文章目录
- 前言
- 一、1143.最长公共子序列
- 二、1035.不相交的线
- 三、53. 最大子序和
- 总结
前言
动态规划
一、1143.最长公共子序列
- 确定dp数组(dp table)以及下标的含义
dp[i][j]:长度为[0, i - 1]的字符串text1与长度为[0, j - 1]的字符串text2的最长公共子序列为dp[i][j]
有同学会问:为什么要定义长度为[0, i - 1]的字符串text1,定义为长度为[0, i]的字符串text1不香么?
这样定义是为了后面代码实现方便,如果非要定义为长度为[0, i]的字符串text1也可以
- 确定递推公式
主要就是两大情况: text1[i - 1] 与 text2[j - 1]相同,text1[i - 1] 与 text2[j - 1]不相同
如果text1[i - 1] 与 text2[j - 1]相同,那么找到了一个公共元素,所以dp[i][j] = dp[i - 1][j - 1] + 1;
如果text1[i - 1] 与 text2[j - 1]不相同,那就看看text1[0, i - 2]与text2[0, j - 1]的最长公共子序列 和 text1[0, i - 1]与text2[0, j - 2]的最长公共子序列,取最大的。
即:dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);
- dp数组如何初始化
先看看dp[i][0]应该是多少呢?
test1[0, i-1]和空串的最长公共子序列自然是0,所以dp[i][0] = 0;
同理dp[0][j]也是0。
其他下标都是随着递推公式逐步覆盖,初始为多少都可以,那么就统一初始为0。
- 确定遍历顺序
从递推公式,可以看出,有三个方向可以推出dp[i][j],如图:
举例推导dp数组;
class Solution {
public int longestCommonSubsequence(String text1, String text2) {
int[][] dp = new int[text1.length()+1][text2.length()+1];
for(int i = 1;i<=text1.length();i++){
char char1 = text1.charAt(i-1);
for(int j = 1;j<=text2.length();j++){
char char2 = text2.charAt(j-1);
if(char1 == char2){
dp[i][j] = dp[i-1][j-1] + 1;
}else{
dp[i][j] = Math.max(dp[i-1][j],dp[i][j-1]);
}
}
}
return dp[text1.length()][text2.length()];
}
}
二、1035.不相交的线
上一题的变种题目。
下面的代码,是用的循环得出max的方法;但,事实上,dp数组表示的是“dp[i][j]:长度为[0, i - 1]的字符串text1与长度为[0, j - 1]的字符串text2的最长公共子序列为dp[i][j]”;所以直接return dp[len1][len2]。
class Solution {
public int maxUncrossedLines(int[] nums1, int[] nums2) {
int len1 = nums1.length;
int len2 = nums2.length;
int res = 0;
int[][] dp = new int[len1+1][len2+1];
for(int i =1;i<=len1;i++){
for(int j=1;j<=len2;j++){
if(nums1[i-1] == nums2[j-1]){
dp[i][j] = dp[i-1][j-1]+1;
}else{
dp[i][j] = Math.max(dp[i-1][j],dp[i][j-1]);
}
res = Math.max(res,dp[i][j]);
}
}
return res;
}
}
三、53. 最大子序和
动规五部曲如下:
- 确定dp数组(dp table)以及下标的含义
dp[i]:包括下标i(以nums[i]为结尾)的最大连续子序列和为dp[i]。
- 确定递推公式
dp[i]只有两个方向可以推出来:
- dp[i - 1] + nums[i],即:nums[i]加入当前连续子序列和
- nums[i],即:从头开始计算当前连续子序列和
一定是取最大的,所以dp[i] = max(dp[i - 1] + nums[i], nums[i]);
- dp数组如何初始化
从递推公式可以看出来dp[i]是依赖于dp[i - 1]的状态,dp[0]就是递推公式的基础。
dp[0]应该是多少呢?
根据dp[i]的定义,很明显dp[0]应为nums[0]即dp[0] = nums[0]。
- 确定遍历顺序
递推公式中dp[i]依赖于dp[i - 1]的状态,需要从前向后遍历。
- 举例推导dp数组
class Solution{
public static int maxSubArray(int[] nums) {
if(nums.length == 0){
return 0;
}
int res = nums[0];
int[] dp = new int[nums.length];
dp[0] = nums[0];
for(int i =1;i<nums.length;i++){
dp[i] = Math.max(dp[i-1] + nums[i],nums[i]);
res = res >dp[i] ? res:dp[i];
}
return res;
}
}
总结
动态规划;