动态规划:子序列问题(C++)

news2025/1/2 0:22:30

动态规划:子序列问题

    • 前言
    • 子序列问题
      • 1.最长递增子序列(中等)
      • 2.摆动序列(中等)
      • 3.最长递增子序列的个数(中等)
      • 4.最长数对链(中等)
      • 5.最长定差子序列(中等)
      • 6.最长的斐波那契子序列的长度(中等)
      • 7.最长等差序列(中等)
      • 8.等差数列划分II - 子序列(困难)

前言

动态规划往期文章:

  1. 动态规划入门:斐波那契数列模型以及多状态
  2. 动态规划:路径和子数组问题

子序列问题

1.最长递增子序列(中等)

链接:最长递增子序列

  • 题目描述
    在这里插入图片描述

  • 做题步骤

  1. 状态表示
    对于线性dp,我们通常采用下面两种表示:
    (1)以某个位置为结尾,……
    (2)以某个位置为起点,……
    这两种方式我们通常采用第一种,以某个位置为结尾,再结合题目要求,我们可以定义状态表示为dp[i]:以i位置为结尾的所有子序列中,最长递增子序列的长度。

  2. 状态转移方程
    对于以i位置为结尾的子序列,一共有两种可能:
    (1)不接在别人后面,就自己一个,dp[i] = 1
    (2)接在[0,1,2,……,i - 1]这些位置后面,设0 <= j <= i - 1,能保持子序列递增(nums[j] < nums[i])就可以接在该位置后面。
    从0~i - 1枚举j,看接在那个位置后面长度最大:
    即dp[i] = max(dp[i], dp[j] + 1)

  3. 初始化
    每个位置最小都为1,全都初始化为1。

  4. 填表顺序
    保证填当前状态时,所需状态已经计算过,填表顺序为从左往右

  5. 返回值
    没法直接确定最长子序列的结尾位置,一边dp一边更新最大值

  • 代码实现
class Solution {
public:
    int lengthOfLIS(vector<int>& nums) {
        int n = nums.size();
        //dp[i]表示以i位置为结尾的最长递增子序列
        vector<int> dp(n, 1);    
       int ret = 1;
        for(int i = 1; i < n; i++)
        {
            //从[0, i-1]看一圈,找接在那个符合条件的位置后面可以让子序列最长
            for(int j = 0; j < i; j++)       
                if(nums[j] < nums[i])
                    dp[i] = max(dp[i], dp[j] + 1);                         
            //看看能不能更新最大
            ret = max(ret, dp[i]);
        }
        return ret;
        //时间复杂度:O(N ^ 2)
        //空间复杂度:O(N)
    }
};

2.摆动序列(中等)

链接:摆动序列

  • 题目描述
    在这里插入图片描述

  • 做题步骤

  1. 状态表示
    依据前面的经验,我们依据可以定义状态表示为dp[i]:以i位置为结尾的所有摆动序列中的最大长度

  2. 状态转移方程
    对于长度大于1的摆动序列,其有两种情况:
    (1)处于上升状态,比如(1, 7, 4, 9)。
    (2)处于下降状态,比如(1, 17, 10)。
    因此我们需要同时记录两种状态,其中f[i]表示以i位置为结尾并处于上升状态的最长摆动序列长度,g[i]表示处于下降状态

    摆动序列分析完了,我们再来分析单个位置,一共有两种可能:
    (1)不接在别人后面,自己玩,dp[i] = 1
    (2)接在[0,1,2,……,i - 1]这些位置后面,设0 <= j <= i - 1。
    ①如果接在j位置后处于上升状态(nums[i] - nums[j] > 0),需要以j位置为结尾并处于下降状态的状态,即f[i] = g[j] + 1
    ②如果接在j位置后处于下降状态(nums[i] - nums[j] < 0),需要以j位置为结尾并处于上升状态的状态,即g[i] = f[j] + 1

