清空计数值到达0后的标记
	SysTick->CTRL = 5; // Enable SysTick timer with processor clock  使能26MHz的系统定时器
	while(ms--)
	{
		while ((SysTick->CTRL & 0x00010000)==0);// Wait until count flag is set  等待
	}
	SysTick->CTRL = 0; // Disable SysTick  关闭系统定时器
}
void delay_us(unsigned int us)
{
	SysTick->LOAD = 50000000/1000/1000-1; // Count from 255 to 0 (256 cycles)  载入计数值 定时器从这个值开始计数
	SysTick->VAL = 0; // Clear current value as well as count flag  清空计数值到达0后的标记
	SysTick->CTRL = 5; // Enable SysTick timer with processor clock  使能26MHz的系统定时器
	while(us--)
	{
		while ((SysTick->CTRL & 0x00010000)==0);// Wait until count flag is set  等待
	}
	SysTick->CTRL = 0; // Disable SysTick  关闭系统定时器
}

50000000表示工作频率
分频后即可得到不同的延时时间
以此类推

那么 不用两个嵌套while循环 也可以写成:

void delay_ms(unsigned int ms)
{
	SysTick->LOAD = 50000000/1000*ms-1; // Count from 255 to 0 (256 cycles)  载入计数值 定时器从这个值开始计数
	SysTick->VAL = 0; // Clear current value as well as count flag  清空计数值到达0后的标记
	SysTick->CTRL = 5; // Enable SysTick timer with processor clock  使能26MHz的系统定时器

	while ((SysTick->CTRL & 0x00010000)==0);// Wait until count flag is set  等待

	SysTick->CTRL = 0; // Disable SysTick  关闭系统定时器
}
void delay_us(unsigned int us)
{
	SysTick->LOAD = 50000000/1000/1000*us-1; // Count from 255 to 0 (256 cycles)  载入计数值 定时器从这个值开始计数
	SysTick->VAL = 0; // Clear current value as well as count flag  清空计数值到达0后的标记
	SysTick->CTRL = 5; // Enable SysTick timer with processor clock  使能26MHz的系统定时器
	
	while ((SysTick->CTRL & 0x00010000)==0);// Wait until count flag is set  等待

	SysTick->CTRL = 0; // Disable SysTick  关闭系统定时器
}

但是这种写法有个弊端
那就是输入ms后,最大定时不得超过计数值,也就是不能超过LOAD的最大值,否则溢出以后,则无法正常工作

而LOAD如果最大是32位 也就是4294967295

晶振为50M的话 50M的计数值为1s 4294967295计数值约为85s

固最大定时时间为85s

但用嵌套while的话 最大可以支持定时4294967295*85s

非阻塞延时

如果采用非阻塞的话 直接改写第二种方法就好了:

void delay_ms(unsigned int ms)
{
	SysTick->LOAD = 50000000/1000*ms-1; // Count from 255 to 0 (256 cycles)  载入计数值 定时器从这个值开始计数
	SysTick->VAL = 0; // Clear current value as well as count flag  清空计数值到达0后的标记
	SysTick->CTRL = 5; // Enable SysTick timer with processor clock  使能26MHz的系统定时器

	//while ((SysTick->CTRL & 0x00010000)==0);// Wait until count flag is set  等待

	//SysTick->CTRL = 0; // Disable SysTick  关闭系统定时器
}
void delay_us(unsigned int us)
{
	SysTick->LOAD = 50000000/1000/1000*us-1; // Count from 255 to 0 (256 cycles)  载入计数值 定时器从这个值开始计数
	SysTick->VAL = 0; // Clear current value as well as count flag  清空计数值到达0后的标记
	SysTick->CTRL = 5; // Enable SysTick timer with processor clock  使能26MHz的系统定时器
	
	//while ((SysTick->CTRL & 0x00010000)==0);// Wait until count flag is set  等待

	//SysTick->CTRL = 0; // Disable SysTick  关闭系统定时器
}

将等待和关闭定时器语句去掉
在使用时加上判断即可变为阻塞:

delay_ms(500);
while ((SysTick->CTRL & 0x00010000)==0);
SysTick->CTRL = 0;

在非阻塞状态下 可以提交定时器后 去做别的事情 然后再来等待

不过这样又有一个弊端 那就是定时器会自动重载 可能做别的事情以后 定时器跑过了 然后就要等85s才能停下

故可以通过内部定时器来进行非阻塞延时函数的编写

基本上每个mcu的内部定时器都可以配置自动重载等功能 网上资料很多 这里就不再阐述了

位带操作

位带代码

M3、M4架构的单片机 其输出口地址为端口地址+20 输入为+16
M0架构的单片机 其输出口地址为端口地址+12 输入为+8
以ADuCM4050为列:

位带宏定义
#ifndef __GPIO_H__
#define __GPIO_H__
#include "ADuCM4050.h"
#include "adi_gpio.h"

#define BITBAND(addr, bitnum) ((addr & 0xF0000000)+0x2000000+((addr &0xFFFFF)<<5)+(bitnum<<2)) 
#define MEM_ADDR(addr)  *((volatile unsigned long  *)(addr)) 
#define BIT_ADDR(addr, bitnum)   MEM_ADDR(BITBAND(addr, bitnum))

#define GPIO0_ODR_Addr    (ADI_GPIO0_BASE+20) //0x40020014
#define GPIO0_IDR_Addr    (ADI_GPIO0_BASE+16) //0x40020010

#define GPIO1_ODR_Addr    (ADI_GPIO1_BASE+20) //0x40020054
#define GPIO1_IDR_Addr    (ADI_GPIO1_BASE+16) //0x40020050

#define GPIO2_ODR_Addr    (ADI_GPIO2_BASE+20) //0x40020094
#define GPIO2_IDR_Addr    (ADI_GPIO2_BASE+16) //0x40020090

