用Python分析文本数据的词频并词云图可视化(文末送书)

news2024/11/23 22:46:49

🤵‍♂️ 个人主页:@艾派森的个人主页

✍🏻作者简介:Python学习者
🐋 希望大家多多支持,我们一起进步!😄
如果文章对你有帮助的话,
欢迎评论 💬点赞👍🏻 收藏 📂加关注+


目录

一、Python分析文本数据的优点

二、Python分析文本常用的第三方库

三、词频分析 

四、词云图分析

五、文末推荐与福利


一、Python分析文本数据的优点

  1. 广泛的库和工具支持:Python拥有丰富的文本分析库,如NLTK(自然语言工具包)、spaCy、TextBlob、Gensim等,这些库提供了各种文本处理和分析功能,使得文本分析任务更容易实现。

  2. 易于学习和使用:Python是一门容易学习的编程语言,因此即使是初学者也可以快速上手文本分析任务。Python的简洁语法和清晰的代码结构有助于更好地理解和维护分析代码。

  3. 社区支持:Python拥有庞大的开发者社区,这意味着可以轻松找到答案、解决问题,并获得有关文本分析的支持和建议。

  4. 跨平台性:Python是一种跨平台的编程语言,可以在Windows、Linux和Mac等操作系统上运行,因此非常适合各种不同环境中的文本分析。

  5. 数据处理能力:Python拥有强大的数据处理和操作库,如NumPy和Pandas,这些库使得数据清洗、转换和分析变得更加容易。

  6. 可视化能力:Python中的库,如Matplotlib、Seaborn和Plotly,可以用于生成各种数据可视化,帮助用户更好地理解和展示文本数据的分析结果。

  7. 机器学习和深度学习支持:Python在机器学习和深度学习方面表现出色,因此可以使用各种机器学习和深度学习模型来进行文本分类、情感分析、命名实体识别等任务。

  8. 开源和免费:Python是一种开源的编程语言,可以免费使用,这意味着无需额外费用就可以进行文本分析。

  9. 丰富的文档和教程:有大量的在线文档、教程和示例代码可用于帮助用户学习和实践文本分析。

二、Python分析文本常用的第三方库

  1. NLTK(Natural Language Toolkit):NLTK是一款广泛用于自然语言处理的库,提供了文本分词、词性标注、命名实体识别、语法分析等功能,以及大量的语料库和数据集。

  2. spaCy:spaCy是一个高度优化的自然语言处理库,具有出色的性能和功能,支持分词、命名实体识别、词性标注等任务,并支持多语言。

  3. TextBlob:TextBlob是一个简单而易于使用的库,用于执行各种文本分析任务,包括情感分析、文本分类、词性标注等。

  4. Gensim:Gensim是一个用于主题建模和文本向量化的库,特别适用于处理大型文本语料库和文本文档集合。

  5. Scikit-learn:虽然Scikit-learn主要用于机器学习,但它也提供了文本特征提取、文本分类和聚类等文本分析的工具和算法。

  6. Word2Vec:Word2Vec是一个用于词嵌入(word embedding)的库,可以将词汇转换为向量表示,以便进行文本分析和自然语言处理任务。

  7. Pattern:Pattern是一个用于文本挖掘和自然语言处理的库,支持词性标注、情感分析、信息提取等任务。

  8. Spacy-transformers:这是spaCy的一个扩展库,使其能够使用预训练的Transformer模型(如BERT、GPT-2)进行文本分析。

  9. TfidfVectorizer:TfidfVectorizer是Scikit-learn的一部分,用于将文本数据转换为TF-IDF(Term Frequency-Inverse Document Frequency)特征表示,常用于文本分类和信息检索。

  10. NLTK和TextBlob的情感分析模块:这些库提供了用于情感分析的功能,可用于判断文本的情感倾向,如积极、消极或中性。

  11. Matplotlib、Seaborn和Plotly:这些库用于可视化文本数据分析结果,可以生成各种图表和图形,帮助更好地理解文本数据。

三、词频分析 

        上次批量提取了上市公司主要业务信息,要分析这些文本数据,就需要做文本词频分析。由于中文不同于英文,词是由一个一个汉字组成的,而英文的词与词之间本身就有空格,所以中文的分词需要单独的库才能够实现,常用的是`jieba`。若没安装,直接运行`cmd`,然后输入`pip install jieba`安装即可。然后导入`jieba`库。我们以“华特气体”公司的主要业务进行分词,分词前如下图所示。通过`open`打开华特气体文本文件,使用读模式`r`,为避免编码错误,指定编码类型为`utf-8`。读取出来是一个大字符串,将这个大字符串存入`txt`。然后调用`jieba`进行分词。`lcut`的意思是切分词后再转换成列表("l"即表示`list`的首字母)。将切分后的词存入列表`words`。

import jieba
txt = open("华特气体.txt", "r", encoding="utf-8").read()
words = jieba.lcut(txt)
words

