【C语言】——自定义类型详解:结构体,枚举,联合

news2024/11/20 14:20:06

大家好,今天为大家分享一下C语言中的那些自定义类型:结构体,枚举,联合,还有之前可能不曾了解的结构体内存对齐、位段等知识点!!!

一、结构体

结构是一些值的集合,这些值称为成员变量。结构的每个成员可以是不同类型的变量。

结构的声明 : 例如描述一个学生:

struct Stu
{
 char name[20];//名字
 int age;//年龄
 char sex[5];//性别
 char id[20];//学号
}; //分号不能丢

这就成功定义了一个学生的结构体类型

特殊的结构的声明:
在声明结构的时候,可以不完全的声明。

//匿名结构体类型:结构在声明的时候省略掉了结构体标签
struct
{
 int a;
 char b;
 float c;
}x;
struct
{
 int a;
 char b;
 float c;
}a[20], *p;

注意://在上面代码的基础上,下面的代码合法吗?
p = &x;
编译器会把上面的两个声明当成完全不同的两个类型。
所以是非法的。

结构的自引用

//正确的自引用
struct Node
{
 int data;
 struct Node* next;
};
//错误的自引用,促使无法确定结构体的大小
struct Node
{
 int data;
 struct Node next;
};

解决方案:

typedef struct Node
{
 int data;
 struct Node* next;
}Node;

结构体变量的定义和初始化

有了结构体类型,那如何定义变量,其实很简单

struct Point
{
 int x;
 int y;
}p1; //声明类型的同时定义变量p1
struct Point p2; //定义结构体变量p2
//初始化:定义变量的同时赋初值。
struct Point p3 = {x, y};
struct Stu        //类型声明
{
 char name[15];//名字
 int age;      //年龄
};
struct Stu s = {"zhangsan", 20};//初始化
struct Node
{
 int data;
 struct Point p;
 struct Node* next; 
}n1 = {10, {4,5}, NULL}; //结构体嵌套初始化
struct Node n2 = {20, {5, 6}, NULL};//结构体嵌套初始化

结构体内存对齐:
我们已经掌握了结构体的基本使用了。
现在我们深入讨论一个问题:计算结构体的大小。
这也是一个特别热门的知识点: 结构体内存对齐

大家先看一下下面的代码,大家第一感觉整个结构体的大小的多少呢?

struct S1
{
 char c1;
 int i;
 char c2;
};

在这里插入图片描述

两个字符加一个整型不应该是6个字节大小嘛,怎么运行出来是12,这是什么情况呢?这里就需要我们了解学习结构体内存对齐的知识了!

我们先开结构体的内存对齐规则:

  1. 第一个成员在与结构体变量偏移量为0的地址处。
  2. 其他成员变量要对齐到某个数字(对齐数)的整数倍的地址处。
    对齐数 = 编译器默认的一个对齐数 与 该成员大小的较小值。
    VS中默认的值为8
  3. 结构体总大小为最大对齐数(每个成员变量都有一个对齐数)的整数倍。
  4. 如果嵌套了结构体的情况,嵌套的结构体对齐到自己的最大对齐数的整数倍处,结构体的整
    体大小就是所有最大对齐数(含嵌套结构体的对齐数)的整数倍。

在这里插入图片描述
看来这张图片后我们应该就可以大概明白结构体内存对齐是怎么回事了,也可以明白他的大小为什么是12了!

下面我们看看嵌套结构体大小问题:

struct S4
{
 char c1;
 struct S1 s1;
 double d;
};
printf("%d\n", sizeof(struct S4));

在这里插入图片描述

我们看看分析:
在这里插入图片描述
至于为什么会存在结构体内存对齐呢:

大部分的参考资料都是如是说的:

  1. 平台原因(移植原因):
    不是所有的硬件平台都能访问任意地址上的任意数据的;某些硬件平台只能在某些地址处取某些特
    定类型的数据,否则抛出硬件异常。
  1. 性能原因:
    数据结构(尤其是栈)应该尽可能地在自然边界上对齐。
    原因在于,为了访问未对齐的内存,处理器需要作两次内存访问;而对齐的内存访问仅需要一次访
    问。

那在设计结构体的时候,我们既要满足对齐,又要节省空间,应该做到:
让占用空间小的成员尽量集中在一起

在上面的内存对齐里面问题提到了默认对齐数,他是可以修改的!

