基于监督学习的多模态MRI脑肿瘤分割,使用来自超体素的纹理特征(Matlab代码实现)

news2024/12/24 10:26:09

💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码、数据、文献


💥1 概述

由于各种肿瘤类型,在磁共振图像(MRI)中准确分割脑肿瘤是一项艰巨的任务。使用来自多模态MRI的信息和特征,包括结构MRI和来自扩散张量成像(DTI)的各向同性(p)和各向异性(q)分量,可以对大脑图像进行更准确的分析。方法:我们提出了一种新的基于3D超体素的学习方法,用于分割多模态MRI脑图像(常规MRI和DTI)中的肿瘤。超体素是使用多模态 MRI 数据集中的信息生成的。对于每个超体素,提取各种特征,包括文本描述符的直方图,使用一组具有不同大小和方向的Gabor滤波器计算,以及一阶强度统计特征。这些特征被输入到随机森林(RF)分类器中,将每个超体素分类为肿瘤核心,水肿或健康脑组织。结果:该方法在两个数据集上进行评估:1)我们的临床数据集:11张患者的多模态图像和2)BRATS 2013临床数据集:30张多模态图像。对于我们的临床数据集,使用多模态MRI检测肿瘤(包括肿瘤核心和水肿)的平均灵敏度为86%,平衡错误率(BER)为7%;而自动肿瘤分割与地面真相的骰子评分为 0.84。BRATS 2013数据集的相应结果分别为96%、2%和0.89。结论:该方法在脑肿瘤的分割中显示出有希望的结果。从多模态MRI图像中添加特征可以大大提高分割精度。该方法与所有肿瘤等级的专家描述非常匹配,从而提供了一种更快、更可重复的脑肿瘤检测和描述方法,以帮助患者管理。

📚2 运行结果

部分代码:

%% Save
% Save the supervoxel map volumes into MAT file
Output_Name = fullfile(Output_Path,['MRI_SLIC_Labels_Size',num2str(voxel_X),...
    'x',num2str(voxel_Y),'x',num2str(voxel_Z),'_Compactness_0',Cmpt,'_Case_',num2str(Case),'.mat']);
save (Output_Name,'SLIC_Labels_3D');

%% Show the output
Slice = round(size(I,3)/2);
Image_2D = I(:,:,Slice,1);
Label1 = Label(:,:,Slice,1);
k1 = unique(Label1);
Label2 = zeros(size(Image_2D));
BW = zeros(size(Image_2D));
BW = logical(BW);
for idx = 1:numel(k1) % 1:k
    c_k = k1(idx);
    L = zeros(size(Image_2D));
    L(Label1==c_k)=1;
    BW2 = L;
    BW_temp = edge(BW2);
    Label2 = Label2+double(BW2)*c_k;
    BW = BW|BW_temp;
end

for P = 1:numel(ProtocolList)
    Image_2D = I(:,:,Slice,P);
    BW_Color = repmat(Image_2D,1,1,3);
    BW_Color = uint8(BW_Color*255);
    for layer = 1:2
        tempLayer = BW_Color(:,:,layer);
        tempLayer(BW) = 255;
        BW_Color(:,:,layer) = tempLayer;
    end
    tempLayer = BW_Color(:,:,3);
    tempLayer(BW) = 0;
    BW_Color(:,:,3) = tempLayer;
    figure(P);
    subplot(1,2,1); imshow(Image_2D,[])
    title(['Original: ',ProtocolList{P}])
    subplot(1,2,2); imshow(BW_Color,[])
    title('SuperVoxel')
end

%% Save
% Save the supervoxel map volumes into MAT file
Output_Name = fullfile(Output_Path,['MRI_SLIC_Labels_Size',num2str(voxel_X),...
    'x',num2str(voxel_Y),'x',num2str(voxel_Z),'_Compactness_0',Cmpt,'_Case_',num2str(Case),'.mat']);
save (Output_Name,'SLIC_Labels_3D');