 

        结果如上,可见基本是按照我们的汉字使用习惯来区分词的,不能组成词的字则是按单独一个字符串存放的。然后我们就需要将词和对应出现的次数统计出来。先新建一个字典`wordsDict`用于储存词及其出现的次数。对于单个的字或字符不是我们想要的,所以加了一个`if`语句将其排除在外。`continue`的作用是,`if`后面的条件满足时,让程序回到`for`循环,而不执行`continue`下面的语句。也就是列表中的元素只有一个字符的时候,就马上跳到下一个而不执行任何操作。只有当元素不止一个字符的时候,才执行`else`语句,即将词及其出现的次数加入字典。此处用`setdefault`给词的出现初始值设置为0,每重复出现一次,自动加1。然后我们根据此出现的次数,降序排序,并查看前20个词的情况。

wordsDict = {} #新建字典用于储存词及词频
for word in words:
    if len(word) == 1: #单个的字符不作为词放入字典
        continue
    else:
        wordsDict.setdefault(word, 0) #设置词的初始出现次数为0
        wordsDict[word] +=1 #对于重复出现的词,每出现一次,次数增加1
        
wordsDict_seq = sorted(wordsDict.items(),key=lambda x:x[1], reverse=True) #按字典的值降序排序
wordsDict_seq[:15] 

 

        可以看到,有些词并不是我们想要的,比如“公司”、“行业”、“000”。因此需要把这些意义不大的词删除。先定义一个储存要排除的词的列表`stopWords`,将想排除的词放进去,一般是放出现次数较多,但意义不大的词,可根据实际需要调整。然后遍历这个字典,在检查这些词是否在目标字典`wordsDict`中,如果在,就将字典中这个词对应的数据删除。 

stopWords = ["公司","行业","000","用于","情况","方面","一种","要求","对于","进行","一般","212","实现","处理","通过","投入","随着"]
for word in stopWords:
    if word in wordsDict:
        del wordsDict[word] #删除对应的词
        
wordsDict_seq = sorted(wordsDict.items(),key=lambda x:x[1], reverse=True) #按字典的值降序排序
wordsDict_seq[:15] 

然后将筛选后的数据转换成DataFrame,并增加列名“词”和“次数”,然后导出为Excel文件。

df = pd.DataFrame(wordsDict_seq,columns=['词','次数'])
df.to_excel("华特气体-词频.xlsx",index = False) #存为Excel时去掉index索引列
df.head(10)

以上,搞定了一个文件的词频收集,那批量操作呢?请看下面分解。

import os
path='主要业务'  #文件所在文件夹
files = [path+"\\"+i for i in os.listdir(path)] #获取文件夹下的文件名,并拼接完整路径
files

 

以上,先获取到所有待分析文件的路径。然后逐个进行分析。稍微修改一下上面的程序,很快分析完成。结果如下。

import jieba
import pandas as pd

for file in files:

    txt = open(file, "r", encoding="utf-8").read()
    words = jieba.lcut(txt)
    wordsDict = {} #新建字典用于储存词及词频
    for word in words:
        if len(word) == 1: #单个的字符不作为词放入字典
            continue
        else:
            wordsDict.setdefault(word, 0) #设置词的初始出现次数为0
            wordsDict[word] +=1 #对于重复出现的词,每出现一次,次数增加1

    stopWords = ["2019","不断","持续","主要","企业","产品","业务","公司","行业","000","用于","情况","方面","一种","要求","对于","进行","一般","212","实现","处理","通过","投入","随着"]
    for word in stopWords:
        if word in wordsDict:
            del wordsDict[word] #删除对应的词

    wordsDict_seq = sorted(wordsDict.items(),key=lambda x:x[1], reverse=True) #按字典的值降序排序

    df = pd.DataFrame(wordsDict_seq,columns=['词','次数'])
    df.to_excel("词频//{}.xlsx".format(file.split("\\")[1][:-4]),index = False) #存为Excel时去掉index索引列

