利用群论来研究魔方

news2025/1/10 23:35:48

文章灵感来源于:

  • 魔方与群论(二)(交换子牛啤!) - 知乎
  • 并参考了:https://www.gap-system.org/Doc/Examples/rubik.html
  • 使用了这里的小程序:Cubie

先汇制一张,魔方图

               +--------------+
               |  1    2    3 |
               |  4  top    5 |
               |  6    7    8 |
+--------------+--------------+--------------+--------------+
|              |            8 |  8    5    3 |              |
|     left     |    front   9 |  9 right  13 |     rear     |
|              |           10 | 10   11   12 |              |
+--------------+--------------+--------------+--------------+
               |              |
               |    bottom    |
               |              |
               +--------------+      

这里做了几个简化

  • 同一个块的两个棱或三个角,不做区分,视为同一数字
  • 仅考虑顶部和右手边的图块,主要是顶部和8、9、10,这是我拼魔方经常研究的地方

这里仅研究,1-10 这10个块的还原方法

让我们参考 gap 的程序,来建立模型

创建一个群

gap> cube := Group((1,3,8,6)(2,5,7,4),(8,3,12,10)(5,13,11,9));
Group([ (1,3,8,6)(2,5,7,4), (3,12,10,8)(5,13,11,9) ])    
  • 这里通过Group构造了一个群,由置换构造而来的群
    • 比如:这里(1,3,8,6)的置换,表示顶部4个角块的一次置换
  • 所以这个群,只有两元素
    • 一个是(1,3,8,6)(2,5,7,4) 两个置换组合而成的TOP的转换,这里命名为 U ,(参考:魔方小站工具之魔方公式标记图解 )
    • 一个是(8,3,12,10)(5,13,11,9),两个置换组合而成的RIGHT的转换,这里命名为 R
  • 群里只有乘法一种运算,表示为置换的乘法
    • 比如 U*U=U^2 => (1,3,8,6)(2,5,7,4) = (1,8)(3,6)(2,7)(5,4)

简化旋转的表示方法

gap> f := FreeGroup("U", "R");
<free group on the generators [ U, R ]>

gap> hom := GroupHomomorphismByImages( f, cube, GeneratorsOfGroup(f), GeneratorsOfGroup(cube) );
[ U, R ] -> [ (1,3,8,6)(2,5,7,4), (3,12,10,8)(5,13,11,9) ]
  • FreeGroup(“U”, “R”)是创建了两个元素的群,为了简化cube中两个元素的表示,分别代表Top、Right的旋转
  • GroupHomomorphismByImages是表示创建群同态,将U、R用于表示cube中定义的两个旋转

做一些测试

  • 比如我们要实现 5、9 两个块的交换,即实现 (5,9)
    gap> pre := PreImagesRepresentative(hom, (5,9));
    U^-1*R*U^2*R^-1*U^-1*R*U^-1*R^-1*U^-1*R*U*R^-1*U*R*U^-2*R^-1*U*R*U^-1*R^-1*U^-2*R*U^-1*R^-1*U^-1*R*U*R^-1*U^-1
    
  • PreImagesRepresentative用于群的求解,计算出(5,9)的计算公式
  • 答案也很好理解,比如:U、U^2、U^-1 分别表示 U的一次、两次、三次旋转

  • 按照公式可逆旋转一次,验证一下
    gap> v := Image(hom, pre);
    (2,4)(5,9)
    
  • 结果是 (2,4), (5,9) 两个置换,符合预期。 因为(5,9)无法单独置换

在gap中使用 U、R 的转换标识

gap> U:=f.1;
gap> R:=f.2;
gap> Image(hom, R*U^-1*R^-1*U^-1*R*U^-1*R^-1*U*R*U*R^-1*U);
(1,8)(2,4)(3,6)(5,9)

可以自行构造转换方案来计算转换结果,可以用于批量验证自己的想法

然后,精彩来了…

枚举所有的转动可能

for x in cube do
    if LargestMovedPoint(x) <=7 then
        f := PreImagesRepresentative( hom, x);
        Print(LargestMovedPoint(x), " ", x, "\t===>\t", Length(f), "\t", f, "\n");
    fi;
od;    
  • 这里我们枚举了cube中所有可能
  • LargestMovedPoint(x)是判断x中数字的最大值,7表示,我们只考虑1-7这7个数字转动的情况
  • 然后进行求解公式,并打出来
  • Length(zz)表示求解公式的步数,几步可以转动完成

我们将看到这样的结果

0 ()	===>	0	<identity ...>
7 (4,7,5)	===>	10	U^-1*R^-1*U^-1*R*U^-1*R^-1*U^-2*R*U^-1
7 (4,5,7)	===>	10	U*R^-1*U^2*R*U*R^-1*U*R*U
7 (2,5,7)	===>	10	R*U*R^-1*U*R*U^-2*R^-1*U^-2
5 (2,5,4)	===>	10	U*R*U*R^-1*U*R*U^-2*R^-1*U
7 (2,5)(4,7)	===>	18	U^-1*R*U^2*R^-1*U^-1*R*U^-1*R^-2*U^2*R*U*R^-1*U*R*U
7 (2,7,5)	===>	10	R^-1*U^-1*R*U^-1*R^-1*U^-2*R*U^-2
7 (2,7,4)	===>	20	U*R*U*R^-1*U*R*U^-2*(R^-1*U^2)^2*R*U*R^-1*U*R*U
7 (2,7)(4,5)	===>	20	(U*R*U*R^-1*U*R*U^-2*R^-1)^2*U^-2
7 (2,4,7)	===>	20	U^-1*R*U^2*R^-1*U^-1*R*U^-1*R^-1*U^-1*R*U*R^-1*U*R*U^-2*R^-1*U^-2
5 (2,4,5)	===>	10	U^-1*R*U^2*R^-1*U^-1*R*U^-1*R^-1*U^-1
7 (2,4)(5,7)	===>	20	U^-1*R*U^2*(R^-1*U^-1*R*U^-1*R^-1*U^-1)^2*U^-1*R*U^-2
  • 举个例子
    • 要转换实现(4,7,5),这样三个棱块的转换,可以使用 U^-1*R^-1*U^-1*R*U^-1*R^-1*U^-2*R*U^-1 这个公式
    • 我们使用下面的JS方法,做个转换
      'U^-1*R^-1*U^-1*R*U^-1*R^-1*U^-2*R*U^-1'.replaceAll('*', ' ').replaceAll(/\((.*)\)\^2/g, "$1 $1").replaceAll('^-1', "'").replaceAll("^2", "2").replaceAll("^-2", "2");
      