  3. 初始化
    序列长度最小为1,所有位置全都初始化为1

  4. 填表顺序
    保证填当前状态时,所需状态已经计算过,填表顺序为从左往右

  5. 返回值
    没法直接确定最长摆动序列的结尾,所以一边dp一边更新最大值

  • 代码实现
class Solution {
public:
    int wiggleMaxLength(vector<int>& nums) 
    {
        //dp[i]表示以i位置为结尾的最长摆动序列长度
        int n = nums.size();
        vector<int> f(n, 1);//处于上升状态
        vector<int> g(n, 1); //处于下降状态
        int ret = f[0]; //记录最终结果
        for(int i = 1; i < n; i++)
        {
            for(int j = 0; j < i; j++)
            {
                int gap = nums[i] - nums[j];
                //处于上升
                if(gap > 0)
                    f[i] = max(f[i], g[j] + 1);
                //处于下降
                else if(gap < 0)
                    g[i] = max(g[i], f[j] + 1);
                //相同的情况为1不用处理
            }
            ret = max({ret, f[i], g[i]});
        }
        return ret;
        //时间复杂度:O(N ^ 2)
        //空间复杂度:O(N)
    }
};

3.最长递增子序列的个数(中等)

链接:最长递增子序列的个数

  • 题目描述
    在这里插入图片描述

  • 做题步骤

  1. 状态表示
    依据前面的经验,我们可以定义状态表示dp[i]:以i位置为结尾的最长递增子序列个数

  2. 状态转移方程
    要更新当前位置的最长递增子序列个数,无非是看接在那几个位置后面长度最大,但问题就在于现在只有前面位置的序列个数,没有长度,所以我们需要再加一个表来记录长度:
    (1)count[i]:以i位置为结尾的最长递增子序列个数
    (2)len[i]:以i位置为结尾的最长递增子序列长度

    len[i]前面已经讲过,我们分析count[i]:
    (1)不接在别人后面,最大长度就为1,count[i] = 1
    (2)接在[0,1,2,……,i - 1]这些位置后面,设0 <= j <= i - 1,能保持子序列递增(nums[j] < nums[i])就可以接在该位置后面。

    从0~i - 1枚举j,依据接在那个位置后面的长度进行分析:
    ①比原来长度小(len[i] > len[j] + 1),不用管。
    ②比原来长度大(len[i] < len[j] + 1),原来的序列个数无论多少都必须狠狠切割了,个数更新为更长的,即count[i] = count[j]
    ③和原来长度一样(len[i] == len[j] + 1),计数增加,即count[i] += count[j]

  3. 初始化
    序列长度最小为1,全都初始化为1

  4. 填表顺序
    保证填当前状态时,所需状态已经计算过,填表顺序为从左往右

  5. 返回值
    (1)完成了前面的工作,我们知道以每一个位置为结尾的最长递增子序列长度和个数,但是并不知道以那几个位置为结尾的序列最长,所以我们需要一边dp一边更新最大长度max_length
    (2)知道了最大长度,我们只需要遍历一次count表,把长度为max_length的序列统计出来即可

  • 代码实现
class Solution {
public:
    int findNumberOfLIS(vector<int>& nums) {
        int n = nums.size();
        vector<int> count(n, 1); //f[i]表示以i位置为结尾的最长子序列个数
        auto len = count; //g[i]表示以i位置为结尾的最长递增子序列长度
        int max_length = len[0];
        for(int i = 1; i < n; i++)
        {
            for(int j = 0; j < i; j++)
            {
                if(nums[i] > nums[j])
                {
                    //找到了更加长的
                    if(len[i] < len[j] + 1)
                    {
                        len[i] = len[j] + 1;
                        count[i] = count[j];
                    }
                    else if(len[i] == len[j] + 1) //长度相同                 
                        count[i] += count[j];               
                }
            }
            max_length = max(max_length, len[i]);
        }
        int ret = 0;    //返回值
        //遍历一次,计算最长序列个数
        for(int i = 0; i < n; i++)      
            if(len[i] == max_length)
                ret += count[i];
        return ret;
        //时间复杂度:O(N ^ 2)
        //空间复杂度:O(N)
    }
};

4.最长数对链(中等)