%% Show the output
Slice = round(size(I,3)/2);
Image_2D = I(:,:,Slice,1);
Label1 = Label(:,:,Slice,1);
k1 = unique(Label1);
Label2 = zeros(size(Image_2D));
BW = zeros(size(Image_2D));
BW = logical(BW);
for idx = 1:numel(k1) % 1:k
    c_k = k1(idx);
    L = zeros(size(Image_2D));
    L(Label1==c_k)=1;
    BW2 = L;
    BW_temp = edge(BW2);
    Label2 = Label2+double(BW2)*c_k;
    BW = BW|BW_temp;
end

for P = 1:numel(ProtocolList)
    Image_2D = I(:,:,Slice,P);
    BW_Color = repmat(Image_2D,1,1,3);
    BW_Color = uint8(BW_Color*255);
    for layer = 1:2
        tempLayer = BW_Color(:,:,layer);
        tempLayer(BW) = 255;
        BW_Color(:,:,layer) = tempLayer;
    end
    tempLayer = BW_Color(:,:,3);
    tempLayer(BW) = 0;
    BW_Color(:,:,3) = tempLayer;
    figure(P);
    subplot(1,2,1); imshow(Image_2D,[])
    title(['Original: ',ProtocolList{P}])
    subplot(1,2,2); imshow(BW_Color,[])
    title('SuperVoxel')
end

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

🌈4 Matlab代码、数据、文献

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1036355.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

1小时掌握Python操作Mysql数据库之pymysql模块技术

大家好,我是python222小锋老师。前段时间卷了一套 Python3零基础7天入门实战 近日锋哥又卷了一波课程,Python操作Mysql数据库的pymysql技术,文字版视频版。1小时掌握。 视频版教程 1小时掌握Python操作Mysql数据库之pymysql模块技术 文字版…

Remix 2.0 正式发布,现代化全栈Web框架!

9 月 16 日,全栈 Web 框架 Remix 正式发布了 2.0 版本,Remix 团队在发布 1.0 版本后经过近 2 年的持续努力,发布了 19 个次要版本、100 多个补丁版本,并解决了数千个问题和拉取请求,终于迎来了第二个主要版本&#xff…

【计算机毕业设计】基于SpringBoot+Vue记帐理财系统的设计与实现

博主主页:一季春秋博主简介:专注Java技术领域和毕业设计项目实战、Java、微信小程序、安卓等技术开发,远程调试部署、代码讲解、文档指导、ppt制作等技术指导。主要内容:毕业设计(Java项目、小程序、安卓等)、简历模板、学习资料、…

【红外图像增强】基于引力和侧向抑制网络的红外图像增强模型(Matlab代码实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥 🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️座右铭&a…

【Verilog教程】4.3Verilog 时序控制

关键词:时延控制,事件触发,边沿触发,电平触发 Verilog 提供了 2 大类时序控制方法:时延控制和事件控制。事件控制主要分为边沿触发事件控制与电平敏感事件控制。 时延控制 基于时延的时序控制出现在表达式中&#xff…

【ACDC数据集】:预处理ACDC心脏3D MRI影像数据集到VOC数据集格式,nii转为jpg,label转为png

【Segment Anything Model】做分割的专栏链接,欢迎来学习。 【博主微信】cvxiaoyixiao 本专栏为公开数据集的预处理,持续更新中。 文章目录 1️⃣ ACDC数据集介绍2️⃣ ACDC数据集样例 3️⃣ 预处理ACDC目标 4️⃣ 处理结果样图 5️⃣ 代码 6️⃣ 划分测…

【算法挨揍日记】day08——30. 串联所有单词的子串、76. 最小覆盖子串

30. 串联所有单词的子串 30. 串联所有单词的子串 题目描述: 给定一个字符串 s 和一个字符串数组 words。 words 中所有字符串 长度相同。 s 中的 串联子串 是指一个包含 words 中所有字符串以任意顺序排列连接起来的子串。 例如,如果 words ["…

SSM - Springboot - MyBatis-Plus 全栈体系(十一)

第二章 SpringFramework 五、Spring AOP 面向切面编程 6. Spring AOP 基于 XML 方式实现(了解) 6.1 准备工作 加入依赖和基于注解的 AOP 时一样。准备代码把测试基于注解功能时的 Java 类复制到新 module 中,去除所有注解。 6.2 配置 Sp…