四、词云图分析

        如果要将上面做好的词频分析可视化,“词云图”是一个很好的选择。它的原理是,将词频高的词显示得相对更大一些。而且可以自定义背景图,让词云显示成个性化的形状。今天我们就来将上次获取的10家上市公司的“主要业务”词频文件批量生成词云图,这样一看词云图就大致了解这家公司的主要业务是什么了,放在PPT里展示也显得高大上。首先,我们导入需要用到库。若显示导入不成功,则需要用`pip install + 库名`进行安装。

import numpy as np # numpy数据处理库
import wordcloud # 词云库
from PIL import Image # 图像处理库,用于读取背景图片
import matplotlib.pyplot as plt # 图像展示库,以便在notebook中显示图片
from openpyxl import load_workbook #读取词频Excel文件
import os #获取词频Excel文件路径

        然后获取所有的Excel词频表路径,以便后续逐一读取,并传入词云库生成词云图。再定义词频背景图,`np.array(Image.open())`打开图片后转为数组,存入`maskImage`变量。需要注意词频背景图中想要的形状的背景需要是白色的,不然无法得到想要的词云图形状。比如如下背景图片,左边的图片因为猴子的背景不是白色,做出的词云图会占满整个图片,即是一个矩形的词云图;右边的图片中,猴子的背景是白色的,做出的词云图看起来就是一只猴子的形状。

        然后用`for`循环遍历所有待处理的Excel文件,逐个打开,提取其中的词和词频,存入字典`wordFreq`。然后通过`wordcloud.WordCloud()`定义词云样式。这个函数有很多参数,具体如下。我们只需要关注常用的几个即可,其它可作为了解。

wordcloud.WordCloud(font_path=None, width=400, height=200, margin=2, ranks_only=None, prefer_horizontal=0.9, mask=None, scale=1, color_func=None, max_words=200, min_font_size=4, stopwords=None, random_state=None, background_color='black', max_font_size=None, font_step=1, mode='RGB', relative_scaling='auto', regexp=None, collocations=True, colormap=None, normalize_plurals=True, contour_width=0, contour_color='black', repeat=False, 'include_numbers=False', 'min_word_length=0', 'collocation_threshold=30')

`font_path`:字体路径。字体存在`C:\Windows\Fonts`目录,在想要的字体上点右键,选择“属性”可查看其名称,然后连同路径复制,赋给font_path即可。比如本例使用的黑体。需要注意的是,若是中文词云,需要选中文字体。

`width,height`:画布的宽度和高度,单位为像素。若没设置`mask`值,才会使用此默认值400*200。

`margin`:词间距。

`ranks_only`:文档未说明。

`prefer_horizontal`:词语横排显示的概率(默认为90%,则竖排显示概率为10%)

`mask`:用于设定绘制模板,需要是一个`nd-array`(多维数组),所以在用`Image.open()`读取图片后,需要用`np.array`转换成数组。另外`mask`参数有设定的话,画布的大小会由词频背景图的大小决定。这个经常使用,因为我们更倾向于自定义模板。

`scale`:比例尺,用于放大画布的尺寸。一般使用默认值。

`color_func`:颜色函数,一般不用。

`max_words`:词云图中最多显示词的字数,设定一个值,可让那些出现次数极少的词不显示出来。

`min_font_size`:字号最小值。

`stopwords`:设置不想显示的词。

`random_state`:文档未说明。

`background_color`:词云图背景色,默认为黑色。可根据需要调整。

`max_font_size`:字号最大值。

`font_step`:字体的步长,一般使用默认。大于1的时候可提升运算速度,但匹配较差。

`mode`:当设置为"RGBA" 且`background_color`设置为"None"时可产生透明背景。

`relative_scaling`:词频对字体大小的影响度,一般使用默认。

`regexp`:正则表达式分割输入的字符。一般是先处理好才给到wordcloud,所以基本不用。

`collocations`:是否包含两个词的搭配,若使用了`generate_from_frequencies`方法则忽略此参数。一般不用。

`colormap`:每个词对应的颜色,若设置了`color_func`则忽略此参数。

`normalize_plurals`:是否移除英文复数单词末尾的s ,比如可将word和words视同为一个词,并将词频算到word头上。如果使用了`generate_from_frequencies`方法则忽略此参数。

