2023华为杯研究生数学建模竞赛E题思路分析+代码+论文

news2024/12/27 0:33:53

如下为C君撰写的2023华为杯研究生数学建模竞赛E题思路分析,代码论文见文末。

E题思路 出血性脑卒中临床智能诊疗建模

一、 背景介绍

出血性脑卒中指非外伤性脑实质内血管破裂引起的脑出血,占全部脑卒中发病率的10-15%。其病因复杂,通常因脑动脉瘤破裂、脑动脉异常等因素,导致血液从破裂的血管涌入脑组织,从而造成脑部机械性损伤,并引发一系列复杂的生理病理反应。出血性脑卒中起病急、进展快,预后较差,急性期内病死率高达45-50%,约80%的患者会遗留较严重的神经功能障碍,为社会及患者家庭带来沉重的健康和经济负担。因此,发掘出血性脑卒中的发病风险,整合影像学特征、患者临床信息及临床诊疗方案,精准预测患者预后,并据此优化临床决策具有重要的临床意义。

背景分析:第一段就是在说题目需要解决什么问题。发掘发病风险可能需要我们去建立数学建模来判断,整合特征可能需要用到特征工程的相关算法,而预测患者预后,可能需要使用机器学习算法对数据进行预测。

出血性脑卒中后,血肿范围扩大是预后不良的重要危险因素之一。在出血发生后的短时间内,血肿范围可能因脑组织受损、炎症反应等因素逐渐扩大,导致颅内压迅速增加,从而引发神经功能进一步恶化,甚至危及患者生命。因此,监测和控制血肿的扩张是临床关注的重点之一。此外,血肿周围的水肿作为脑出血后继发性损伤的标志,在近年来引起了临床广泛关注。血肿周围的水肿可能导致脑组织受压,进而影响神经元功能,使脑组织进一步受损,进而加重患者神经功能损伤。综上所述,针对出血性脑卒中后的两个重要关键事件,即血肿扩张和血肿周围水肿的发生及发展,进行早期识别和预测对于改善患者预后、提升其生活质量具有重要意义。

背景分析:这一段很明显,最后一句话是重点,也就是血肿扩张和血肿周围水肿的发生及发展,进行早期识别和预测对于改善患者预后、提升其生活质量具有重要意义。他告诉我们,在进行识别和预测时,我们需要对扩张和水肿分别建立相应的数学建模,量化这两者的严重程度,然后做一个综合模型,将两者融合在一起,这一步也就是模型融合的过程。综合后的模型,就可以做早期识别和预测了。

医学影像技术的飞速进步,为无创动态监测出血性脑卒中后脑组织损伤和演变提供了有力手段。近年来,迅速发展并广泛应用于医学领域的人工智能技术,为海量影像数据的深度挖掘和智能分析带来了全新机遇。期望能够基于本赛题提供的影像信息,联合患者个人信息、治疗方案和预后等数据,构建智能诊疗模型明确导致出血性脑卒中预后不良的危险因素,实现精准个性化的疗效评估和预后预测。相信在不久的将来,相关研究成果及科学依据将能够进一步应用于临床实践,为改善出血性脑卒中患者预后作出贡献。

背景分析:这一段就点明了我们需要做的事情,根据影像信息,联合患者个人信息、治疗方案和预后等数据,构建智能诊疗模型,明确导致出血性脑卒中预后不良的危险因素,实现精准个性化的疗效评估和预后预测。下面来看题目吧

左图脑出血患者CT平扫,右图红色为血肿,黄色为血肿周围水肿

一、 数据集介绍及建模目标

赛题提供了160例(100例训练数据集+60例独立测试数据集)出血性脑卒中患者的个人史、疾病史、发病及治疗相关信息、多次重复的影像学检查(CT平扫)结果及患者预后评估,该部分信息可在“表1-患者列表及临床信息”中查询。如图1为脑出血患者CT平扫,红色为血肿区域,黄色为水肿区域。赛题提供影像学检查数据,包括各个时间点血肿/水肿的体积、位置、形状特征及灰度分布等信息。体积及位置信息可在“表2-患者影像信息血肿及水肿的体积及位置”中查询。形状及灰度分布信息可在“表3-患者影像信息血肿及水肿的形状及灰度分布”中查询。

赛题目标:通过对真实临床数据的分析,研究出血性脑卒中患者血肿扩张风险、血肿周围水肿发生及演进规律,最终结合临床和影像信息,预测出血性脑卒中患者的临床预后。

目标变量:

Ø 发病48小时内是否发生血肿扩张:1是;0否。 

Ø 发病后90天 mRS:0-6,有序等级变量。其中mRS是评估卒中后患者功能状态的重要工具,详见附件2相关概念。

临床信息:相关信息在“表1-患者列表及临床信息”中获取。

Ø ID:患者ID。

n 训练数据集:sub001至sub100,共计100例。包含:患者信息、首次及所有随访影像数据及90天mRS。

n 测试数据集1:sub101至sub130,共计30例。包含:患者信息、首次影像数据。不包含:随访影像数据及90天mRS。

n 测试数据集2:sub131至sub160,共计30例。包含:患者信息、首次及所有随访影像数据。不包含:90天mRS。

Ø 入院首次影像检查流水号:一个14位数字编码。前8位代表年月日,后6位为顺序编号(注意:不是时分秒)。流水号是影像检查的唯一编码,具体影像检查时间点可通过对应流水号在“附表1-检索表格-流水号vs时间”中检索。

Ø 年龄: 岁

Ø 性别:男/女

Ø 脑出血前mRS评分:0-6,有序等级变量

Ø 高血压病史:1是0否

Ø 卒中病史:1是0否

Ø 糖尿病史:1是0否

Ø 房颤史:1是0否

Ø 冠心病史:1是0否

Ø 吸烟史:1是0否

Ø 饮酒史:1是0否

发病相关特征,共计2字段。

Ø 血压:收缩压/舒张压。单位: 毫米汞柱

Ø 发病到首次影像检查时间间隔:单位:小时

治疗相关特征,共计7字段。

Ø 脑室引流:1是0否

Ø 止血治疗:1是0否

Ø 降颅压治疗:1是0否

Ø 降压治疗:1是0否

Ø 镇静、镇痛治疗:1是0否

Ø 止吐护胃:1是0否

Ø 营养神经:1是0否

影像相关特征,共计84字段/时间点。

Ø 血肿及水肿的体积和位置信息在“表2-患者影像信息血肿及水肿的体积及位置”中获取,包含了:每个时间点血肿(Hemo)总体积及水肿(ED)总体积及不同位置的占比。体积占比定义:血肿/水肿在该位置的体积占总体积大小的比例,取值范围为:0-1。如:0代表该区域没有发生血肿/水肿,1则代表该患者所有血肿/水肿均发生在该区域,可通过占比换算出该位置绝对体积。本赛题采用通用模板,区分左右侧大脑前动脉(ACA_L, ACA_R),左右侧大脑中动脉(MCA_L,MCA_R),左右侧大脑后动脉(PCA_L,PCA_R),左右侧脑桥/延髓(Pons_Medulla_L,Pons_Medulla_R),左右侧小脑(Cerebellum_L,Cerebellum_R)共十个不同位置,具体位置和参考文献见附件2-相关概念。综上,总体积:2个字段(单位:10-3ml),位置:20个字段。在每个时间点,体积及位置特征共计22个字段。

Ø 血肿及水肿的形状及灰度分布在“表3-患者影像信息血肿及水肿的形状及灰度分布”的两个不同标签页存放,可通过流水号检索对应数据。每个时间点血肿及水肿的形状及灰度特征,反映目标区域内体素信号强度的分布(17个字段)及三维形状的描述(14个字段),因此,在每个时间点,血肿及水肿的形状+灰度分布特征共62字段。

注:重复影像数据根据临床真实情况提供,重复时间个体间可能存在差异。

三、请建模回答如下问题

1 血肿扩张风险相关因素探索建模。

a) 请根据“表1”(字段:入院首次影像检查流水号,发病到首次影像检查时间间隔),“表2”(字段:各时间点流水号及对应的HM_volume),判断患者sub001至sub100发病后48小时内是否发生血肿扩张事件。

结果填写规范:1是0否,填写位置:“表4”C字段(是否发生血肿扩张)。

如发生血肿扩张事件,请同时记录血肿扩张发生时间。

结果填写规范:如10.33小时,填写位置:“表4”D字段(血肿扩张时间)。

l  是否发生血肿扩张可根据血肿体积前后变化,具体定义为:后续检查比首次检查绝对体积增加≥6 mL或相对体积增加≥33%。

注:可通过流水号至“附表1-检索表格-流水号vs时间”中查询相应影像检查时间点,结合发病到首次影像时间间隔和后续影像检查时间间隔,判断当前影像检查是否在发病48小时内。