链接:最长数对链

  • 题目描述
    在这里插入图片描述

  • 做题步骤

  1. 状态表示
    依据前面经验,我们定义状态表示dp[i]:以i位置为结尾最长数对链长度

  2. 状态转移方程
    这个题目的分析其实和前面的最长递增子序列基本一致。
    (1)不接在别人后面,自己玩,dp[i] = 1
    (2)接在[0,1,2,……,i - 1]这些位置后面,设0 <= j <= i - 1,满足数对链要求(pairs[j][1] < pairs[i][0])就可以接在该位置后面。
    从0~i - 1枚举j,看接在那个位置后面长度最大:
    即dp[i] = max(dp[i], dp[j] + 1)

  3. 初始化
    长度最小为1,全都初始化为1

  4. 填表顺序
    保证填当前状态时,所需状态已经计算过,填表顺序为从左往右

  5. 返回值
    没法直接确定最长数对链的结尾,所以一边dp一边更新最大值

  • 代码实现
class Solution {
public:
    int findLongestChain(vector<vector<int>>& pairs) {              
        sort(pairs.begin(), pairs.end());   //先排序
        int n = pairs.size();
        //dp[i]表示以i位置为终点的最长长度
        vector<int> dp(n, 1);
        int ret = 1; //记录最长
        for(int i = 1; i < n; i++)
        {
            for(int j = 0; j < i; j++)                      
                if(pairs[j][1] < pairs[i][0]) //如果可以接在后面            
                    dp[i] = max(dp[i], dp[j] + 1);                         
            ret = max(ret, dp[i]);
        }
        return ret;
        //时间复杂度:O(N ^ 2)
        //空间复杂度:O(N)
    }
};

5.最长定差子序列(中等)

链接:最长定差子序列

  • 题目描述
    在这里插入图片描述

  • 做题步骤

  1. 状态表示
    依据前面的经验,我们定义状态表示dp[i]:以下标i位置为结尾的最长等差子序列长度

  2. 状态转移方程
    这个题目最好想的做法就是递增子序列的做法,但这样写会超时,我们可以分析一下原因:
    (1)递增子序列可以接在很多位置的后面。
    (2)等差子序列只能接在固定的位置后面,比如(1, 2, 3, 4),difference为1,里面的4只能接在3后面,其它的判断都是多余的。

    那我们就换一种思路,还是(1, 2, 3, 4),difference为1这个例子,我们在填4位置的时候,如果能够直接找到以3(arr[i] - difference)为结尾的最长递增子序列就好了。
    我们可以把元素arr[i]与dp[i]绑定,创建一个哈希表hash,我们可以直接在这个哈希表中做动态规划,那状态转移方程就为:
    hash[i] = hash[arr[i] - difference] + 1

  3. 初始化
    在填表的时候,如果前置状态不存在,我们不单独处理(0加1变成1刚好对应自己一个的情况)。因此我们只需要把第⼀个元素放进哈希表中, hash[arr[0]] = 1即可

  4. 填表顺序
    保证填当前状态时,所需状态已经计算过,填表顺序为从左往右

  5. 返回值
    不确定最长等差子序列的结尾,所以一边dp一边更新最大值

  • 代码实现
class Solution
{
    public:
    int longestSubsequence(vector<int>& arr, int difference) 
    {
        // 创建⼀个哈希表
        unordered_map<int, int> hash; // {arr[i], dp[i]}
        hash[arr[0]] = 1; // 初始化
        int ret = 1;
        for(int i = 1; i < arr.size(); i++)
        {
            hash[arr[i]] = hash[arr[i] - difference] + 1;
            ret = max(ret, hash[arr[i]]);
        }
        return ret;
        //时间复杂度:O(N)
        //空间复杂度:O(N)
    }
};

6.最长的斐波那契子序列的长度(中等)

链接:最长的斐波那契子序列的长度

  • 题目描述
    在这里插入图片描述

  • 做题步骤

  1. 状态表示
    依据经验我们可能会定义状态表示为以i位置为结尾的最长斐波那契序列的长度,但这样定义有一个致命的问题:不知道接在某一个位置后能否构成斐波那契序列
    一个元素无法确定,但如果我们知道斐波那契序列的后两个元素,我们就可以推导出前一个元素,从而解决前面的问题。
    所以定义一个二维表dp[i][j]:以i,j位置为后两个元素的最长斐波那契序列的长度