`contour_width`:如果`mask`有设置,且`contour_width`>0,将会绘制`mask`轮廓。

`contour_color`:`mask`轮廓的颜色,默认为黑色。

`repeat`:当词不足以满足设定的`max_words`时,是否重复词或短语以使词云图上的词数量达到`max_words`

`include_numbers`:是否将数字作为词。

`min_word_length`:设置一个词包含的最少字母数量。

`collocation_threshold`:界定英文中的`bigrams`,对于中文不适用。

        此例中,我们调用`wordcloud`时,设定了字体为“黑体”,使用了背景图为绘图模板,设置了最多显示词数为500,字号最大为100。然后使用`generate_from_frequencies()`从已有词频数据的字典中生成词云图。然后将词云图按公司名保存到指定路径(“词云图”文件夹)。最后用`plt.imshow()`在notebook中显示词云图。结果如下。

#将存好的Excel词频表读取成字典
path='词频'  #文件所在文件夹
files = [path+"\\"+i for i in os.listdir(path)] #获取文件夹下的文件名,并拼接完整路径
maskImage = np.array(Image.open('background.png')) # 定义词频背景图

for file in files:
    #将词频Excel文件读取为字典
    wb = load_workbook(file)
    ws = wb.active
    wordFreq = {}
    for i in range(2,ws.max_row+1):
        word = ws["A"+str(i)].value
        freq = ws["B"+str(i)].value
        wordFreq[word] = freq    
    
    #定义词云样式
    wc = wordcloud.WordCloud(
        font_path='C:/Windows/Fonts/simhei.ttf', # 设置字体
        mask= maskImage, # 设置背景图
        max_words=500, # 最多显示词数
        max_font_size=100) # 字号最大值
    
    #生成词云图
    wc.generate_from_frequencies(wordFreq) # 从字典生成词云
    #保存图片到指定文件夹
    wc.to_file("词云图\\{}.png".format(file.split("\\")[1][:4]))
    #在notebook中显示词云图
    plt.imshow(wc) # 显示词云
    plt.axis('off') # 关闭坐标轴
    plt.show() # 显示图像

五、文末推荐与福利

《巧用ChatGPT快速搞定数据分析》免费包邮送出3本!

内容简介:

         本书是一本关于数据分析与ChatGPT应用的实用指南,旨在帮助读者了解数据分析的基础知识及利用ChatGPT进行高效的数据处理和分析。随着大数据时代的到来,数据分析已经成为现代企业和行业发展的关键驱动力,本书正是为了满足这一市场需求而诞生。

        本书共分为8章,涵盖了从数据分析基础知识、常见的统计学方法到使用ChatGPT进行数据准备、数据清洗、数据特征提取、数据可视化、回归分析与预测建模、分类与聚类分析,以及深度学习和大数据分析等全面的内容。各章节详细介绍了运用ChatGPT在数据分析过程中解决实际问题,并提供了丰富的实例以帮助读者快速掌握相关技能。

        本书适合数据分析师、数据科学家、研究人员、企业管理者、学生,以及对数据分析和人工智能技术感兴趣的广大读者阅读。通过阅读本书,读者将掌握数据分析的核心概念和方法,并学会运用ChatGPT为数据分析工作带来更高的效率和价值。

编辑推荐:

★超实用 通过30多个实际案例和操作技巧,使读者能够快速上并灵活运用数据分析和ChatGPT技术。

★巨全面 50多种ChatGPT数据分析策略,涵盖从数据预处理到高级分析的全过程。

★真好懂 以通俗易懂的语言解释数据分析和ChatGPT的原理及应用,零门槛,让职场新手也能轻松掌握。

★高回报 学习本书,利用ChatGPT在数据分析过程中的各个环节进行实践操作,可以大大提高工作效率,降低人力成本,从而为企业和个人带来更高的投资回报率。

  • 抽奖方式:评论区随机抽取3位小伙伴免费送出!
  • 参与方式:关注博主、点赞、收藏、评论区评论“人生苦短,拒绝内卷!”(切记要点赞+收藏,否则抽奖无效,每个人最多评论三次!
  • 活动截止时间:2023-09-23 20:00:00
  • 京东购买链接:https://item.jd.com/13810483.html

