第一类曲面积分:曲面微元dσ与其投影面积微元dxdy之间的关系推导
本篇博客精简自本人关于曲面积分的博客:详情见:曲面积分(Surface Integral)
曲面参数化(曲面上的每个点都使用起点为原点、终点为该曲面上的点的向量表示)
x
o
y
xoy
xoy平面中区域
R
R
R(其实是曲面在
x
o
y
xoy
xoy平面上的投影)上方的曲面,其参数表示式
r
(
u
,
v
)
=
f
(
u
,
v
)
i
+
g
(
u
,
v
)
j
+
h
(
u
,
v
)
k
\bold{r}(u,v)=f(u,v)\bold{i}+g(u,v)\bold{j}+h(u,v)\bold{k}
r(u,v)=f(u,v)i+g(u,v)j+h(u,v)k
点
P
P
P处的沿
u
u
u轴和
v
v
v轴的切向量分别是:
r
u
=
∂
r
(
u
,
v
)
∂
u
=
∂
f
(
u
,
v
)
∂
u
i
+
∂
g
(
u
,
v
)
∂
u
j
+
∂
h
(
u
,
v
)
∂
u
k
\bold{r_u}=\frac{\partial \bold{r}(u,v)}{\partial u}=\frac{\partial f(u,v)}{\partial u}\bold{i}+\frac{\partial g(u,v)}{\partial u}\bold{j}+\frac{\partial h(u,v)}{\partial u}\bold{k}
ru=∂u∂r(u,v)=∂u∂f(u,v)i+∂u∂g(u,v)j+∂u∂h(u,v)k
r
v
=
∂
r
(
u
,
v
)
∂
v
=
∂
f
(
u
,
v
)
∂
v
i
+
∂
g
(
u
,
v
)
∂
v
j
+
∂
h
(
u
,
v
)
∂
v
k
\bold{r_v}=\frac{\partial \bold{r}(u,v)}{\partial v}=\frac{\partial f(u,v)}{\partial v}\bold{i}+\frac{\partial g(u,v)}{\partial v}\bold{j}+\frac{\partial h(u,v)}{\partial v}\bold{k}
rv=∂v∂r(u,v)=∂v∂f(u,v)i+∂v∂g(u,v)j+∂v∂h(u,v)k
点P处的沿
u
u
u轴和
v
v
v轴的切向量叉乘的数值大小为两个切向量组成四边形的面积,使用该面积替代下方的曲面微元(以直平面替代曲面)
S
1
=
∣
r
u
×
r
v
∣
S_1=|\bold{r_u}×\bold{r_v}|
S1=∣ru×rv∣
对
r
u
、
r
v
r_u、r_v
ru、rv进行缩放调整其大小基本和下方曲面边长大小差不多,
Δ
u
r
u
、
Δ
v
r
v
\Delta ur_u、\Delta vr_v
Δuru、Δvrv,现在直平面面积变为了
S
=
∣
Δ
u
r
u
×
Δ
v
r
v
∣
=
∣
r
u
×
r
v
∣
Δ
u
Δ
v
≈
Δ
σ
x
y
S=|\Delta ur_u×\Delta vr_v|=|\bold{r_u}×\bold{r_v}|\Delta u\Delta v\approx \Delta\sigma_{xy}
S=∣Δuru×Δvrv∣=∣ru×rv∣ΔuΔv≈Δσxy
曲面微元
d
σ
d\sigma
dσ与
d
u
d
v
dudv
dudv之间的关系
d
σ
=
∣
r
u
×
r
v
∣
d
u
d
v
d\sigma=|\bold{r_u}×\bold{r_v}|dudv
dσ=∣ru×rv∣dudv
若曲面的面密度不是常数,即被积函数不是常数,则曲面S质量为:
∬
S
G
(
x
,
y
,
z
)
d
σ
=
∬
R
G
(
f
(
u
,
v
)
,
g
(
u
,
v
)
,
h
(
u
,
v
)
)
∣
r
u
×
r
v
∣
d
u
d
v
\iint\limits_{S}G(x,y,z)d\sigma=\iint\limits_{R}G(f(u,v),g(u,v),h(u,v))|\bold{r_u}×\bold{r_v}|dudv
S∬G(x,y,z)dσ=R∬G(f(u,v),g(u,v),h(u,v))∣ru×rv∣dudv
若我们取
x
=
u
、
y
=
v
、
z
=
f
(
x
,
y
)
x=u、y=v、z=f(x,y)
x=u、y=v、z=f(x,y),其中
z
=
f
(
x
,
y
)
z=f(x,y)
z=f(x,y)是
x
o
y
xoy
xoy平面中区域
R
R
R上的曲面表达式
参数化后曲面的表示式
r
(
u
,
v
)
=
u
i
+
v
j
+
f
(
u
,
v
)
k
