分布式事务基础理论

news2025/1/10 17:16:37

基础概念

什么是事务

什么是事务?举个生活中的例子:你去小卖铺买东西,“一手交钱,一手交货”就是一个事务的例子,交钱和交货必 须全部成功,事务才算成功,任一个活动失败,事务将撤销所有已成功的活动。

明白上述例子,再来看事务的定义:

事务可以看做是一次大的活动,它由不同的小活动组成,这些活动要么全部成功,要么全部失败。

本地事务

在计算机系统中,更多的是通过关系型数据库来控制事务,这是利用数据库本身的事务特性来实现的,因此叫数据 库事务,由于应用主要靠关系数据库来控制事务,而数据库通常和应用在同一个服务器,所以基于关系型数据库的 事务又被称为本地事务。 回顾一下数据库事务的四大特性 ACID:

A(Atomic):原子性,构成事务的所有操作,要么都执行完成,要么全部不执行,不可能出现部分成功部分失 败的情况。

C(Consistency):一致性,在事务执行前后,数据库的一致性约束没有被破坏。比如:张三向李四转100元, 转账前和转账后的数据是正确状态这叫一致性,如果出现张三转出100元,李四账户没有增加100元这就出现了数 据错误,就没有达到一致性。

I(Isolation):隔离性,数据库中的事务一般都是并发的,隔离性是指并发的两个事务的执行互不干扰,一个事 务不能看到其他事务运行过程的中间状态。通过配置事务隔离级别可以避脏读、重复读等问题。

D(Durability):持久性,事务完成之后,该事务对数据的更改会被持久化到数据库,且不会被回滚。

数据库事务在实现时会将一次事务涉及的所有操作全部纳入到一个不可分割的执行单元,该执行单元中的所有操作 要么都成功,要么都失败,只要其中任一操作执行失败,都将导致整个事务的回滚

分布式事务

随着互联网的快速发展,软件系统由原来的单体应用转变为分布式应用,下图描述了单体应用向微服务的演变:

分布式系统会把一个应用系统拆分为可独立部署的多个服务,因此需要服务与服务之间远程协作才能完成事务操 作,这种分布式系统环境下由不同的服务之间通过网络远程协作完成事务称之为分布式事务,例如用户注册送积分 事务、创建订单减库存事务,银行转账事务等都是分布式事务。 

我们知道本地事务依赖数据库本身提供的事务特性来实现,因此以下逻辑可以控制本地事务:

begin transaction;
//1.本地数据库操作:张三减少金额
//2.本地数据库操作:李四增加金额
commit transation;

 但是在分布式环境下,会变成下边这样:

begin transaction;
//1.本地数据库操作:张三减少金额
//2.远程调用:让李四增加金额
commit transation;

可以设想,当远程调用让李四增加金额成功了,由于网络问题远程调用并没有返回,此时本地事务提交失败就回滚 了张三减少金额的操作,此时张三和李四的数据就不一致了。

因此在分布式架构的基础上,传统数据库事务就无法使用了,张三和李四的账户不在一个数据库中甚至不在一个应 用系统里,实现转账事务需要通过远程调用,由于网络问题就会导致分布式事务问题。

分布式事务产生的场景

1、典型的场景就是微服务架构 微服务之间通过远程调用完成事务操作。 比如:订单微服务和库存微服务,下单的 同时订单微服务请求库存微服务减库存。 简言之:跨JVM进程产生分布式事务。

2、单体系统访问多个数据库实例 当单体系统需要访问多个数据库(实例)时就会产生分布式事务。 比如:用户信 息和订单信息分别在两个MySQL实例存储,用户管理系统删除用户信息,需要分别删除用户信息及用户的订单信 息,由于数据分布在不同的数据实例,需要通过不同的数据库链接去操作数据,此时产生分布式事务。 简言之:跨 数据库实例产生分布式事务。

3、多服务访问同一个数据库实例 比如:订单微服务和库存微服务即使访问同一个数据库也会产生分布式事务,原 因就是跨JVM进程,两个微服务持有了不同的数据库链接进行数据库操作,此时产生分布式事务。

分布式事务基础理论 

通过前面的学习,我们了解到了分布式事务的基础概念。与本地事务不同的是,分布式系统之所以叫分布式,是因 为提供服务的各个节点分布在不同机器上,相互之间通过网络交互。不能因为有一点网络问题就导致整个系统无法 提供服务,网络因素成为了分布式事务的考量标准之一。因此,分布式事务需要更进一步的理论支持,接下来,我 们先来学习一下分布式事务的CAP理论。

在讲解分布式事务控制解决方案之前需要先学习一些基础理论,通过理论知识指导我们确定分布式事务控制的目 标,从而帮助我们理解每个解决方案。

.