  • 当当网购买链接:http://product.dangdang.com/29606385.html

 名单公布时间:2023-09-23 21:00:00   

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1024643.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

广播风暴的分析和解决方法(STP配置)

目录 1.广播风暴 2.解决方法&#xff1a;配置STP 1.广播风暴 以下图为例 配置交换机LSW1 <Huawei>sys Enter system view, return user view with CtrlZ. [Huawei]sysname LSW1 [LSW1]stp Sep 14 2023 05:35:15-08:00 LSW1 DS/4/DATASYNC_CFGCHANGE:OID 1.3.6.1.4.1.…

SAP中销售订单运达方导致销项税错误问题实例

近期财务同事反映SAP中一笔国内客户的销售发票会计凭证中显示码是X0&#xff0c;代出的销项税是0。 进一步检查销售发票billing&#xff0c;发现发票价格条件中销税税条件取值确实是0。 基于税码决定的系统逻辑&#xff0c;前面博客中也曾专门分析过。下面在追踪问题时就会按这…

九、蜂鸣器

九、蜂鸣器 蜂鸣器介绍蜂鸣器播放提示音 蜂鸣器介绍 音符频率对照表 蜂鸣器播放提示音 #include <REGX52.H> #include <INTRINS.H> //蜂鸣器端口&#xff1a; sbit BuzzerP1^5; void Buzzer_Delay500us() //12.000MHz {unsigned char i;_nop_();i 247;while (-…

【计算机组成原理】读书笔记第三期:内存和磁盘的关系

目录 写在开头 内存与磁盘的关系 基本关系 磁盘缓存 虚拟内存 节约内存的编程方法 通过DLL文件实现函数共有 通过调用_stdcall来降低文件程序的大小 磁盘的物理结构 结尾 写在开头 本文继续阅读总结《程序是怎样跑起来的》这本书&#xff08;作者&#xff1a;矢泽…

基于Java的流浪动物救助及领养管理设计与实现

前言 &#x1f497;博主介绍&#xff1a;✌全网粉丝10W,CSDN特邀作者、博客专家、CSDN新星计划导师、全栈领域优质创作者&#xff0c;博客之星、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java、小程序技术领域和毕业项目实战✌&#x1f497; &#x1f447;&#x1f3fb;…

机器人制作开源方案 | 随叫随到的智能垃圾桶

作者&#xff1a;卢智浩 尹宗岱 胡文珺 付文智 陈星 单位&#xff1a;江汉大学 指导老师&#xff1a;侍中楼 李巍 本作品围绕探索者场景和应用主题&#xff0c;基于当今时代“智能家”的快速发展&#xff0c;智慧生活成为未来的一大发展趋势&#xff0c;因此我们设计了此款可…

基于Java网络书店商城设计实现(源码+lw+部署文档+讲解等)

博主介绍&#xff1a;✌全网粉丝30W,csdn特邀作者、博客专家、CSDN新星计划导师、Java领域优质创作者,博客之星、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ &#x1f345;文末获取源码联系&#x1f345; &#x1f447;&#x1f3fb; 精彩专…

从零开始学习 Java:简单易懂的入门指南之Stream流(二十七)

Stream流 Stream流1.体验Stream流2.Stream流的常见生成方式3.Stream流中间操作方法4.Stream流终结操作方法5.Stream流的收集操作6.Stream流综合练习 Stream流 1.体验Stream流 案例需求 按照下面的要求完成集合的创建和遍历 创建一个集合&#xff0c;存储多个字符串元素把集合中…

GO-日志分析

GO-日志分析 log包简介 Go提供了logger包来做日志记录。使用方式如下所示 package mainimport ("log""os" )func main() {// 创建一个新的日志文件.默认是stdOutfile, err : os.Create("app.log")if err ! nil {log.Fatal(err)}defer file.Cl…

Linux系统远程访问另一台Windows系统的解决方案

SSH方法 在windows上安装openssh server&#xff0c;在 linux上安装openssh。通常linux会自带openssh&#xff0c;故这里只讲解windows上安装openssh server的方法 1、检查openssh server是否存在 以管理员身份进入Powershell&#xff0c;输入以下命令 Get-WindowsCapabili…