#define GPIO3_ODR_Addr    (ADI_GPIO3_BASE+20) //0x400200D4
#define GPIO3_IDR_Addr    (ADI_GPIO3_BASE+16) //0x400200D0

#define P0_O(n)   	BIT_ADDR(GPIO0_ODR_Addr,n)  //输出 
#define P0_I(n)    	BIT_ADDR(GPIO0_IDR_Addr,n)  //输入 

#define P1_O(n)   	BIT_ADDR(GPIO1_ODR_Addr,n)  //输出 
#define P1_I(n)    	BIT_ADDR(GPIO1_IDR_Addr,n)  //输入 

#define P2_O(n)   	BIT_ADDR(GPIO2_ODR_Addr,n)  //输出 
#define P2_I(n)    	BIT_ADDR(GPIO2_IDR_Addr,n)  //输入 

#define P3_O(n)   	BIT_ADDR(GPIO3_ODR_Addr,n)  //输出 
#define P3_I(n)    	BIT_ADDR(GPIO3_IDR_Addr,n)  //输入 

#define Port0			(ADI_GPIO_PORT0)
#define Port1			(ADI_GPIO_PORT1)
#define Port2			(ADI_GPIO_PORT2)
#define Port3			(ADI_GPIO_PORT3)

#define Pin0			(ADI_GPIO_PIN_0)
#define Pin1			(ADI_GPIO_PIN_1)
#define Pin2			(ADI_GPIO_PIN_2)
#define Pin3			(ADI_GPIO_PIN_3)
#define Pin4			(ADI_GPIO_PIN_4)
#define Pin5			(ADI_GPIO_PIN_5)
#define Pin6			(ADI_GPIO_PIN_6)
#define Pin7			(ADI_GPIO_PIN_7)
#define Pin8			(ADI_GPIO_PIN_8)
#define Pin9			(ADI_GPIO_PIN_9)
#define Pin10			(ADI_GPIO_PIN_10)
#define Pin11			(ADI_GPIO_PIN_11)
#define Pin12			(ADI_GPIO_PIN_12)
#define Pin13			(ADI_GPIO_PIN_13)
#define Pin14			(ADI_GPIO_PIN_14)
#define Pin15			(ADI_GPIO_PIN_15)

void GPIO_OUT(unsigned int port,unsigned int pin,unsigned int flag);
void GPIO_BUS_OUT(unsigned int port,unsigned int num);

void P0_BUS_O(unsigned int num);
unsigned int P0_BUS_I(void);

void P1_BUS_O(unsigned int num);
unsigned int P1_BUS_I(void);

void P2_BUS_O(unsigned int num);
unsigned int P2_BUS_I(void);

void P3_BUS_O(unsigned int num);
unsigned int P3_BUS_I(void);

#endif

总线函数
#include "ADuCM4050.h"
#include "adi_gpio.h"
#include "GPIO.h"

void GPIO_OUT(unsigned int port,unsigned int pin,unsigned int flag)
{
	switch(port)
	{
		case 0:{
			switch(pin)
			{
				case 0:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT0),(ADI_GPIO_PIN_0));}else{adi_gpio_SetLow((ADI_GPIO_PORT0),(ADI_GPIO_PIN_0));};break;
				case 1:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT0),(ADI_GPIO_PIN_1));}else{adi_gpio_SetLow((ADI_GPIO_PORT0),(ADI_GPIO_PIN_1));};break;
				case 2:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT0),(ADI_GPIO_PIN_2));}else{adi_gpio_SetLow((ADI_GPIO_PORT0),(ADI_GPIO_PIN_2));};break;
				case 3:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT0),(ADI_GPIO_PIN_3));}else{adi_gpio_SetLow((ADI_GPIO_PORT0),(ADI_GPIO_PIN_3));};break;
				case 4:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT0),(ADI_GPIO_PIN_4));}else{adi_gpio_SetLow((ADI_GPIO_PORT0),(ADI_GPIO_PIN_4));};break;
				case 5:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT0),(ADI_GPIO_PIN_5));}else{adi_gpio_SetLow((ADI_GPIO_PORT0),(ADI_GPIO_PIN_5));};break;
				case 6:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT0),(ADI_GPIO_PIN_6));}else{adi_gpio_SetLow((ADI_GPIO_PORT0),(ADI_GPIO_PIN_6));};break;
				case 7:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT0),(ADI_GPIO_PIN_7));}else{adi_gpio_SetLow((ADI_GPIO_PORT0),(ADI_GPIO_PIN_7));};break;
				case 8:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT0),(ADI_GPIO_PIN_8));}else{adi_gpio_SetLow((ADI_GPIO_PORT0),(ADI_GPIO_PIN_8));};break;
				case 9:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT0),(ADI_GPIO_PIN_9));}else{adi_gpio_SetLow((ADI_GPIO_PORT0),(ADI_GPIO_PIN_9));};break;
				case 10:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT0),(ADI_GPIO_PIN_10));}else{adi_gpio_SetLow((ADI_GPIO_PORT0),(ADI_GPIO_PIN_10));};break;
				case 11:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT0),(ADI_GPIO_PIN_11));}else{adi_gpio_SetLow((ADI_GPIO_PORT0),(ADI_GPIO_PIN_11));};break;
				case 12:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT0),(ADI_GPIO_PIN_12));}else{adi_gpio_SetLow((ADI_GPIO_PORT0),(ADI_GPIO_PIN_12));};break;
				case 13:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT0),(ADI_GPIO_PIN_13));}else{adi_gpio_SetLow((ADI_GPIO_PORT0),(ADI_GPIO_PIN_13));};break;
				case 14:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT0),(ADI_GPIO_PIN_14));}else{adi_gpio_SetLow((ADI_GPIO_PORT0),(ADI_GPIO_PIN_14));};break;
				case 15:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT0),(ADI_GPIO_PIN_15));}else{adi_gpio_SetLow((ADI_GPIO_PORT0),(ADI_GPIO_PIN_15));};break;
				default:pin=0;break;
			}
		}break;
		