CAP理论

理解CAP

CAP是 Consistency、Availability、Partition tolerance三个词语的缩写,分别表示一致性、可用性、分区容忍 性。

下边我们分别来解释:

为了方便对CAP理论的理解,我们结合电商系统中的一些业务场景来理解CAP。

如下图,是商品信息管理的执行流程:

整体执行流程如下:

1、商品服务请求主数据库写入商品信息(添加商品、修改商品、删除商品)

2、主数据库向商品服务响应写入成功。

3、商品服务请求从数据库读取商品信息。 

C - Consistency:

一致性是指写操作后的读操作可以读取到最新的数据状态,当数据分布在多个节点上,从任意结点读取到的数据都 是最新的状态。

上图中,商品信息的读写要满足一致性就是要实现如下目标:

1、商品服务写入主数据库成功,则向从数据库查询新数据也成功。

2、商品服务写入主数据库失败,则向从数据库查询新数据也失败。

如何实现一致性?

1、写入主数据库后要将数据同步到从数据库。

2、写入主数据库后,在向从数据库同步期间要将从数据库锁定,待同步完成后再释放锁,以免在新数据写入成功 后,向从数据库查询到旧的数据。

分布式系统一致性的特点:

1、由于存在数据同步的过程,写操作的响应会有一定的延迟。

2、为了保证数据一致性会对资源暂时锁定,待数据同步完成释放锁定资源。

3、如果请求数据同步失败的结点则会返回错误信息,一定不会返回旧数据。

A - Availability :

可用性是指任何事务操作都可以得到响应结果,且不会出现响应超时或响应错误。

上图中,商品信息读取满足可用性就是要实现如下目标:

1、从数据库接收到数据查询的请求则立即能够响应数据查询结果。

2、从数据库不允许出现响应超时或响应错误。

如何实现可用性?

1、写入主数据库后要将数据同步到从数据库。

2、由于要保证从数据库的可用性,不可将从数据库中的资源进行锁定。

3、即时数据还没有同步过来,从数据库也要返回要查询的数据,哪怕是旧数据,如果连旧数据也没有则可以按照 约定返回一个默认信息,但不能返回错误或响应超时。

分布式系统可用性的特点:

1、 所有请求都有响应,且不会出现响应超时或响应错误。

P - Partition tolerance :

通常分布式系统的各各结点部署在不同的子网,这就是网络分区,不可避免的会出现由于网络问题而导致结点之间 通信失败,此时仍可对外提供服务,这叫分区容忍性。

上图中,商品信息读写满足分区容忍性就是要实现如下目标:

1、主数据库向从数据库同步数据失败不影响读写操作。

2、其一个结点挂掉不影响另一个结点对外提供服务。

如何实现分区容忍性?

1、尽量使用异步取代同步操作,例如使用异步方式将数据从主数据库同步到从数据,这样结点之间能有效的实现 松耦合。

2、添加从数据库结点,其中一个从结点挂掉其它从结点提供服务。

分布式分区容忍性的特点:

1、分区容忍性分是布式系统具备的基本能力。

CAP组合方式

1、上边商品管理的例子是否同时具备 CAP呢?