  2. 状态转移方程
    规定 i 比 j 小,其中j从[2, n - 1]开始枚举,i从[1, j - 1]开始枚举。
    设 nums[i] = b, nums[j] = c ,那么这个序列的前⼀个元素就是 a = c - b ,我们根据 a 的情况讨论:
    (1)a存在,设其下标为k,并且 a < b,这个时候c可以接在以a、b为结尾的斐波那契序列后面,则dp[i][j] = dp[k][i] + 1
    (2)a存在,但是 b < a < c,这个时候只能b和c两个自己构成,dp[i][j] = 2
    (3)a不存在,这个时候只能b和c两个自己构成,dp[i][j] = 2

    我们发现,在状态转移⽅程中,我们需要确定 a 元素的下标。因此我们可以在 dp 之前,将所有的「元素 + 下标」绑定在⼀起,放到哈希表中。

  3. 初始化
    长度最小为2,全都初始化为2

  4. 填表顺序
    固定最后一个数,枚举倒数第二个数

  5. 返回值
    不确定最长斐波那契子序列的结尾,所以一边dp一边更新最大值

  • 代码实现
class Solution {
public:   
    int lenLongestFibSubseq(vector<int>& arr)
    {
        int n = arr.size();
        //i->j
        dp[i][j]表示以i,j为后两个的斐波那契数列最长长度
        vector<vector<int>> dp(n, vector<int>(n, 2));
        unordered_map<int, int> hash;
        for(int i = 0; i < n; i++) hash[arr[i]] = i;

        int ret = 2;
        for (int j = 2; j < n; j++)
        {
            for (int i = 1; i < j; i++)
            {
                int former = arr[j] - arr[i];
                //a b c,a < b 并且a存在
                if (former < arr[i] &&  hash.count(former))
                {
                    dp[i][j] = dp[hash[former]][i] + 1;
                }
                ret = max(ret, dp[i][j]);
            }
        }
        //斐波那契序列最小为3,为2的情况返回0
        return ret > 2 ? ret : 0;
        //时间复杂度:O(N)
        //空间复杂度:O(N ^ 2)
    }
};

7.最长等差序列(中等)

链接:最长等差序列

  • 题目描述
    在这里插入图片描述

  • 做题步骤

  1. 状态表示
    和前面一道题类似,只有一个元素无法确定等差序列的样子,我们需要有后面两个元素才能确定,故定义一个二维表dp[i][j]:以i,j为后两个元素的最长等差子序列的长度

  2. 状态转移方程
    规定 i 比 j 小,设 nums[i] = b, nums[j] = c ,那么这个序列的前⼀个元素就是 a = 2 * nums[i] - nums[j] (等差序列的性质捏) ,我们根据 a 的情况讨论:
    (1)a存在,设其下标为k,这个时候c可以接在以a、b为结尾的序列后面,则dp[i][j] = dp[k][i] + 1
    (2)a不存在,这个时候只能b和c两个自己构成,dp[i][j] = 2

    我们发现,在状态转移方程中,我们需要确定 a 元素的下标。因此我们可以将所有的「元素 + 下标」绑定在⼀起,放到哈希表中。对于这个题目哈希表有两种方案:
    (1)在dp前就直接放入哈希表,可能出现重复的元素(这个题目是乱序的,前面一题严格递增),要记录这些重复元素,需要让它们的下标形成一个数组,填表前要先遍历数组找到需要的下标,时间消耗很大,这个方案通过不了
    (2)只能采取一边dp一边存入哈希表的方式,在i位置使用完后存入哈希表中,但填表顺序必须固定倒数第二,枚举倒数第一,不能采用上一题固定倒一,枚举倒二的填表方式。我们看这个例子:【0,2,4,4,4,6,8,4,9,4,4】,最后一个4固定,第一个4为倒数第二时,应该去找之前4的下标(这里前面是[0,2],没有4,意味着这个数不应该在哈希表中,但固定倒一,枚举倒二的填表方式使得哈希表中是有保存的,这个时候就完全乱了)