		case 1:{
			switch(pin)
			{
				case 0:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT1),(ADI_GPIO_PIN_0));}else{adi_gpio_SetLow((ADI_GPIO_PORT1),(ADI_GPIO_PIN_0));};break;
				case 1:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT1),(ADI_GPIO_PIN_1));}else{adi_gpio_SetLow((ADI_GPIO_PORT1),(ADI_GPIO_PIN_1));};break;
				case 2:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT1),(ADI_GPIO_PIN_2));}else{adi_gpio_SetLow((ADI_GPIO_PORT1),(ADI_GPIO_PIN_2));};break;
				case 3:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT1),(ADI_GPIO_PIN_3));}else{adi_gpio_SetLow((ADI_GPIO_PORT1),(ADI_GPIO_PIN_3));};break;
				case 4:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT1),(ADI_GPIO_PIN_4));}else{adi_gpio_SetLow((ADI_GPIO_PORT1),(ADI_GPIO_PIN_4));};break;
				case 5:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT1),(ADI_GPIO_PIN_5));}else{adi_gpio_SetLow((ADI_GPIO_PORT1),(ADI_GPIO_PIN_5));};break;
				case 6:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT1),(ADI_GPIO_PIN_6));}else{adi_gpio_SetLow((ADI_GPIO_PORT1),(ADI_GPIO_PIN_6));};break;
				case 7:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT1),(ADI_GPIO_PIN_7));}else{adi_gpio_SetLow((ADI_GPIO_PORT1),(ADI_GPIO_PIN_7));};break;
				case 8:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT1),(ADI_GPIO_PIN_8));}else{adi_gpio_SetLow((ADI_GPIO_PORT1),(ADI_GPIO_PIN_8));};break;
				case 9:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT1),(ADI_GPIO_PIN_9));}else{adi_gpio_SetLow((ADI_GPIO_PORT1),(ADI_GPIO_PIN_9));};break;
				case 10:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT1),(ADI_GPIO_PIN_10));}else{adi_gpio_SetLow((ADI_GPIO_PORT1),(ADI_GPIO_PIN_10));};break;
				case 11:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT1),(ADI_GPIO_PIN_11));}else{adi_gpio_SetLow((ADI_GPIO_PORT1),(ADI_GPIO_PIN_11));};break;
				case 12:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT1),(ADI_GPIO_PIN_12));}else{adi_gpio_SetLow((ADI_GPIO_PORT1),(ADI_GPIO_PIN_12));};break;
				case 13:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT1),(ADI_GPIO_PIN_13));}else{adi_gpio_SetLow((ADI_GPIO_PORT1),(ADI_GPIO_PIN_13));};break;
				case 14:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT1),(ADI_GPIO_PIN_14));}else{adi_gpio_SetLow((ADI_GPIO_PORT1),(ADI_GPIO_PIN_14));};break;
				case 15:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT1),(ADI_GPIO_PIN_15));}else{adi_gpio_SetLow((ADI_GPIO_PORT1),(ADI_GPIO_PIN_15));};break;
				default:pin=0;break;
			}
		}break;
		
		case 2:{
			switch(pin)
			{
				case 0:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT2),(ADI_GPIO_PIN_0));}else{adi_gpio_SetLow((ADI_GPIO_PORT2),(ADI_GPIO_PIN_0));};break;
				case 1:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT2),(ADI_GPIO_PIN_1));}else{adi_gpio_SetLow((ADI_GPIO_PORT2),(ADI_GPIO_PIN_1));};break;
				case 2:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT2),(ADI_GPIO_PIN_2));}else{adi_gpio_SetLow((ADI_GPIO_PORT2),(ADI_GPIO_PIN_2));};break;
				case 3:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT2),(ADI_GPIO_PIN_3));}else{adi_gpio_SetLow((ADI_GPIO_PORT2),(ADI_GPIO_PIN_3));};break;
				case 4:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT2),(ADI_GPIO_PIN_4));}else{adi_gpio_SetLow((ADI_GPIO_PORT2),(ADI_GPIO_PIN_4));};break;
				case 5:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT2),(ADI_GPIO_PIN_5));}else{adi_gpio_SetLow((ADI_GPIO_PORT2),(ADI_GPIO_PIN_5));};break;
				case 6:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT2),(ADI_GPIO_PIN_6));}else{adi_gpio_SetLow((ADI_GPIO_PORT2),(ADI_GPIO_PIN_6));};break;
				case 7:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT2),(ADI_GPIO_PIN_7));}else{adi_gpio_SetLow((ADI_GPIO_PORT2),(ADI_GPIO_PIN_7));};break;
				case 8:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT2),(ADI_GPIO_PIN_8));}else{adi_gpio_SetLow((ADI_GPIO_PORT2),(ADI_GPIO_PIN_8));};break;
				case 9:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT2),(ADI_GPIO_PIN_9));}else{adi_gpio_SetLow((ADI_GPIO_PORT2),(ADI_GPIO_PIN_9));};break;
				case 10:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT2),(ADI_GPIO_PIN_10));}else{adi_gpio_SetLow((ADI_GPIO_PORT2),(ADI_GPIO_PIN_10));};break;
				case 11:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT2),(ADI_GPIO_PIN_11));}else{adi_gpio_SetLow((ADI_GPIO_PORT2),(ADI_GPIO_PIN_11));};break;
				case 12:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT2),(ADI_GPIO_PIN_12));}else{adi_gpio_SetLow((ADI_GPIO_PORT2),(ADI_GPIO_PIN_12));};break;
				case 13:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT2),(ADI_GPIO_PIN_13));}else{adi_gpio_SetLow((ADI_GPIO_PORT2),(ADI_GPIO_PIN_13));};break;
				case 14:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT2),(ADI_GPIO_PIN_14));}else{adi_gpio_SetLow((ADI_GPIO_PORT2),(ADI_GPIO_PIN_14));};break;
				case 15:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT2),(ADI_GPIO_PIN_15));}else{adi_gpio_SetLow((ADI_GPIO_PORT2),(ADI_GPIO_PIN_15));};break;
				default:pin=0;break;
			}
		}break;
		