我们见过了 #pragma 这个预处理指令,这里我们再次使用,可以改变我们的默认对齐数。

#include <stdio.h>

#pragma pack(1)//设置默认对齐数为8
struct S2
{
	char c1;
	int i;
	char c2;
};
#pragma pack()//取消设置的默认对齐数,还原为默认
//在这个区间里面默认对齐数就是1啦

二、位段

结构体讲完就得讲讲结构体实现 位段 的能力。
什么是位段
位段的声明和结构是类似的,有两个不同:
1.位段的成员必须是 int、unsigned int 或signed int 。
2.位段的成员名后边有一个冒号和一个数字。

下面就是位段的定义

struct A
{
 int _a:2;//_a占2个比特位
 int _b:5;
 int _c:10;
 int _d:30;
};

A就是一个位段类型。
那位段A的大小是多少?冒号后面的为对应变量所占的bit位
在这里插入图片描述

位段的内存分配:

  1. 位段的成员可以是 int unsigned int signed int 或者是 char (属于整形家族)类型
  2. 位段的空间上是按照需要以4个字节( int )或者1个字节( char )的方式来开辟的。
  3. 位段涉及很多不确定因素,位段是不跨平台的,注重可移植的程序应该避免使用位段。
struct S
{
 char a:3;
 char b:4;
 char c:5;
 char d:4;
};
int main()
{struct S s = {0};
s.a = 10;
s.b = 12;
s.c = 3;
s.d = 4;}


在这里插入图片描述

位段的跨平台问题

1. int 位段被当成有符号数还是无符号数是不确定的。
2. 位段中最大位的数目不能确定。(16位机器最大16,32位机器最大32,写成27,在16位机
器会出问题。
3. 位段中的成员在内存中从左向右分配,还是从右向左分配标准尚未定义。
4. 当一个结构包含两个位段,第二个位段成员比较大,无法容纳于第一个位段剩余的位时,是
舍弃剩余的位还是利用,这是不确定的。

位段在发送数据时对数据进行包装时有一定应用:
在这里插入图片描述
三、枚举

枚举顾名思义就是一一列举。
把可能的取值一一列举。
比如我们现实生活中:
一周的星期一到星期日是有限的7天,可以一一列举。
性别有:男、女、保密,也可以一一列举 等

enum Day//星期
{
 Mon,
 Tues,
 Wed,
 Thur,
 Fri,
 Sat,
 Sun
};


enum Color//颜色
{
 RED,
 GREEN,
 BLUE
};

以上定义的 enum Day , enum Color 都是枚举类型。 {}中的内容是枚举类型的可能取值,也叫 枚举常量(不能修改) 。
这些可能取值都是有值的,默认从0开始,一次递增1。
在这里插入图片描述
当然在定义的时候也可以赋初值。 例如

enum Color//颜色
{
 RED=1,
 GREEN=2,
 BLUE=4
};

既然能够有枚举类型,那肯定是有他自己的优点的:

增加代码的可读性和可维护性
和#define定义的标识符比较枚举有类型检查,更加严谨。
防止了命名污染(封装)
便于调试
使用方便,一次可以定义多个常量

枚举的使用:

enum Color//颜色
{
	RED=1 ,
	GREEN = 2,
	BLUE = 4
};
int main()
{
	//printf("%d\n", sizeof(union Un1));
	enum Color col=RED ;//只能拿枚举常量给枚举变量赋值,才不会出现类型的差异,枚举常量实质就是整型。
	col = 3.8;
	printf("%d", col);
}

四、联合(共用)体

联合的成员是共用同一块内存空间的,这样一个联合变量的大小,至少是最大成员的大小(因为联合至少得有能力保存最大的那个成员)。

union Un
{
	int i;
	char c;
};
union Un un;

int main()
{
	printf("%p\n", &(un.i));
	printf("%p\n", &(un.c));
	un.i = 0x11223344;
	un.c = 0x55;
	printf("%x\n", un.i);
}

在这里插入图片描述

联合大小的计算

联合的大小至少是最大成员的大小。
当最大成员大小不是最大对齐数的整数倍的时候,就要对齐到最大对齐数的整数倍。

union Un1
{
	char c[5];
	int i;
};
int main()
{
	printf("%d\n", sizeof(union Un1));
	
}


在这里插入图片描述

分析:联合体大小首先是最大成员的大小,c[5]占5个字节,数组c[]每个元素大小为1,和vs默认对齐数是8,则他的对齐数是1,,i占4个字节,和vs默认对齐数是8,则他的对齐数是4,则最大对齐数是4,则联合体的大小对齐到4的整数倍后为8

联合体的应用:

在这里插入图片描述
在定义有多个物品的一个结构体时,可以将不同物品特意的性质定义成联合体类型,这样在很大程度上节省了空间!!!