  3. 初始化
    长度最小为2,全部初始化为2

  4. 填表顺序
    填表顺序为固定倒数第二,枚举倒数第一

  5. 返回值
    不确定最长等差序列的结尾,所以一边dp一边更新最大值

  • 代码实现
class Solution {
public:
    //dp[i][j]表示以i,j为结尾的最长等差数列长度
    int longestArithSeqLength(vector<int>& nums) {
        int n = nums.size();
        unordered_map<int, int> hash;       
        hash[nums[0]] = 0;
        vector<vector<int>> dp(n, vector<int>(n, 2));
        int ret = 2;
        for (int i = 1; i < n; i++) //倒数第二个
        {
            for (int j = i + 1; j < n; j++)
            {
                int former = 2 * nums[i] - nums[j];
                if (hash.count(former))
                    dp[i][j] = dp[hash[former]][i] + 1;
                ret = max(ret, dp[i][j]);
            }
            hash[nums[i]] = i;
        }
        return ret;
        //时间复杂度:O(N ^ 2)
        //空间复杂度:O(N ^ 2)
    }
};

8.等差数列划分II - 子序列(困难)

链接:等差数列划分II - 子序列

  • 题目描述
    在这里插入图片描述

  • 做题步骤

  1. 状态表示
    和前面一道题一致,只有一个元素无法确定等差序列的样子,我们需要有后面两个元素才能确定,故定义一个二维表dp[i][j]:以i,j为后两个元素的等差子序列个数

  2. 状态转移方程
    首先,这个题目不存在重复的等差子序列,只要组成的元素位置不同就视为不同子序列,比如[7,7,7,7,7]这个数组等差子序列个数高达16个。

    规定 i 比 j 小,设 nums[i] = b, nums[j] = c ,那么这个序列的前⼀个元素就是 a = 2 * nums[i] - nums[j] ,我们根据 a 的情况讨论:
    (1)a存在,这个时候c可以接在以a、b为结尾的序列后面。设a下标为k,这里下标情况就和前面不同了,因为可能存在多个a,我们需要用一个下标数组来记录不同位置的a下标,当k < i时(a在i的前面),dp[i][j] += dp[k][i] + 1,这里的+1表示[a,b,c]这一组,把满足条件的a全部加起来即可
    (2)a不存在,这个时候只能b和c两个自己构成,dp[i][j] = 2

    我们发现,在状态转移方程中,我们需要确定 a 元素的下标。因此我们可以将所有的「元素 + 下标数组」绑定在⼀起,放到哈希表中。

  3. 初始化
    无需初始化,默认为0。

  4. 填表顺序
    填表顺序为固定倒一,枚举倒二

  5. 返回值
    定义变量sum,一边dp一边累加

  • 代码实现
class Solution {
public:
    int numberOfArithmeticSlices(vector<int>& nums) {
        int n = nums.size();
        //dp[i][j]表示以i,j为结尾的等差数列个数,规定j > i
        //前置可能有存在多个,需要一一加起来
        vector<vector<int>> dp(n, vector<int>(n));
        unordered_map<long long, vector<int>> hash; //数据和下标数组绑定
        for(int i = 0; i < n; i++)
            hash[nums[i]].push_back(i);
        int sum = 0;
        for(int j = 2; j < n; j++)
        {
            for(int i = 1; i < j; i++)
            {
                long long former = (long long)nums[i] * 2 - nums[j]; //处理数据溢出
                if(hash.count(former))
                {
                    for(auto k : hash[former])
                    {
                        //former必须在左边
                        if(k < i)
                            dp[i][j] += dp[k][i] + 1; //这里的1表示[a,b,c]单独一组
                        else //当前a下标不满足,后面的也一定不满足,可以直接跳出
                            break;
                    }      
                }
                sum += dp[i][j];
            }
        }
        return sum;
        //相同数据不多的情况下
        //时间复杂度:O(N ^ 2)
        //空间复杂度:O(N ^ 2)
    }
};