问题一a分析:问题需要根据表1表2来判断100名患者发病后48小时内是否发生血肿扩张事件,这道题目相对而言很简单。首先需要对两个表进行数据清洗操作,也就是数据预处理,清理完异常数据后。就可以进行预测了,我这里推荐利用一些机器学习算法进行预测,比如:Xgboost、随机森林、SVM等算法。是否出现血肿扩张是有明确说明的,题目说到要结合发病到首次影像时间间隔和后续影像检查时间间隔,所以这些需要纳入到指标当中。这里要注意做的是分类模型,那么最后需要指定一个阈值,比如你的预测结果是0.7(这里要是0-1间的),那么,你可以选择0.65作为阈值,超过的则判断为1,也就是发生了血肿扩张事件,这也有利于做下一小问。

最后需要对模型进行评估,评估准确率这些,这里可以画ROC曲线等,来可视化你模型的准确率。

这里给大家提示一下第一问一开始特征工程该如何做吧,有以下几步:

1 数据清洗:这是最基础的一步,它包括处理丢失值、异常值和错误的数据。

2 特征编码:将分类数据转换为适合模型使用的格式。例如,对于线性回归模型,需要将类别变量进行独热编码(One-Hot Encoding)。

3 特征缩放:这包括标准化和归一化等操作,可以保证不同规模或单位的特征在模型训练时具有相同的影响力。

4 特征选择:对于高维数据,我们需要选择最有意义的子集。常用的方法有过滤法(Filter Method)、包装法(Wrapper Method)和嵌入法(Embedded Method)。

5 特征构造:这涉及到创造新的特征,例如,根据已存在的特征进行数学运算(如加、减、乘、除等)生成新特征,或者基于领域知识创造特征。

6 降维:当特征维度非常大的时候,我们可能需要降低数据的维度。常用的降维技术有主成分分析(PCA)和t-分布随机邻域嵌入(t-SNE)等。

b请以是否发生血肿扩张事件为目标变量,基于“表1” 前100例患者(sub001至sub100)的个人史,疾病史,发病相关(字段E至W)、“表2”中其影像检查结果(字段C至X)及“表3”其影像检查结果(字段C至AG,注:只可包含对应患者首次影像检查记录)等变量,构建模型预测所有患者(sub001至sub160)发生血肿扩张的概率。

注:该问只可纳入患者首次影像检查信息。

结果填写规范:记录预测事件发生概率(取值范围0-1,小数点后保留4位数);填写位置:“表4”E字段(血肿扩张预测概率)。

问题一b分析:这道题目很简单,a已经建立了分类模型,也就是它做的分类是是否发生,在上一题用机器学习算法做分类模型的时候,比如你机器学习算法做出来的数是0.7,你在分类时,0.7归为了发生血肿扩张事件,前面告诉大家要选择合适的阈值,比如是0.6。那么这里计算概率的式子就是等比例缩放,0.5+0.5*(0.7-0.6)/1-0.6 = 0.5 + 0.125 = 0.625,也就是62.5%的概率。

2 血肿周围水肿的发生及进展建模,并探索治疗干预和水肿进展的关联关系。

a) 请根据“表2”前100个患者(sub001至sub100)的水肿体积(ED_volume)和重复检查时间点,构建一条全体患者水肿体积随时间进展曲线(x轴:发病至影像检查时间,y轴:水肿体积,y=f(x)),计算前100个患者(sub001至sub100)真实值和所拟合曲线之间存在的残差。

结果填写规范:记录残差,填写位置“表4”F字段(残差(全体))。

b) 请探索患者水肿体积随时间进展模式的个体差异,构建不同人群(分亚组:3-5个)的水肿体积随时间进展曲线,并计算前100个患者(sub001至sub100)真实值和曲线间的残差。

结果填写规范:记录残差,填写位置“表4”G字段(残差(亚组)),同时将所属亚组填写在H段(所属亚组)。

c) 请分析不同治疗方法(“表1”字段Q至W)对水肿体积进展模式的影响。

d) 请分析血肿体积、水肿体积及治疗方法(“表1”字段Q至W)三者之间的关系。

2-3问思路、代码、论文见文末

3 出血性脑卒中患者预后预测及关键因素探索。

a) 请根据前100个患者(sub001至sub100)个人史、疾病史、发病相关(“表1”字段E至W)及首次影像结果(表2,表3中相关字段)构建预测模型,预测患者(sub001至sub160)90天mRS评分。