今天的内容就分享到这里了,希望对大家有所帮助,大家一起进步!!!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1039101.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【C++】String类基本接口介绍(多看英文文档)

string目录 目录 如果你很赶时间&#xff0c;那么就直接看我本标题下的内容即可&#xff01;&#xff01; 一、STL简介 1.1什么是STL 1.2STL版本 1.3STL六大组件 1.4STL重要性 1.5如何学习STL 二、什么是string&#xff1f;&#xff1f;&#xff08;本质上是一个类&…

研究铜互连的规模能扩大到什么程度

随着领先的芯片制造商继续将finFET以及很快的纳米片晶体管缩小到越来越小的间距&#xff0c;使用铜及其衬垫和阻挡金属&#xff0c;较小的金属线将变得难以维持。接下来会发生什么以及何时发生&#xff0c;仍有待确定。 自从IBM在20世纪90年代向业界引入采用双镶嵌工艺的铜互连…

mysql四种事务隔离级别介绍

MySQL事务隔离级别定义了不同事务之间的隔离程度。MySQL标准列表了四个隔离级别&#xff0c;依次为读未提交&#xff08;READ UNCOMMITTED&#xff09;、读已提交&#xff08;READ COMMITTED&#xff09;、可重复读&#xff08;REPEATABLE READ&#xff09;和串行化&#xff08…

会务转化如何取得“数字化”突破?会务营销数字化功能推荐

​数字化时代下&#xff0c;企业日常的活动经营已经不再局限于简单的人员聚集和互动交流&#xff0c;而是需要更为标准化、专业化的会务系统&#xff0c;在对会务活动进行支撑和保障的同时&#xff0c;达成会务营销的更高转化和会务价值的更大输送。因此&#xff0c;企业需要选…

深度学习入门-0-简介与学习路线

一、简介 1.概述 深度学习(DL, Deep Learning)是机器学习(ML, Machine Learning)领域中的一个研究方向&#xff0c;它被引入机器学习使其更接近于最初的目标——人工智能(AI, Artificial Intelligence)。 深度学习是学习样本数据的内在规律和表示层次&#xff0c;这些学习过程…

选择文件:文件选择框的代码触发【极易版】【文件上传功能】

最近业务中遇到添加附件功能&#xff0c;点击对应元素&#xff0c;在特定条件下触发文件选择&#xff0c;然后将选中的文件上传到后台。 文件上传是使用阿里云实现的&#xff0c;这里主要说文件选择功能。也就是怎样添加附件到界面上。 一 简单实现——点击按钮触发图片选择框…

【linux】实现shell

自我名言&#xff1a;只有努力&#xff0c;才能追逐梦想&#xff0c;只有努力&#xff0c;才不会欺骗自己。 喜欢的点赞&#xff0c;收藏&#xff0c;关注一下把&#xff01; 如果发现内容有不对的地方欢迎在评论区批评指正&#xff0c;这是对我最大的鼓励&#xff01;&#xf…

对于现代互联网企业来说Python数据分析有什么用?

我们每一个人&#xff0c;每天无时无刻都在生产数据&#xff0c;一分钟内&#xff0c;微博上新发的数据量超过10万&#xff0c;b站的视频播放量超过600万……这些庞大的数字&#xff0c;意味着什么&#xff1f;意味着每天需要大量的人员要对这些数据进行分析&#xff0c;筛选有…

ssm+vue的教室信息管理系统(有报告)。Javaee项目,ssm vue前后端分离项目。

演示视频&#xff1a; ssmvue的教室信息管理系统&#xff08;有报告&#xff09;。Javaee项目&#xff0c;ssm vue前后端分离项目。 项目介绍&#xff1a; 采用M&#xff08;model&#xff09;V&#xff08;view&#xff09;C&#xff08;controller&#xff09;三层体系结构&…

OpenHarmony应用开发涉及的主要因素与UX设计规范

一、OpenHarmony应用开发涉及的主要因素 二、OpenHarmony应用开发UX设计规范 UX设计规范的主要内容与部分图标示例 2.OpenHarmony应用设计原则 设计原则&#xff0c;当为多种不同的设备开发应用时&#xff0c;有如下设计原则&#xff1a; 差异性&#xff0c;充分了解所要支…