Win10、Win11家庭版开启远程桌面

Win11家庭版开启远程桌面 在windows家庭版中&#xff0c;是不提供远程桌面服务的&#xff0c;你没有办法使用远程桌面连接到windows家庭版中。当然&#xff0c; 你可用升级windows 版本到专业版&#xff0c;这样就可用享受到windows自带的远程桌面服务了。 我的电脑是win11家庭…

【Linux基础】第27讲:Linux查找和过滤命令(二)——grep命令

Grep命令 grep是根据文件的内容进行查找&#xff0c;会对文件的每一行按照给定的模式&#xff08;patter&#xff09;进行匹配查找 基本格式&#xff1a; grep [options]范围 [options] 主要参数 -c: 只输出匹配行的计数 -i : 不区分大小写 -n: 显示匹配行及行号 -w: 显示整个…

【鸽鸽送书第一期】 | 实现可观测性平台的技术要点是什么?文末参与送书哦!

&#x1f3ac; 鸽芷咕&#xff1a;个人主页 &#x1f525; 个人专栏:《粉丝福利》 《C语言进阶篇》 ⛺️生活的理想&#xff0c;就是为了理想的生活! 文章目录 &#x1f4cb; 前言实现可观测性平台的技术要点是什么&#xff1f;1.兼容全域信号量2.所谓全域信号量有哪些&#x…

除了天地图,还有哪些平台可以标绘地图?

想要在地图上标绘业务数据或制作个人地图&#xff0c;却难以找到一款得心应手的地图标绘平台。 在经过一番探索查找之后&#xff0c;发现天地图的标注功能还比较适用。 天地图中的标注 在天地图中&#xff0c;可以将现有的数据导入与地图进行叠加&#xff0c;也可以将绘制的地…

计算机网络工程师多选题系列——计算机网络

2 计算机网络 2.1 网络技术基础 题型1 TCP/IP与ISO模型的问题 TCP/IP由IETF制定&#xff0c;ISO由OSI制定&#xff1b; TCP/IP分为四层&#xff0c;分别是主机-网络层、互联网络层、传输层和应用层&#xff1b;OSI分为七层&#xff0c;分别是物理层、数据链路层、网络层(实…

Visual Studio 更新:远程文件管理器

Visual Studio 中的远程文件管理器可以用来访问远程机器上的文件和文件夹&#xff0c;通过 Visual Studio 自带的连接管理器&#xff0c;可以实现不离开开发环境直接访问远程系统&#xff0c;这确实十分方便。 自从此功能发布以来&#xff0c;VS 开发团队努力工作&#xff0c;…

【2023年11月第四版教材】第13章《资源管理》(合集篇)

第13章《资源管理》&#xff08;合集篇&#xff09; 1 章节说明2 管理基础2.1 术语2.2 项目经理的权力有5种来源2.3 优秀团 队的建设5个阶段2.4 激励理论2.4.1 马斯洛需求层次理论2.4.2 赫茨伯格双因素理论&#xff1a;★★★2.4.3 X理论&#xff08;不好&#xff09;步丫理论&…

一些真实的app渗透与算法hook

app1 apk文件下载到电脑&#xff0c;adb install 安装到真机上&#xff0c;打开是一个注册页面 真机把SocksDroid打开&#xff0c;随便输个电话号&#xff0c;电脑开charles抓包&#xff1a; 我们放到burp重发器里&#xff0c;改参数重发&#xff0c;不出意外&#xff0c;果然…

低代码开发平台的优点和缺点

随着数字化转型的加速&#xff0c;企业需要更快速地开发和交付应用程序&#xff0c;以适应市场需求和客户需求的变化。在这种情况下&#xff0c;低代码平台成为了企业的首选方案之一。 想象一下&#xff0c;你可以用一个可视化工具构建自己的应用程序&#xff0c;而无需编写繁琐…

面试官:Vue3.0 性能提升主要是通过哪几方面体现的?

&#x1f3ac; 岸边的风&#xff1a;个人主页 &#x1f525; 个人专栏 :《 VUE 》 《 javaScript 》 ⛺️ 生活的理想&#xff0c;就是为了理想的生活 ! 目录 一、编译阶段 diff算法优化 静态提升 事件监听缓存 SSR优化 二、源码体积 三、响应式系统 一、编译阶段 回顾…