注:该问只可纳入患者首次影像检查信息。

结果填写规范:记录预测mRS结果,0-6,有序等级变量。填写位置“表4”I字段(预测mRS(基于首次影像))。

b) 根据前100个患者(sub001至sub100)所有已知临床、治疗(表1字段E到W)、表2及表3的影像(首次+随访)结果,预测所有含随访影像检查的患者(sub001至sub100,sub131至sub160)90天mRS评分。

结果填写规范:记录预测mRS结果,0-6,有序等级变量。填写位置“表4”J字段(预测mRS)。

c) 请分析出血性脑卒中患者的预后(90天mRS)和个人史、疾病史、治疗方法及影像特征(包括血肿/水肿体积、血肿/水肿位置、信号强度特征、形状特征)等关联关系,为临床相关决策提出建议。

四、附件

ü 表1-患者列表及临床信息.xlsx

ü 表2-患者影像信息血肿及水肿的体积及位置.xlsx

ü 表3-患者影像信息血肿及水肿的形状及灰度分布.xlsx

ü 表4-答案文件.xlsx

ü 附表1-检索表格-流水号vs时间.xlsx

ü 附件2-相关概念.docx 

其中各题目思路、代码、讲解视频、论文及其他相关内容,可以点击下方卡片扫描二维码哦

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1031140.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Vue构建SPA项目实现路由

目录 前言 一、Vue CLI简介 1.什么是Vue CLI 2.Vue CLI的特点 二、SPA项目搭建 1.安装Vue CLI 2.使用脚手架vue-cli来构建项目 ​编辑 3.项目结构说明 4.什么是*.vue文件 三、基于SPA完成路由并嵌套路由 1.基于SPA完成路由 1. 1在src下的components 创建自定义组件…

动态代理原理和设计模式详解

一、什么是代理模式代理模式是一种设计模式,提供了对目标对象额外的访问方式,即可以通过代理访问目标对象,这样可以在不修改原目标对象的前提下,提供额外的方式进行访问,扩展目标对象的功能。 通俗的说,例…

html学习综合案例1

<!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>个人简介</title> </head> <body>…

【从0学习Solidity】9. 常数 constant和immutable

【从0学习Solidity】9. 常数 constant和immutable 博主简介&#xff1a;不写代码没饭吃&#xff0c;一名全栈领域的创作者&#xff0c;专注于研究互联网产品的解决方案和技术。熟悉云原生、微服务架构&#xff0c;分享一些项目实战经验以及前沿技术的见解。关注我们的主页&…

golang入门笔记——pprof性能分析

文章目录 简介runtime/pprof的使用命令行交互网络服务性能分析pprof与性能测试结合压测工具go-wrk 简介 golang性能分析工具pprof的8个指标 1.性能分析的5个方面&#xff1a;CPU、内存、I/O、goroutine&#xff08;协程使用情况和泄漏检查&#xff09;、死锁检测以及数据竟态…

JavaBean文字格斗游戏之进阶版

以上都是关于role类的定义 求赞!

go 内存泄露

事件回顾 9.15号晚18点服务端发版9.16号晚21点监控显示自发版后服务器 TCP_alloc 指标一路飙升至40K(如图) 问题分析 看到 tcp_alloc 指标异常&#xff0c;初步怀疑有tcp连接创建后未关闭&#xff0c;应该是上次发版写了什么代码导致的。回顾此次发版清单&#xff0c;问题应该…

IBM LSF 任务调度系统的主要术语和概念

LSF 术语和概念 了解 IBM LSF 基本术语和概念。 作业状态 IBM Spectrum LSF 作业具有多个状态。 PEND 正在队列中等待调度和分派。 RUN 已分派到主机并正在运行。 DONE 正常完成&#xff0c;退出值为零。 EXIT 已完成&#xff0c;具有非零退出值。 PSUSP 作业处于暂…

FBX文件结构解读【文本格式】

FBX 格式几乎受到所有 3D 引擎的支持&#xff0c;是 Autodesk 开发的 3D 模型的专有格式。它支持顶点、索引、法线、UV坐标、材质和动画。 FBX还支持许多其他类型的信息&#xff0c;但它们对游戏引擎几乎没有用处。 推荐&#xff1a;用 NSDT编辑器 快速搭建可编程3D场景 有两种…