LinearLayout里子view点击,其他空白间隙处禁止点击

LinearLayout里子view点击&#xff0c;其他空白间隙处禁止点击 经过不断摸索终于实现了。 像头条里黄色区域禁止点击实现。 可以通过在父 LinearLayout 上设置 android:clickable"true" 属性来实现&#xff0c;然后在子 View 上设置 android:clickable"false&…

1688-阿里巴巴批发网(获取商品的名称,价格,图片)

1688 item_get-获得1688商品详情 为了进行电商平台 的API开发&#xff0c;首先我们需要做下面几件事情。 1&#xff09;开发者注册一个账号 2&#xff09;然后为每个1688 应用注册一个应用程序键&#xff08;App Key) 。 3&#xff09;下载1688 API的SDK并掌握基本的API基础…

红海云签约中材叶片,科技引领风电叶片行业人力资源数字化转型

中材科技风电叶片股份有限公司&#xff08;以下简称“中材叶片”&#xff09;隶属于世界500强央企集团——中国建材集团&#xff0c;是专业的风电叶片设计、研发、制造和服务提供商&#xff0c;致力于打造最为客户尊重与员工、股东信赖的具有全球竞争力的世界一流风电叶片企业。…

Spring Cloud阿里的nacos注册中心的使用 Feign远程调用 nacos配置中心的简单使用

原文档 注册中心 https://github.com/alibaba/spring-cloud-alibaba/blob/2022.x/spring-cloud-alibaba-examples/nacos-example/nacos-discovery-example/readme-zh.md 配置中心 https://github.com/alibaba/spring-cloud-alibaba/blob/2022.x/spring-cloud-alibaba-example…

XSAN数据恢复-XSAN迁移数据过程中误格式化存储系统的数据恢复案例

XSAN数据恢复环境&#xff1a; 昆腾存储&#xff0c;MAC OS操作系统&#xff0c;划分了9个数据卷&#xff08;1个META信息卷&#xff0c;8个DATA信息卷&#xff09;&#xff0c;存放视频类数据&#xff0c;MXF、MOV等格式文件。 XSAN故障&分析&#xff1a; 将存储空间从XS…

力扣337.打家劫舍3(树形dp)

题目描述&#xff1a; 小偷又发现了一个新的可行窃的地区。这个地区只有一个入口&#xff0c;我们称之为 root 。 除了 root 之外&#xff0c;每栋房子有且只有一个“父“房子与之相连。一番侦察之后&#xff0c;聪明的小偷意识到“这个地方的所有房屋的排列类似于一棵二叉树…

Sip双按键对讲终端 医护对讲终端

Sip双按键对讲终端 医护对讲终端 1、前言 SIP对讲终端SIP-6002D双按键是一款采用了ARMDSP架构&#xff1b;配置了麦克风输入和扬声器输出&#xff0c;SIP-6002D带两路寻呼按键&#xff0c;可实现SIP对讲功能&#xff0c;作为SIP对讲的终端&#xff0c;主要用于银行调度对讲、部…

华为---STP协议简介(一)

生成树协议简介 什么是生成树协议 STP&#xff08;Spanning Tree Protocol&#xff09;是一种由交换机运行的、用来解决交换网络中环路问题的数据链路层协议。为提高网络可靠性&#xff0c;交换网络中通常会使用冗余链路&#xff0c;但是冗余链路会给交换网络带来环路风险&…

Coupang真的好做吗?韩国Coupang入驻流程——站斧浏览器

coupang真的好做吗&#xff1f; Coupang自开放全球注册以来&#xff0c;一直备受跨境电商各平台卖家的关注&#xff0c;那么作为一颗跨境电商的新星&#xff0c;真的值得做吗&#xff1f; 不到一年的关注度遭到如此众多的跨境卖家追捧的平台&#xff0c;火是有他的原因的&…

【C++】C++STL详解(四)—— vector的模拟实现

​ ​&#x1f4dd;个人主页&#xff1a;Sherry的成长之路 &#x1f3e0;学习社区&#xff1a;Sherry的成长之路&#xff08;个人社区&#xff09; &#x1f4d6;专栏链接&#xff1a;C学习 &#x1f3af;长路漫漫浩浩&#xff0c;万事皆有期待 【C】CSTL详解&#xff08;三&am…