在所有分布式事务场景中不会同时具备CAP三个特性,因为在具备了P的前提下C和A是不能共存的。 比如:

下图满足了P即表示实现分区容忍:

本图分区容忍的含义是:

1)主数据库通过网络向从数据同步数据,可以认为主从数据库部署在不同的分区,通过网络进行交互。

2)当主数据库和从数据库之间的网络出现问题不影响主数据库和从数据库对外提供服务。

3)其一个结点挂掉不影响另一个结点对外提供服务。 

如果要实现C则必须保证数据一致性,在数据同步的时候为防止向从数据库查询不一致的数据则需要将从数据库数 据锁定,待同步完成后解锁,如果同步失败从数据库要返回错误信息或超时信息。

如果要实现A则必须保证数据可用性,不管任何时候都可以向从数据查询数据,则不会响应超时或返回错误信息。

通过分析发现在满足P的前提下C和A存在矛盾性。

2、CAP有哪些组合方式呢?

所以在生产中对分布式事务处理时要根据需求来确定满足CAP的哪两个方面。

1)AP:

放弃一致性,追求分区容忍性和可用性。这是很多分布式系统设计时的选择。

例如:

上边的商品管理,完全可以实现AP,前提是只要用户可以接受所查询的到数据在一定时间内不是最新的即可。

通常实现AP都会保证最终一致性,后面讲的BASE理论就是根据AP来扩展的,一些业务场景 比如:订单退款,今 日退款成功,明日账户到账,只要用户可以接受在一定时间内到账即可。

2)CP:

放弃可用性,追求一致性和分区容错性,我们的zookeeper其实就是追求的强一致,又比如跨行转账,一次转账请 求要等待双方银行系统都完成整个事务才算完成

3)CA:

放弃分区容忍性,即不进行分区,不考虑由于网络不通或结点挂掉的问题,则可以实现一致性和可用性。那么系统 将不是一个标准的分布式系统,我们最常用的关系型数据就满足了CA。

上边的商品管理,如果要实现CA则架构如下:

主数据库和从数据库中间不再进行数据同步,数据库可以响应每次的查询请求,通过事务隔离级别实现每个查询请 求都可以返回最新的数据。

总结

通过上面我们已经学习了CAP理论的相关知识,CAP是一个已经被证实的理论:一个分布式系统最多只能同时满足 一致性(Consistency)、可用性(Availability)和分区容忍性(Partition tolerance)这三项中的两项。它可以作 为我们进行架构设计、技术选型的考量标准。对于多数大型互联网应用的场景,结点众多、部署分散,而且现在的 集群规模越来越大,所以节点故障、网络故障是常态,而且要保证服务可用性达到N个9(99.99..%),并要达到良 好的响应性能来提高用户体验,因此一般都会做出如下选择:保证P和A,舍弃C强一致,保证最终一致性。

BASE理论

1、理解强一致性和最终一致性

CAP理论告诉我们一个分布式系统最多只能同时满足一致性(Consistency)、可用性(Availability)和分区容忍 性(Partition tolerance)这三项中的两项,其中AP在实际应用中较多,AP即舍弃一致性,保证可用性和分区容忍 性,但是在实际生产中很多场景都要实现一致性,比如前边我们举的例子主数据库向从数据库同步数据,即使不要 一致性,但是最终也要将数据同步成功来保证数据一致,这种一致性和CAP中的一致性不同,CAP中的一致性要求 在任何时间查询每个结点数据都必须一致,它强调的是强一致性,但是最终一致性是允许可以在一段时间内每个结 点的数据不一致,但是经过一段时间每个结点的数据必须一致,它强调的是最终数据的一致性。

2、Base理论介绍

BASE 是 Basically Available(基本可用)、Soft state(软状态)和 Eventually consistent (最终一致性)三个短语的缩 写。BASE理论是对CAP中AP的一个扩展,通过牺牲强一致性来获得可用性,当出现故障允许部分不可用但要保证 核心功能可用,允许数据在一段时间内是不一致的,但最终达到一致状态。满足BASE理论的事务,我们称之为“柔 性事务”。

基本可用:分布式系统在出现故障时,允许损失部分可用功能,保证核心功能可用。如,电商网站交易付款出 现问题了,商品依然可以正常浏览。

软状态:由于不要求强一致性,所以BASE允许系统中存在中间状态(也叫软状态),这个状态不影响系统可用 性,如订单的"支付中"、“数据同步中”等状态,待数据最终一致后状态改为“成功”状态。