		case 3:{
			switch(pin)
			{
				case 0:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT3),(ADI_GPIO_PIN_0));}else{adi_gpio_SetLow((ADI_GPIO_PORT3),(ADI_GPIO_PIN_0));};break;
				case 1:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT3),(ADI_GPIO_PIN_1));}else{adi_gpio_SetLow((ADI_GPIO_PORT3),(ADI_GPIO_PIN_1));};break;
				case 2:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT3),(ADI_GPIO_PIN_2));}else{adi_gpio_SetLow((ADI_GPIO_PORT3),(ADI_GPIO_PIN_2));};break;
				case 3:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT3),(ADI_GPIO_PIN_3));}else{adi_gpio_SetLow((ADI_GPIO_PORT3),(ADI_GPIO_PIN_3));};break;
				case 4:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT3),(ADI_GPIO_PIN_4));}else{adi_gpio_SetLow((ADI_GPIO_PORT3),(ADI_GPIO_PIN_4));};break;
				case 5:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT3),(ADI_GPIO_PIN_5));}else{adi_gpio_SetLow((ADI_GPIO_PORT3),(ADI_GPIO_PIN_5));};break;
				case 6:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT3),(ADI_GPIO_PIN_6));}else{adi_gpio_SetLow((ADI_GPIO_PORT3),(ADI_GPIO_PIN_6));};break;
				case 7:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT3),(ADI_GPIO_PIN_7));}else{adi_gpio_SetLow((ADI_GPIO_PORT3),(ADI_GPIO_PIN_7));};break;
				case 8:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT3),(ADI_GPIO_PIN_8));}else{adi_gpio_SetLow((ADI_GPIO_PORT3),(ADI_GPIO_PIN_8));};break;
				case 9:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT3),(ADI_GPIO_PIN_9));}else{adi_gpio_SetLow((ADI_GPIO_PORT3),(ADI_GPIO_PIN_9));};break;
				case 10:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT3),(ADI_GPIO_PIN_10));}else{adi_gpio_SetLow((ADI_GPIO_PORT3),(ADI_GPIO_PIN_10));};break;
				case 11:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT3),(ADI_GPIO_PIN_11));}else{adi_gpio_SetLow((ADI_GPIO_PORT3),(ADI_GPIO_PIN_11));};break;
				case 12:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT3),(ADI_GPIO_PIN_12));}else{adi_gpio_SetLow((ADI_GPIO_PORT3),(ADI_GPIO_PIN_12));};break;
				case 13:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT3),(ADI_GPIO_PIN_13));}else{adi_gpio_SetLow((ADI_GPIO_PORT3),(ADI_GPIO_PIN_13));};break;
				case 14:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT3),(ADI_GPIO_PIN_14));}else{adi_gpio_SetLow((ADI_GPIO_PORT3),(ADI_GPIO_PIN_14));};break;
				case 15:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT3),(ADI_GPIO_PIN_15));}else{adi_gpio_SetLow((ADI_GPIO_PORT3),(ADI_GPIO_PIN_15));};break;
				default:pin=0;break;
			}
		}break;
		
		default:port=0;break;
	}	
}

void GPIO_BUS_OUT(unsigned int port,unsigned int num)  //num最大为0xffff
{
	int i;
	for(i=0;i<16;i++)
	{
		GPIO_OUT(port,i,(num>>i)&0x0001);
	}
}


void P0_BUS_O(unsigned int num)  //输入值num最大为0xFFFF
{
	int i;
	for(i=0;i<16;i++)
	{
		P0_O(i)=(num>>i)&0x0001;
	}
}
unsigned int P0_BUS_I(void)  //输出值num最大为0xFFFF
{
	unsigned int num;
	int i;
	for(i=0;i<16;i++)
	{
		num=num+(P0_I(i)<<i)&0xFFFF;
	}
	return num;
}

void P1_BUS_O(unsigned int num)  //输入值num最大为0xFFFF
{
	int i;
	for(i=0;i<16;i++)
	{
		P1_O(i)=(num>>i)&0x0001;
	}
}
unsigned int P1_BUS_I(void)  //输出值num最大为0xFFFF
{
	unsigned int num;
	int i;
	for(i=0;i<16;i++)
	{
		num=num+(P1_I(i)<<i)&0xFFFF;
	}
	return num;
}

void P2_BUS_O(unsigned int num)  //输入值num最大为0xFFFF
{
	int i;
	for(i=0;i<16;i++)
	{
		P2_O(i)=(num>>i)&0x0001;
	}
}
unsigned int P2_BUS_I(void)  //输出值num最大为0xFFFF
{
	unsigned int num;
	int i;
	for(i=0;i<16;i++)
	{
		num=num+(P2_I(i)<<i)&0xFFFF;
	}
	return num;
}

void P3_BUS_O(unsigned int num)  //输入值num最大为0xFFFF
{
	int i;
	for(i=0;i<16;i++)
	{
		P3_O(i)=(num>>i)&0x0001;
	}
}
unsigned int P3_BUS_I(void)  //输出值num最大为0xFFFF
{
	unsigned int num;
	int i;
	for(i=0;i<16;i++)
	{
		num=num+(P3_I(i)<<i)&0xFFFF;
	}
	return num;
}