\bold{r}(u,v)=u\bold{i}+v\bold{j}+f(u,v)\bold{k}
r(u,v)=ui+vj+f(u,v)k
点P处的沿
u
u
u轴和
v
v
v轴的切向量分别是:
r
u
=
∂
r
(
u
,
v
)
∂
u
=
i
+
f
u
′
(
u
,
v
)
k
\bold{r_u}=\frac{\partial \bold{r}(u,v)}{\partial u}=\bold{i}+f'_u(u,v)\bold{k}
ru=∂u∂r(u,v)=i+fu′(u,v)k
r
v
=
∂
r
(
u
,
v
)
∂
v
=
j
+
f
v
′
(
u
,
v
)
k
\bold{r_v}=\frac{\partial \bold{r}(u,v)}{\partial v}=\bold{j}+f'_v(u,v)\bold{k}
rv=∂v∂r(u,v)=j+fv′(u,v)k
r
u
×
r
v
=
∣
i
j
k
1
0
f
u
′
0
1
f
v
′
∣
=
−
f
u
′
i
−
f
v
′
j
+
k
\bold{r_u}×\bold{r_v}=\left | \begin{matrix} \bold{i}&\bold{j}&\bold{k}\\ 1 & 0 & f'_u \\ 0 & 1 & f'_v \\ \end{matrix} \right | =-f'_u\bold{i}-f'_v\bold{j}+\bold{k}
ru×rv=
i10j01kfu′fv′
=−fu′i−fv′j+k
∣
r
u
×
r
v
∣
=
(
−
f
u
′
)
2
+
(
−
f
v
′
)
2
+
1
2
=
f
u
′
2
+
f
v
′
2
+
1
|\bold{r_u}×\bold{r_v}|=\sqrt{(-f'_u)^2+(-f'_v)^2+1^2}=\sqrt{f'^2_u+f'^2_v+1}
∣ru×rv∣=(−fu′)2+(−fv′)2+12=fu′2+fv′2+1
∣
r
u
×
r
v
∣
d
u
d
v
=
(
−
f
u
′
)
2
+
(
−
f
v
′
)
2
+
1
2
d
u
d
v
=
f
u
′
2
+
f
v
′
2
+
1
d
u
d
v
|\bold{r_u}×\bold{r_v}|dudv=\sqrt{(-f'_u)^2+(-f'_v)^2+1^2}dudv=\sqrt{f'^2_u+f'^2_v+1}dudv
∣ru×rv∣dudv=(−fu′)2+(−fv′)2+12dudv=fu′2+fv′2+1dudv
将参数化后的参数替换为原参
x
=
u
、
y
=
v
x=u、y=v
x=u、y=v
曲面微元
d
σ
d\sigma
dσ与其投影面积微元
d
x
d
y
dxdy
dxdy之间的关系
d
σ
=
f
x
′
2
+
f
y
′
2
+
1
d
x
d
y
d\sigma=\sqrt{f'^2_x+f'^2_y+1}dxdy
dσ=fx′2+fy′2+1dxdy
区域R(曲面投影)上方曲面的面积为:
∬
R
d
σ
=
∬
R
f
x
′
2
+
f
y
′
2
+
1
d
x
d
y
\iint\limits_{R}d\sigma=\iint\limits_{R}\sqrt{f'^2_x+f'^2_y+1}dxdy
R∬dσ=R∬fx′2+fy′2+1dxdy
曲面显式表达式:
z
=
f
(
x
,
y
)
z=f(x,y)
z=f(x,y),曲面隐式表达式:
G
(
x
,
y
,
z
)
=
z
−
f
(
x
,
y
)
G(x,y,z)=z-f(x,y)
G(x,y,z)=z−f(x,y)
G
x
′
(
x
,
y
,
z
)
=
−
f
x
′
(
x
,
y
)
G
y
′
(
x
,
y
,
z
)
=
−
f
y
′
(
x
,
y
)
G
z
′
(
x
,
y
,
z
)
=
1
G'_x(x,y,z)=-f'_x(x,y)\\ ~\\ G'_y(x,y,z)=-f'_y(x,y)\\ ~\\ G'_z(x,y,z)=1
Gx′(x,y,z)=−fx′(x,y) Gy′(x,y,z)=−fy′(x,y) Gz′(x,y,z)=1
若曲面的面密度不是常数,即被积函数不是常数,则曲面S质量为:
∬
S
G
(
x
,
y
,
z
)
d
σ
=
∬
R
G
(
x
,
y
,
f
(
x
,
y
)
)
f
x
′
2
+
f
y
′
2
+
1
d
x
d
y
\iint\limits_{S}G(x,y,z)d\sigma=\iint\limits_{R}G(x,y,f(x,y))\sqrt{f'^2_x+f'^2_y+1}dxdy
S∬G(x,y,z)dσ=R∬G(x,y,f(x,y))fx′2+fy′2+1dxdy