最终一致:最终一致是指经过一段时间后,所有节点数据都将会达到一致。如订单的"支付中"状态,最终会变 为“支付成功”或者"支付失败",使订单状态与实际交易结果达成一致,但需要一定时间的延迟、等待。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1015108.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

BUU 加固题 AWDP Fix 持续更新中

BUU Ezsql 首先连接上ssh。输入账号密码。 到/var/www/html目录下&#xff0c;源码在里面。 主要是看index.php文件。 <?php error_reporting(0); include dbConnect.php; $username $_GET[username]; $password $_GET[password]; if (isset($_GET[username]) &&am…

shared library

原文、 shared library compatible vs incompatible compatible library 函数的工作场景没有变化 所有的函数对全局变量和返回参数产生相同的影响所有的函数继续返回相同的结果值提升性能 fix bugs 没有api 被删除可以有新的api加入 export 的结构体没有变化 违反以上各条的…

c++八股day2-虚函数表和虚函数表指针的创建时机

虚函数表和虚函数表指针的创建时机。 背景&#xff1a;用来实现多态&#xff08;包括静态多态和动态多态&#xff09;&#xff0c;多态的原理就是虚函数表和虚函数表指针 虚函数表的创建时机&#xff1a; a.什么时候生成的&#xff1f;编译器编译的时候声生成的&#xff0c;…

筑梦未来,与“EYE”同行——蔡司镜片X肇庆爱尔眼科医院走进石群小学

不知不觉&#xff0c;蔡司光学这项传递护眼理念、营造公益氛围的助童活动已步入第十个年头。从一开始的“孤军奋战”&#xff0c;到现如今拥有汇聚眼视光领域同行的社会号召力&#xff0c;品牌为青少年近视管理方案绘就了清晰的发展蓝图&#xff0c;旨在用蔡司镜片帮助广大青少…

Java(运算符+循环)万字超详细介绍 (囊括了按位,异或,for,while等基础和疑难知识)

【本节目标1】熟练掌握运算符 【本章目标2】熟练掌握循环 万字讲解&#xff0c;十分详细&#xff0c;有大量&#xff08;简单&#xff09;代码帮助理解和大量的&#xff08;简单&#xff09;举例与总结。 1.运算符 1.什么是运算符 计算机最基本的用途之一就是执行数学运算…

shopee——排序模型AUC还能涨吗?

文章目录 CBMRMultiCBMRSample Weight Assignment多任务推荐模型 CBMR MultiCBMR Sample Weight Assignment Click-aware Structure Transfer with Sample Weight Assignment for Post-Click Conversion Rate Estimation 每个用户的top-k 邻居每个商品的top-k 邻居平滑处理并构…

Windows【工具 04】WinSW官网使用说明及实例分享(将exe和jar注册成服务)实现服务器重启后的服务自动重启

官方Github&#xff1b;官方下载地址。没有Git加速的话很难下载&#xff0c;分享一下发布日期为2023.01.29的当前最新稳定版v2.12.0网盘连接。 包含文件&#xff1a; WinSW-x64.exesample-minimal.xmlsample-allOptions.xml 链接&#xff1a;https://pan.baidu.com/s/1sN3hL5H…

02_elasticsearch 核心概念

02_elasticsearch 核心概念 1、lucene和elasticsearch的前世今生2、elasticsearch的核心概念 1、lucene和elasticsearch的前世今生 1、lucene和elasticsearch的前世今生 lucene&#xff1a;最先进、功能最强大的搜索库。但是直接基于lucene开发&#xff0c;非常复杂&#xff…

Idea安装webservice插件

打开Idea的settings菜单&#xff0c;选择Plugins&#xff0c;模糊搜索"Web Ser"&#xff0c;安装以下3个红框内插件&#xff1a; 安装好以上3个插件后&#xff0c;就可以根据需求生成webservice客户端或者webservice服务端了。

【C语言】进阶——指针

目录 ①(●◡●)前言 1.字符指针 ✌字符指针和数组笔试题 2.指针数组 和数组指针 &#x1f44a;指针数组 &#x1f44a;数组指针 &#x1f44a;&数组名和数组名 3.数组传参和指针传参 &#x1f44a;一维数组传参 &#x1f44a;二维数组传参 &#x1f44a;一级…