【C++】String类基本接口介绍及模拟实现(多看英文文档)

string目录 如果你很赶时间&#xff0c;那么就直接看我本标题下的内容即可&#xff01;&#xff01; 一、STL简介 1.1什么是STL 1.2STL版本 1.3STL六大组件 1.4STL重要性 1.5如何学习STL 二、什么是string&#xff1f;&#xff1f;&#xff08;本质上是一个类&#xff0…

Leetcode | 303.区域和检索-数组不可变

303.区域和检索-数组不可变 欢迎关注公众号“三戒纪元” 题目 给定一个整数数组 nums&#xff0c;处理以下类型的多个查询: 计算索引 left 和 right &#xff08;包含 left 和 right&#xff09;之间的 nums 元素的 和 &#xff0c;其中 left < right 实现 NumArray 类&a…

24个Docker常见问题处理技巧

1.Docker 迁移存储目录 默认情况系统会将 Docker 容器存放在 var/lib/docker 目录下 [问题起因] 今天通过监控系统&#xff0c;发现公司其中一台服务器的磁盘快慢&#xff0c;随即上去看了下&#xff0c;发现 /var/lib/docker这个目录特别大。 由上述原因&#xff0c;我们都知…

低代码技术推动能源行业数字化转型,服务商模式带来转型新商机

“新能源企业通过数字化转型不仅可以提高企业的运营效率和市场竞争力&#xff0c;还可以创新商业模式、提高能源生产效率和可持续性、优化资源配置并适应市场需求。选择百数的服务商模式&#xff0c;不仅可以解决我们想实现数字化转型的需求&#xff0c;还让我们多了一个开展新…

计算机毕设 python图像检索系统设计与实现

文章目录 0 前言1 课题简介2 图像检索介绍(1) 无监督图像检索(2) 有监督图像检索 3 图像检索步骤4 应用实例5 最后 0 前言 &#x1f525; 这两年开始毕业设计和毕业答辩的要求和难度不断提升&#xff0c;传统的毕设题目缺少创新和亮点&#xff0c;往往达不到毕业答辩的要求&am…

uniapp——ios证书申请——详细步骤+遇到的坑——技能提升

三年前&#xff0c;我曾经写过uniapp的程序&#xff0c;时隔三年&#xff0c;又遇到了uniapp的需求&#xff0c;之前没有自行申请ios证书&#xff0c;现在终于要自己生成证书了。。。 是福不是祸&#xff0c;是祸躲不过。 uniapp生成ios证书的详细步骤 uniapp对接unipush的操作…

Revopoint的3D输出格式及转换工具

在 CES 展会期间&#xff0c;许多参观者向我们询问与我们的 3D 扫描仪相关的问题。 最常见的问题包括我们的扫描仪导出的文件格式&#xff0c;以及该文件是否与 3D 打印机兼容&#xff1f; 因此&#xff0c;我们决定回答这些问题&#xff0c;并在本文中对常见的 3D 文件格式进行…

notepad++配合正则表达式分组模式处理文本转化为sql语句

一、正则分组知识点补充 正则分组和捕获 ()&#xff1a;用于分组和捕获子表达式。 大白话就是()匹配到的数据&#xff0c;通过美元符号加下标可以获取该数据&#xff0c;例如$1、$2, 下标从1开始。 下面的案例就采用该模式处理文本数据 二、使用正则的需求背景 有一份报表…

Verilog:$readmemb和$readmemh系统函数的使用与其中的初始化地址相关问题(详细细节)

相关阅读 Verilog基础https://blog.csdn.net/weixin_45791458/category_12263729.html?spm1001.2014.3001.5482 $readmemb和$readmemh两个系统函数用于将文件中的数据加载到存储器或者被称为数组的memory中。首先给出他们的语法的BNF范式&#xff0c;有关BNF范式的内容可以在…

GaussDB技术解读系列:性能调优

近日&#xff0c;在第14届中国数据库技术大会&#xff08;DTCC2023&#xff09;的GaussDB“五高两易”核心技术&#xff0c;给世界一个更优选择专场&#xff0c;华为数据库技术专家李士福详细解读了GaussDB性能调优的相关技术和应用实践。 本篇为大家分享GaussDB性能调优的实践…

【MySQL 45讲笔记】

文章目录 第一讲&#xff1a;一条SQL查询语句是如何执行的&#xff1f;第二讲&#xff1a;一条SQL更新语句是如何执行的&#xff1f;第三讲&#xff1a;事务隔离&#xff0c;为什么你改了我还看不见第四讲&#xff1a;深入浅出索引&#xff08;上&#xff09;第五讲&#xff1a…