一、位带操作理论及实践

位带操作的概念其实30年前就有了,那还是 CM3 将此能力进化,这里的位带操作是 8051 位寻址区的威力大幅加强版

位带区: 支持位带操作的地址区

位带别名: 对别名地址的访问最终作 用到位带区的访问上(注意:这中途有一个 地址映射过程)

位带操作对于硬件 I/O 密集型的底层程序最有用处

支持了位带操作后,可以使用普通的加载/存储指令来对单一的比特进行读写。在CM4中,有两个区中实现了位带。其中一个是SRAM区的最低1MB范围,第二个则是片内外设区的最低1MB范围。这两个区中的地址除了可以像普通的RAM一样使用外,它们还都有自己的“位带别名区”,位带别名区把每个比特膨胀成一个32位的字。当你通过位带别名区访问这些字时,就可以达到访问原始比特的目的。

位操作就是可以单独的对一个比特位读和写,类似与51中sbit定义的变量,stm32中通过访问位带别名区来实现位操作的功能
STM32中有两个地方实现了位带,一个是SRAM,一个是片上外设。
在这里插入图片描述
(1)位带本质上是一块地址区(例如每一位地址位对应一个寄存器)映射到另一片地址区(实现每一位地址位对应一个寄存器中的一位),该区域就叫做位带别名区,将每一位膨胀成一个32位的字。
(2)位带区的4个字节对应实际寄存器或内存区的一个位,虽然变大到4个字节,但实际上只有最低位有效(代表0或1)

只有位带可以直接用=赋值的方式来操作寄存器 位带是把寄存器上的每一位 膨胀到32位 映射到位带区 比如0x4002 0000地址的第0个bit 映射到位带区的0地址 那么其对应的位带映射地址为0x00 - 0x04 一共32位 但只有LSB有效 采用位带的方式用=赋值时 就是把位带区对应的LSB赋值 然后MCU再转到寄存器对应的位里面 寄存器操作时 如果不改变其他位上面的值 那就只能通过&=或者|=的方式进行

在这里插入图片描述

要设置0x2000 0000这个字节的第二个位bit2为1,使用位带操作的步骤有:
1、将1写入位 带别名区对应的映射地址(即0x22000008,因为1bit对应4个byte);
2、将0x2000 0000的值 读取到内部的缓冲区(这一步骤是内核完成的,属于原子操作,不需要用户操作);
3、将bit2置1,再把值写 回到0x2000 0000(属于原子操作,不需要用户操作)。

关于GPIO引脚对应的访问地址,可以参考以下公式
寄存器位带别名 = 0x42000000 + (寄存器的地址-0x40000000)32 + 引脚编号4

如:端口F访问的起始地址GPIOF_BASE

#define GPIOF ((GPIO_TypeDef *)GPIOF_BASE)

在这里插入图片描述

但好在官方库里面都帮我们定义好了 只需要在BASE地址加上便宜即可

例如:

GPIOF的ODR寄存器的地址 = GPIOF_BASE + 0x14

寄存器位带别名 = 0x42000000 + (寄存器的地址-0x40000000)32 + 引脚编号4

设置PF9引脚的话:

uint32_t *PF9_BitBand =
*(uint32_t *)(0x42000000 + ((uint32_t )&GPIOF->ODR– 0x40000000) *32 + 9*4)

封装一下:

#define PFout(x) *(volatile uint32_t *)(0x42000000 + ((uint32_t )&GPIOF->ODR – 0x40000000) *32 + x*4)

现在 可以把通用部分封装成一个小定义:

#define BITBAND(addr, bitnum) ((addr & 0xF0000000)+0x2000000+((addr &0xFFFFF)<<5)+(bitnum<<2)) 
#define MEM_ADDR(addr)  *((volatile unsigned long  *)(addr)) 
#define BIT_ADDR(addr, bitnum)   MEM_ADDR(BITBAND(addr, bitnum))

那么 设置PF引脚的函数可以定义:

#define GPIOF_ODR_Addr    (GPIOF_BASE+20) //0x40021414   
#define GPIOF_IDR_Addr    (GPIOF_BASE+16) //0x40021410 

#define PF_O(n)   	BIT_ADDR(GPIOF_ODR_Addr,n)  //输出 
#define PF_I(n)    	BIT_ADDR(GPIOF_IDR_Addr,n)  //输入

若使PF9输入输出则:

PF_O(9)=1;  //输出高电平
uint8_t dat = PF_I(9);  //获取PF9引脚的值

总线输入输出:

void PF_BUS_O(unsigned int num)  //输入值num最大为0xFFFF
{
	int i;
	for(i=0;i<16;i++)
	{
		PF_O(i)=(num>>i)&0x0001;
	}
}
unsigned int PF_BUS_I(void)  //输出值num最大为0xFFFF
{
	unsigned int num;
	int i;
	for(i=0;i<16;i++)
	{
		num=num+(PF_I(i)<<i)&0xFFFF;
	}
	return num;
}

STM32的可用下面的函数:

#ifndef __GPIO_H__
#define __GPIO_H__
#include "stm32l496xx.h"

#define BITBAND(addr, bitnum) ((addr & 0xF0000000)+0x2000000+((addr &0xFFFFF)<<5)+(bitnum<<2)) 
#define MEM_ADDR(addr)  *((volatile unsigned long  *)(addr)) 
#define BIT_ADDR(addr, bitnum)   MEM_ADDR(BITBAND(addr, bitnum))