SpringBoot项目(百度AI整合)——如何在Springboot中使用语音文件识别 ffmpeg的安装和使用

前言 前言:在实际使用中,经常要参考官方的案例,但有时候因为工具的不一样,比如idea 和 eclipse,普通项目和spring项目等的差别;还有时候因为水平有限,难以在散布于官方的各个文档读懂&#xff…

【广州华锐互动】VR虚拟党建云展馆:带你沉浸式领略红色文化

在新时代的背景下,科技与党建的结合已成为一种趋势。VR(Virtual Reality,虚拟现实)技术作为一种新兴的科技手段,为党建工作提供了全新的载体。VR虚拟党建云展馆,就是将VR技术应用于党建工作的一个典型例子&…

招聘程序员(软件开发工程师),如何做岗位胜任力测评?

一、 程序员的基本工作内容 1、 负责项目组内的代码维护和更新迭代,保证研发效率,对于运营产品提出的需求应积极沟通并实现。 2、 规范相关开发文档等相关资料,对于有变更的代码和功能需求,要对开发文档做出相应的变更。 3、 作为…

三维重建_纹理重建与表面细化

目录 前言:为什么要重建纹理? 1. 纹理图像的自动创建 1.1 基础知识 1.2 算法流程 1.2.1 视角选择 1.2.2 纹理坐标的计算 1.2.3 全局颜色调整 1.2.4 泊松图像编辑 1.2.5 OBJ文件 1.3 结果示例 2. 网格细化优化 2.1 基础知识与数学模型 2.2 优…

【Python基础】对Python的深入认识以及各种情况的报错汇总

📢:如果你也对机器人、人工智能感兴趣,看来我们志同道合✨ 📢:不妨浏览一下我的博客主页【https://blog.csdn.net/weixin_51244852】 📢:文章若有幸对你有帮助,可点赞 👍…

在给应用ASO优化时要注意些什么

应用名称是搜索引擎优化和转化率优化非常重要的元素。用户在搜索结果页面中看到我们的应用程序,这是他们决定是否想要更多地了解我们应用的地方。当用户已经在查看产品页面时,应用程序名称也会影响转化率,如果列表元数据有吸引力,…

Django的设计模式及模板层

Django的设计模式及模板层 设计模式MVC和MVT MVC 代表 Model-View-Controller(模型-视图-控制器)模式。 M 模型层(Model),主要用于对数据库层的封装 V 视图层(View),用于向用户展示结果 (WHAT HOW) C 控制(Controller,用于处理请求、获取数据、返回结果(重要) 作…

【数据集标注】上古软件LabelImg的保姆级使用教程

1:下载文件并解压 进入链接:mirrors / tzutalin / labelimg GitCode 点击绿色按钮【克隆】 ,再点击按钮【zip】,随后下载到本地 移动下载的压缩文件到合适的位置,此处我以桌面为例子 右键点击该zip压缩文件&#xff…

WINDOWS 7-11 磁盘分区教程

前言: 现在很多新电脑,尤其是用固态硬盘的电脑,往往内存不是很大,默认系统就给1个c盘(系统)或者再加一个D盘(软件盘)。为了更好的管理自己电脑的文件,我们需要增加一个或…

合约升级标准 ERC2535 的设计解析和不足

合约升级标准 ERC2535 的设计解析和不足 Safful最近审计了钻石标准的一份实现代码,这一标准是一种新的可升级合约模式。撰写标准是一项值得赞许的事业,但钻石标准及其实现有许多引人担忧的地方。这份代码是过度工程的产物,附带了许多不必要的…

004 Linux 调试器gdb的使用

前言 本文将会向您介绍gdb的基础操作 引入 程序的发布方式有两种,debug模式和release模式 Linux gcc/g出来的二进制程序,默认是release模式 要使用gdb调试,必须在源代码生成二进制程序的时候, 加上 -g 选项 以下是本文要示范的Makefile文件…

YOLOv5、YOLOv8改进:C3STR(Swin Transformer)

目录 1.介绍 2. YOLOv5、YOLOv8改进 2.1 common.py配置 2.2 yolo.py配置 2.3 yaml配置文件 1.介绍 视觉领域正在见证从 CNN 到 Transformers 的建模转变,纯 Transformer 架构在主要视频识别基准测试中达到了最高准确度。这些视频模型都建立在 Transformer 层之…