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1015339.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

SQL优化--排序优化(order by)

Using filesort : 通过表的索引或全表扫描&#xff0c;读取满足条件的数据行&#xff0c;然后在排序缓冲区sort buffer中完成排序操作&#xff0c;所有不是通过索引直接返回排序结果的排序都叫 FileSort 排序。 Using index : 通过有序索引顺序扫描直接返回有序数据&#xff0c…

linux驱动开发day6--(epoll实现IO多路复用、信号驱动IO、设备树以及节点和属性解析相关API使用)

一、IO多路复用--epoll实现 1.核心&#xff1a; 红黑树、一张表以及三个接口、 2.实现过程及API 1&#xff09;创建epoll句柄/创建红黑树根节点 int epfdepoll_create(int size--无意义&#xff0c;>0即可)----------成功&#xff1a;返回根节点对应文件描述符&#xf…

计算机二级python基础题刷题笔记(二)

1、等比数列 1、获得用户输入的以逗号分隔的三个数字&#xff0c;记为a,b,c,以a为起始数值&#xff0c;b为前后相邻数的比值&#xff0c;c为数列长度 &#xff0c;产生一个等比数列&#xff0c;将这个数列以逗号分隔的形式输出&#xff0c;最后一个元素输出后无逗号 等比数列公…

匿名管道-

因为父子进程是共享文件描述符的环形队列&#xff0c;只能读一次 会被后面覆盖 /*#include <unistd.h>int pipe(int pipefd[2]);功能&#xff1a;创建一个匿名管道&#xff0c;用于进程间通信参数&#xff1a;int 类型数组 &#xff0c;是传出参数pipefd[0]是管道读端 p…

企业级SpringBoot单体项目模板 ——整合MySQL和Mybatis-plus

&#x1f61c;作 者&#xff1a;是江迪呀✒️本文关键词&#xff1a;Springboot、数据库、Git、项目☀️每日 一言&#xff1a;野心是对梦想最好的致敬&#xff01; 上回我们已经成功的创建了一个SpringBoot的单体项目并测试启动并了&#xff0c;但是光有个空架子是…

【独立全开源】点大商城V2-2.5.2 新增 微信小程序隐私协议弹窗

独立全开源版本&#xff1a;点大商城V2小程序公众号模块&#xff0c;版本更新至2.5.2&#xff0c;前端为UNiapp、这个是源码后端开源&#xff0c;购买包更新&#xff0c;包修复、 更新为覆盖升级&#xff0c;源码更新了&#xff1a;新增 微信小程序隐私协议弹窗 测试环境&…

肖sir__mysql之多表练习题__007

已知2张基本表&#xff1a;部门表&#xff1a;dept &#xff08;部门号&#xff0c;部门名称&#xff09;;员工表 emp&#xff08;员工号&#xff0c;员工姓名&#xff0c;年龄&#xff0c;入职时间&#xff0c;收入&#xff0c;部门号&#xff09; 1&#xff1a;dept表中有4条…

C++ Primer 第4章 表达式

C Primer 第4章 表达式 4.1 基础4.1.1 基本概念一、组合运算符和运算对象二、运算对象转换三、重载运算符四、左值和右值 4.1.2 优先级与结合律一、括号无视优先级与结合律二、优先级与结合律有何影响 4.1.3 求值顺序一、求值顺序、优先级、结合律 4.2 算术运算符练习 4.3 逻辑…

图片拖动验证效果(源码)

JS案例图片拖动验证 &#x1f31f;效果展示 &#x1f31f;前置知识 CSS sprite 精灵图 &#x1f31f; 代码实现 页面搭建 距离计算 逻辑部分 随机生成背景图片 计算拖动图块和空缺图块的位置 绑定事件 &#x1f31f;写在最后 &#x1f31f;效果展示 &#x1f31f;…