#define GPIOA_ODR_Addr    (GPIOA_BASE+20) //0x40020014
#define GPIOB_ODR_Addr    (GPIOB_BASE+20) //0x40020414 
#define GPIOC_ODR_Addr    (GPIOC_BASE+20) //0x40020814 
#define GPIOD_ODR_Addr    (GPIOD_BASE+20) //0x40020C14 
#define GPIOE_ODR_Addr    (GPIOE_BASE+20) //0x40021014 
#define GPIOF_ODR_Addr    (GPIOF_BASE+20) //0x40021414    
#define GPIOG_ODR_Addr    (GPIOG_BASE+20) //0x40021814   
#define GPIOH_ODR_Addr    (GPIOH_BASE+20) //0x40021C14    
#define GPIOI_ODR_Addr    (GPIOI_BASE+20) //0x40022014     

#define GPIOA_IDR_Addr    (GPIOA_BASE+16) //0x40020010 
#define GPIOB_IDR_Addr    (GPIOB_BASE+16) //0x40020410 
#define GPIOC_IDR_Addr    (GPIOC_BASE+16) //0x40020810 
#define GPIOD_IDR_Addr    (GPIOD_BASE+16) //0x40020C10 
#define GPIOE_IDR_Addr    (GPIOE_BASE+16) //0x40021010 
#define GPIOF_IDR_Addr    (GPIOF_BASE+16) //0x40021410 
#define GPIOG_IDR_Addr    (GPIOG_BASE+16) //0x40021810 
#define GPIOH_IDR_Addr    (GPIOH_BASE+16) //0x40021C10 
#define GPIOI_IDR_Addr    (GPIOI_BASE+16) //0x40022010 
 
#define PA_O(n)   	BIT_ADDR(GPIOA_ODR_Addr,n)  //输出 
#define PA_I(n)    	BIT_ADDR(GPIOA_IDR_Addr,n)  //输入 

#define PB_O(n)   	BIT_ADDR(GPIOB_ODR_Addr,n)  //输出 
#define PB_I(n)    	BIT_ADDR(GPIOB_IDR_Addr,n)  //输入 

#define PC_O(n)   	BIT_ADDR(GPIOC_ODR_Addr,n)  //输出 
#define PC_I(n)    	BIT_ADDR(GPIOC_IDR_Addr,n)  //输入 

#define PD_O(n)   	BIT_ADDR(GPIOD_ODR_Addr,n)  //输出 
#define PD_I(n)    	BIT_ADDR(GPIOD_IDR_Addr,n)  //输入 

#define PE_O(n)   	BIT_ADDR(GPIOE_ODR_Addr,n)  //输出 
#define PE_I(n)    	BIT_ADDR(GPIOE_IDR_Addr,n)  //输入

#define PF_O(n)   	BIT_ADDR(GPIOF_ODR_Addr,n)  //输出 
#define PF_I(n)    	BIT_ADDR(GPIOF_IDR_Addr,n)  //输入

#define PG_O(n)   	BIT_ADDR(GPIOG_ODR_Addr,n)  //输出 
#define PG_I(n)    	BIT_ADDR(GPIOG_IDR_Addr,n)  //输入

#define PH_O(n)   	BIT_ADDR(GPIOH_ODR_Addr,n)  //输出 
#define PH_I(n)    	BIT_ADDR(GPIOH_IDR_Addr,n)  //输入

#define PI_O(n)			BIT_ADDR(GPIOI_ODR_Addr,n)  //输出 
#define PI_I(n)   	BIT_ADDR(GPIOI_IDR_Addr,n)  //输入

void PA_BUS_O(unsigned int num);
unsigned int PA_BUS_I(void);

void PB_BUS_O(unsigned int num);
unsigned int PB_BUS_I(void);

void PC_BUS_O(unsigned int num);
unsigned int PC_BUS_I(void);

void PD_BUS_O(unsigned int num);
unsigned int PD_BUS_I(void);

void PE_BUS_O(unsigned int num);
unsigned int PE_BUS_I(void);

void PF_BUS_O(unsigned int num);
unsigned int PF_BUS_I(void);

void PG_BUS_O(unsigned int num);
unsigned int PG_BUS_I(void);

void PH_BUS_O(unsigned int num);
unsigned int PH_BUS_I(void);

void PI_BUS_O(unsigned int num);
unsigned int PI_BUS_I(void);

#endif

#include "GPIO.h"

void PA_BUS_O(unsigned int num)  //输入值num最大为0xFFFF
{
	int i;
	for(i=0;i<16;i++)
	{
		PA_O(i)=(num>>i)&0x0001;
	}
}
unsigned int PA_BUS_I(void)  //输出值num最大为0xFFFF
{
	unsigned int num;
	int i;
	for(i=0;i<16;i++)
	{
		num=num+(PA_I(i)<<i)&0xFFFF;
	}
	return num;
}

void PB_BUS_O(unsigned int num)  //输入值num最大为0xFFFF
{
	int i;
	for(i=0;i<16;i++)
	{
		PB_O(i)=(num>>i)&0x0001;
	}
}
unsigned int PB_BUS_I(void)  //输出值num最大为0xFFFF
{
	unsigned int num;
	int i;
	for(i=0;i<16;i++)
	{
		num=num+(PB_I(i)<<i)&0xFFFF;
	}
	return num;
}

void PC_BUS_O(unsigned int num)  //输入值num最大为0xFFFF
{
	int i;
	for(i=0;i<16;i++)
	{
		PC_O(i)=(num>>i)&0x0001;
	}
}
unsigned int PC_BUS_I(void)  //输出值num最大为0xFFFF
{
	unsigned int num;
	int i;
	for(i=0;i<16;i++)
	{
		num=num+(PC_I(i)<<i)&0xFFFF;
	}
	return num;
}

void PD_BUS_O(unsigned int num)  //输入值num最大为0xFFFF
{
	int i;
	for(i=0;i<16;i++)
	{
		PD_O(i)=(num>>i)&0x0001;
	}
}
unsigned int PD_BUS_I(void)  //输出值num最大为0xFFFF
{
	unsigned int num;
	int i;
	for(i=0;i<16;i++)
	{
		num=num+(PD_I(i)<<i)&0xFFFF;
	}
	return num;
}