Gmail邮箱注册情况及最新动态

在中国大陆地区&#xff0c;对于是否可以注册Gmail邮箱一直存在一定的限制和讨论。准确来说&#xff0c;中国大陆地区的用户目前无法直接访问和注册Gmail邮箱。由于某些政策和技术原因&#xff0c;中国政府对于一些外国的网站和服务实施了网络封锁与限制。因此&#xff0c;中国…

聊聊Go语言的向前兼容性和toolchain规则

Go语言在发展演进过程中一直十分注重向后兼容性(backward compatibility)&#xff0c;在Go 1.0版本发布[1]之初就发布了Go1兼容性承诺[2]&#xff0c;简单来说就是保证使用新版本Go(比如Go 1.21版本[3])可以正常编译和运行老版本的Go代码(比如使用Go 1.18版本[4]语法编写的go代…

Docker实战技巧(一):Kubernetes基础操作实战

Kubernetes定位在Saas层,重点解决了微服务大规模部署时的服务编排问题 1、关闭防火墙并设置开机禁用   systemctl stop firewalld   systemctl disable firewalld 2、配置repo   cd /etc/yum.repos.d/   下载Docker repo   wget https://mirrors.aliyun.com/docker-…

torch.nn.Parameter()函数

引言 在很多经典网络结构中都有nn.Parameter()这个函数&#xff0c;故对其进行了解 pytorch官方介绍&#xff1a; 语法结构&#xff1a; torch.nn.parameter.Parameter(dataNone, requires_gradTrue) """ data (Tensor) – parameter tensor. —— 输入得是…

聊聊Spring事务同步器TransactionSynchronization

在一些业务场景中可能我们需要去对某一个spring事务的生命周期进行监控&#xff0c;比如在这个事务提交&#xff0c;回滚&#xff0c;被挂起的时候&#xff0c;我们想要去执行一些自定义的操作&#xff0c;这怎么去做呢&#xff1f;其实spring作为一个高扩展性的框架&#xff0…

中秋特辑:Java事件监听实现一个猜灯谜小游戏

众所周知&#xff0c;JavaSwing是Java中关于窗口开发的一个工具包&#xff0c;可以开发一些窗口程序&#xff0c;然后由于工具包的一些限制&#xff0c;导致Java在窗口开发商并没有太多优势&#xff08;当然也有一些第三方的工具包也很好用&#xff09;&#xff0c;不过&#x…

使用Python CV2融合人脸到新图片--优化版

优化说明 上一版本人脸跟奥特曼图片合并后边界感很严重&#xff0c;于是查找资料发现CV2还有一个泊松函数很适合融合图像。具体代码如下&#xff1a; import numpy as np import cv2usrFilePath "newpic22.jpg" atmFilePath "atm2.jpg" src cv2.imrea…

java基础-集合-ArrayList(JDK1.8)源码学习

文章目录 类图新增addensureCapacityInternalensureExplicitCapacitygrowhugeCapacity 删除removefastRemove 遍历Iterator 类图 新增 add public boolean add(E e) {// 根据注释可知 Increments modCount!!&#xff0c;modCount下面详解ensureCapacityInternal(size 1); //…

特斯拉Dojo超算:AI训练平台的自动驾驶与通用人工智能之关键

特斯拉公开Dojo超算架构细节&#xff0c;AI训练算力平台成为其自动驾驶与通用人工智能布局的关键一环 在近日举行的Hot Chips 34会议上&#xff0c;特斯拉披露了其自主研发的AI超算Dojo的详细信息。Dojo是一个可定制的超级计算机&#xff0c;从芯片到系统全部由特斯拉自主设计…

如何优化网站SEO(百度SEO优化的6个方案及密度)

一&#xff1a;蘑菇号https://www.mooogu.cn/ SEO优化是提高网站在搜索引擎中排名的关键技术。对于新网站而言&#xff0c;如何快速提高百度排名是每个站长需要关注的问题。下面我们将介绍新网站百度SEO具体方法。 二&#xff1a; 首先&#xff0c;通过网站架构优化来提高页…