六、不root不magisk不xposed lsposed frida原生修改定位

前言常用风控APP检测1.Aida64检测2.momo检测3.微霸检测4.cellular-z检测 厂商测试总结 前言 不root不戴面具 不xposed lsposed frida&#xff0c;不分身&#xff0c;不多开&#xff0c;最完美的原生修改定位。 常用风控APP检测 先看效果再说原理&#xff0c;先过一遍环境 1.Ai…

mysql内连接与外连接详解

内连接与外连接 内连接外连接 在数据库中&#xff0c;连接操作是一种把两个或者多个表的记录组合在一起的操作&#xff0c;常用的有内连接&#xff08;Inner Join&#xff09;、外连接&#xff08;Outer Join&#xff09;等。 内连接 内连接&#xff08;Inner Join&#xff0…

STM32 Cubemx 通用定时器 General-Purpose Timers同步

文章目录 前言简介cubemx配置 前言 持续学习stm32中… 简介 通用定时器是一个16位的计数器&#xff0c;支持向上up、向下down与中心对称up-down三种模式。可以用于测量信号脉宽&#xff08;输入捕捉&#xff09;&#xff0c;输出一定的波形&#xff08;比较输出与PWM输出&am…

mysql 日志总结

mysql 根据日志的功能&#xff0c;分6种 慢查询日志&#xff1a;记录所有执行时间超过 long_query_time 的所有查询&#xff0c;方便我们对查询进行优化通用查询日志&#xff1a;记录所有连接的起始时间和终止时间&#xff0c;以及连接发送给数据库服务器的所有指令&#xff0…

Junit单元测试异常处理方法

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 Junit单元测试异常处理方法 前言案例准备一、类方法内处理异常二、测试方法中处理异常1.try/catch/finally 语句2.Test(expected)3.ExpectedException 前言 提示&#xff1a…

【C语言】指针和数组笔试题解析(2)

【C语言】指针和数组笔试题解析&#xff08;1&#xff09;&#xff0c; 这是第一篇关于sizeof与strlen在指针中的应用&#xff0c;而这一篇主要讲解在各种情形下的灵活运用&#xff0c;也是大厂中经典的面试题 第一题&#xff1a; int main() {int a[5] { 1, 2, 3, 4, 5 };in…

开始在 Windows 上使用 Next.js

&#x1f3ac; 岸边的风&#xff1a;个人主页 &#x1f525; 个人专栏 :《 VUE 》 《 javaScript 》 ⛺️ 生活的理想&#xff0c;就是为了理想的生活 ! 目录 必备条件 安装 Next.js 本指南帮助你安装 Next.js Web 框架并在 Windows 上启动和运行。 Next.js 是一个框架&…

利用idea新创建maven项目时的一些基本配置

1.修改项目默认的maven仓库 file->Settings->Build 2.设置项目的jdk版本 设置完点OK即可。 同样的我们还需要在项目配置中进行修改。 通过以上设置一般就可以解决jdk版本不兼容地方问题。

详细解释HiveSQL执行计划

一、前言 Hive SQL的执行计划描述SQL实际执行的整体轮廓&#xff0c;通过执行计划能了解SQL程序在转换成相应计算引擎的执行逻辑&#xff0c;掌握了执行逻辑也就能更好地把握程序出现的瓶颈点&#xff0c;从而能够实现更有针对性的优化。此外还能帮助开发者识别看似等价的SQL其…

Redis 高性能设计之epoll和IO多路复用深度解析

I/O多路复用模型是什么 I/O&#xff1a;网络I/O多路&#xff1a;多个客户端连接&#xff08;连接就是套接字描述符&#xff0c;即socket或者channel&#xff09;&#xff0c;指的是多条TCP连接复用&#xff1a;用一个进程来处理多条的连接&#xff0c;使用单进程就能的够实现同…

【Linux系统编程】操作系统的概念、定位 及系统调用

文章目录 前言1. 操作系统的概念和定位2. 如何理解“管理”3. 操作系统为什么要做管理4. 系统调用和库函数概念5. 局部性原理6. 计算机体系结构 前言 上一篇文章我们学习了冯诺依曼体系结构&#xff08;属于计算机硬件的范畴&#xff09;&#xff0c;其中我们提到&#xff0c;因…