void PE_BUS_O(unsigned int num)  //输入值num最大为0xFFFF
{
	int i;
	for(i=0;i<16;i++)
	{
		PE_O(i)=(num>>i)&0x0001;
	}
}
unsigned int PE_BUS_I(void)  //输出值num最大为0xFFFF
{
	unsigned int num;
	int i;
	for(i=0;i<16;i++)
	{
		num=num+(PE_I(i)<<i)&0xFFFF;
	}
	return num;
}

void PF_BUS_O(unsigned int num)  //输入值num最大为0xFFFF
{
	int i;
	for(i=0;i<16;i++)
	{
		PF_O(i)=(num>>i)&0x0001;
	}
}
unsigned int PF_BUS_I(void)  //输出值num最大为0xFFFF
{
	unsigned int num;
	int i;
	for(i=0;i<16;i++)
	{
		num=num+(PF_I(i)<<i)&0xFFFF;
	}
	return num;
}

void PG_BUS_O(unsigned int num)  //输入值num最大为0xFFFF
{
	int i;
	for(i=0;i<16;i++)
	{
		PG_O(i)=(num>>i)&0x0001;
	}
}
unsigned int PG_BUS_I(void)  //输出值num最大为0xFFFF
{
	unsigned int num;
	int i;
	for(i=0;i<16;i++)
	{
		num=num+(PG_I(i)<<i)&0xFFFF;
	}
	return num;
}

void PH_BUS_O(unsigned int num)  //输入值num最大为0xFFFF
{
	int i;
	for(i=0;i<16;i++)
	{
		PH_O(i)=(num>>i)&0x0001;
	}
}
unsigned int PH_BUS_I(void)  //输出值num最大为0xFFFF
{
	unsigned int num;
	int i;
	for(i=0;i<16;i++)
	{
		num=num+(PH_I(i)<<i)&0xFFFF;
	}
	return num;
}

void PI_BUS_O(unsigned int num)  //输入值num最大为0xFFFF
{
	int i;
	for(i=0;i<16;i++)
	{
		PI_O(i)=(num>>i)&0x0001;
	}
}
unsigned int PI_BUS_I(void)  //输出值num最大为0xFFFF
{
	unsigned int num;
	int i;
	for(i=0;i<16;i++)
	{
		num=num+(PI_I(i)<<i)&0xFFFF;
	}
	return num;
}

二、如何判断MCU的外设是否支持位带

根据《ARM Cortex-M3与Cortex-M4权威指南(第3版)》中第6章第7节描述
在这里插入图片描述
也就是说 要实现对GPIO的位带操作 必须保证GPIO位于外设区域的第一个1MB中
第一个1MB应该是0x4010 0000之前 位带不是直接操作地址 而是操作地址映射 地址映射被操作以后 MCU自动会修改对应寄存器的值

位带区只有1MB 所以只能改0x4000 0000 - 0x400F FFFF的寄存器
像F4系列 GPIO的首地址为0x4002 0000 就可以用位带来更改

STM32L476的GPIO就不行:
在这里插入图片描述
AHB2的都不能用位带
ABP 还有AHB1都可以用
在这里插入图片描述
但是L476的寄存器里面 GPIO和ADC都是AHB2

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1039123.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【广州华锐互动】VR智能内容中控平台有什么作用?

随着科技的发展&#xff0c;教育方式也在不断地进行创新。广州华锐互动开发的VR智能内容中控平台&#xff0c;为教育带来了新的可能性。它不仅可以帮助教师更好地控制和管理虚拟现实教学环境&#xff0c;还可以让学生在虚拟环境中进行互动学习&#xff0c;提高他们的学习效果。…

C#中实现定时器Timer定时判断IP是否ping通(连通)和端口号是否telnet可达(可用)

场景 Winform中使用HttpClient(设置最大超时响应时间)调用接口并做业务处理时界面卡住&#xff0c;使用async Task await异步任务编程优化&#xff1a; Winform中使用HttpClient(设置最大超时响应时间)调用接口并做业务处理时界面卡住&#xff0c;使用async Task await异步任…

做个网页火了,结果一天欠下8000元!

大家好&#xff0c;我是鱼皮。 事情是这样的&#xff0c;昨天我在 B 站某个视频的评论区下被 了&#xff1a; 我内心&#xff1a;熟悉&#xff1f;什么熟悉&#xff1f;我以为又是朋友开玩笑说哪个动物和我长得很像来着。 结果点进去一看&#xff0c;标题就直接 “震惊” 到…

【Vue】深究计算和侦听属性的原理

hello&#xff0c;我是小索奇&#xff0c;精心制作的Vue系列教程持续更新哈&#xff0c;涵盖大量的经验和示例&#xff0c;由浅入深进行讲解&#xff0c;想要学习&巩固&避坑就一起学习吧~ 计算和侦听属性 计算属性 重点概要 定义&#xff1a;要用的属性不存在&#…

3战略设计

产品代码都给你看了&#xff0c;可别再说不会DDD&#xff08;三&#xff09;&#xff1a;战略设计 # 这是一个讲解DDD落地的文章系列&#xff0c;作者是《实现领域驱动设计》的译者滕云。本文章系列以一个真实的并已成功上线的软件项目——码如云&#xff08;https://www.mryq…

产品经理认证(UCPM)备考心得

UCPM是联合国训练所CIFAL中心颁发的产品经理证书。如今&#xff0c;ESG是推动企业可持续发展的新潮流。UCPM作为一种可持续发展证书&#xff0c;为我们带来了一套先进科学、系统全面的产品管理模式&#xff0c;是产品管理领域公认的权威证书。那么&#xff0c;如何准备这张证书…

MySQL中explain各字段详解及举例

MySQL版本&#xff1a;8.0.33 建表语句&#xff1a; DROP TABLE IF EXISTS actor; CREATE TABLE actor (id int(11) NOT NULL,name varchar(45) DEFAULT NULL,update_time datetime DEFAULT NULL,PRIMARY KEY (id) ) ENGINEInnoDB DEFAULT CHARSETutf8;INSERT INTO actor (i…

AxureRP制作静态站点发布互联网,实现公网访问【内网穿透】

AxureRP制作静态站点发布互联网&#xff0c;内网穿透实现公网访问 文章目录 AxureRP制作静态站点发布互联网&#xff0c;内网穿透实现公网访问前言1.在AxureRP中生成HTML文件2.配置IIS服务3.添加防火墙安全策略4.使用cpolar内网穿透实现公网访问4.1 登录cpolar web ui管理界面4…

力扣-290.单词规律

Idea 先建立一个hashmap&#xff0c;记录s串中的每个单词以及对应的下标再建立一个hashmap&#xff0c;记录pattern串中相同字母以及对应的下标遍历pattern串时&#xff0c;遇到不同字母存到pat表中&#xff0c;同时将下标对应的s中的单词存入到查重test集中&#xff0c;因为如…

2023年8月京东洗烘套装行业品牌销售排行榜(京东数据开放平台)

鲸参谋监测的京东平台8月份洗烘套装市场销售数据已出炉&#xff01; 根据鲸参谋平台的数据显示&#xff0c;今年8月份&#xff0c;京东平台洗烘套装的销量为1.1万&#xff0c;同比增长约218%&#xff1b;销售额约为1.2亿&#xff0c;同比增长约279%。可以看到&#xff0c;洗烘…

零基础学前端(七)将HTML+CSS静态页面 发布成网站

我们学习了HTML和CSS&#xff0c;已经可以做出精美的静态网页。我们不慌学习JavaScript&#xff0c;因为Javascript的作用是为网页增加动作和数据交换&#xff0c;只能让网页更完美而已&#xff0c;现在网页的基础我们已经可以搭建&#xff0c;我们不妨先将网站发布出去&#x…

【C语言】——自定义类型详解:结构体,枚举,联合

大家好&#xff0c;今天为大家分享一下C语言中的那些自定义类型&#xff1a;结构体&#xff0c;枚举&#xff0c;联合&#xff0c;还有之前可能不曾了解的结构体内存对齐、位段等知识点&#xff01;&#xff01;&#xff01; 一、结构体 结构是一些值的集合&#xff0c;这些值称…

【C++】String类基本接口介绍(多看英文文档)

string目录 目录 如果你很赶时间&#xff0c;那么就直接看我本标题下的内容即可&#xff01;&#xff01; 一、STL简介 1.1什么是STL 1.2STL版本 1.3STL六大组件 1.4STL重要性 1.5如何学习STL 二、什么是string&#xff1f;&#xff1f;&#xff08;本质上是一个类&…

研究铜互连的规模能扩大到什么程度

随着领先的芯片制造商继续将finFET以及很快的纳米片晶体管缩小到越来越小的间距&#xff0c;使用铜及其衬垫和阻挡金属&#xff0c;较小的金属线将变得难以维持。接下来会发生什么以及何时发生&#xff0c;仍有待确定。 自从IBM在20世纪90年代向业界引入采用双镶嵌工艺的铜互连…

mysql四种事务隔离级别介绍

MySQL事务隔离级别定义了不同事务之间的隔离程度。MySQL标准列表了四个隔离级别&#xff0c;依次为读未提交&#xff08;READ UNCOMMITTED&#xff09;、读已提交&#xff08;READ COMMITTED&#xff09;、可重复读&#xff08;REPEATABLE READ&#xff09;和串行化&#xff08…

会务转化如何取得“数字化”突破?会务营销数字化功能推荐

​数字化时代下&#xff0c;企业日常的活动经营已经不再局限于简单的人员聚集和互动交流&#xff0c;而是需要更为标准化、专业化的会务系统&#xff0c;在对会务活动进行支撑和保障的同时&#xff0c;达成会务营销的更高转化和会务价值的更大输送。因此&#xff0c;企业需要选…

深度学习入门-0-简介与学习路线

一、简介 1.概述 深度学习(DL, Deep Learning)是机器学习(ML, Machine Learning)领域中的一个研究方向&#xff0c;它被引入机器学习使其更接近于最初的目标——人工智能(AI, Artificial Intelligence)。 深度学习是学习样本数据的内在规律和表示层次&#xff0c;这些学习过程…

选择文件:文件选择框的代码触发【极易版】【文件上传功能】

最近业务中遇到添加附件功能&#xff0c;点击对应元素&#xff0c;在特定条件下触发文件选择&#xff0c;然后将选中的文件上传到后台。 文件上传是使用阿里云实现的&#xff0c;这里主要说文件选择功能。也就是怎样添加附件到界面上。 一 简单实现——点击按钮触发图片选择框…

【linux】实现shell

自我名言&#xff1a;只有努力&#xff0c;才能追逐梦想&#xff0c;只有努力&#xff0c;才不会欺骗自己。 喜欢的点赞&#xff0c;收藏&#xff0c;关注一下把&#xff01; 如果发现内容有不对的地方欢迎在评论区批评指正&#xff0c;这是对我最大的鼓励&#xff01;&#xf…

对于现代互联网企业来说Python数据分析有什么用?

我们每一个人&#xff0c;每天无时无刻都在生产数据&#xff0c;一分钟内&#xff0c;微博上新发的数据量超过10万&#xff0c;b站的视频播放量超过600万……这些庞大的数字&#xff0c;意味着什么&#xff1f;意味着每天需要大量的人员要对这些数据进行分析&#xff0c;筛选有…