      答案是:U’ R’ U’ R U’ R’ U2 R U’ (参考 魔方小站工具之魔方公式标记图解 这里的表示法)

我们验证一下

我们使用这个工具进行验证,Cubie 或者自己拿魔方验证一下, 

cubie

 验证通过

校验更多

刚才的公式,我们挑选一部进行校验

(4,7,5) => U' R' U' R  U' R' U2 R  U'
(4,5,7) => U  R' U2 R  U  R' U  R  U
(2,7,5) =>    R' U' R  U' R' U2 R  U2
(2,5,7) =>    R  U  R' U  R  U2 R' U2
(2,5,4) => U  R  U  R' U  R  U2 R' U
(2,4,5) => U' R  U2 R' U' R  U' R' U'

(2,7,4) => U R U R' U R U2 R' U2 R' U2 2 R U R' U R U
(2,7)(4,5) => U R U R' U R U2 R' U R U R' U R U2 R' U2
(2,4)(5,7) => U' R U2 R' U' R U' R' U' R' U' R U' R' U' U' R U2
(2,5)(4,7) => U' R U2 R' U' R U' R2 U2 R U R' U R U

这些公式,再结合看看 魔方小站三阶魔方教程2(一步一步图解+视频+3D动画)一看就懂的魔方教程 ,我们能发现更多的魔方公式

再计算和校验

这里只计算了一些步数比较小的,比较有研究价值

for x in cube do
    f := PreImagesRepresentative( hom, x);
    if LargestMovedPoint(x) = 8 and Length(f) <= 10 then
        Print(LargestMovedPoint(x), " ", x, "\t===>\t", Length(f), "\t", f, "\n");
    fi;
od;

结果:

8 (1,6,8,3)(2,4,7,5)	===>	1	U'
8 (1,6,8,3)(2,4,5,7)	===>	9	U R U2 R' U' R U' R'
8 (1,6,8,3)(2,4)	===>	9	U R' U2 R U R' U R
8 (1,6,8,3)(4,7)	===>	9	R U R' U R U2 R' U
8 (1,6,8,3)(5,7)	===>	9	U R U R' U R U2 R'
8 (1,8)(2,7)(3,6)(4,5)	===>	2	U2
8 (1,8)(2,7,4)(3,6)	===>	10	U R U2 R' U' R U' R' U'
8 (1,8)(2,7,5)(3,6)	===>	10	U R' U2 R U R' U R U'
8 (1,8)(2,4,5)(3,6)	===>	8	R U R' U R U2 R'
8 (1,8)(2,4,7)(3,6)	===>	10	U R U R' U R U2 R' U'
8 (1,8)(3,6)(4,5,7)	===>	8	R' U' R U' R' U2 R
8 (1,8)(3,6)(4,7,5)	===>	8	R' U2 R U R' U R
8 (1,8)(2,5,4)(3,6)	===>	8	R U2 R' U' R U' R'
8 (1,8)(2,5,7)(3,6)	===>	10	U R' U' R U' R' U2 R U'
8 (1,3,8,6)(2,5,7,4)	===>	1	U
8 (1,3,8,6)(2,7,5,4)	===>	9	R U R' U R U2 R' U'
8 (1,3,8,6)(2,4)	===>	9	R' U' R U' R' U2 R U'
8 (1,3,8,6)(5,7)	===>	9	R U2 R' U' R U' R' U'
8 (1,3,8,6)(4,7)	===>	9	U' R U2 R' U' R U' R'
for x in cube do
    f := PreImagesRepresentative( hom, x);
    if LargestMovedPoint(x) = 9 then
        Print(LargestMovedPoint(x), " ", x, "\t===>\t", Length(f), "\t", f, "\n");
    fi;
od;  

举两个比较特殊的例子

  (1,3,8,6)(2,5)(4,7,9) => R U' R' U2 R U2 R'
  (1,6,8,3)(2,9,5)(4,7) => R U2 R' U2 R U  R'

计算更多可能

我们来打印出各种可能(只看1-10的变换)

for x in cube do
    f := PreImagesRepresentative( hom, x);
    if LargestMovedPoint(x) <= 10 then
        Print(x, " => ", f, "\n");
    fi;
od;

通过以下程序转换

package test;

import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Path;
import java.util.List;

public class Main {

    public static void main(String[] args) throws IOException {
        List<String> lines = Files.readAllLines(Path.of("input.txt"));
        List<String> result = lines.stream().map(s -> s.replace('*', ' ').replaceAll("\\((.+)\\)\\\\^2", "$1 $1").replace("^-1", "'").replace("^2", "2").replace("^-2", "2")).toList();
        System.out.println(String.join("\n", result));
    }
}

得到:

(5,7,9)                 => R U' R' U R U R' U U R U R' U R' U' R U' R' U2 R U'
(5,9,7)                 => U R' U2 R U R' U R U' R U' R' U' U' R U' R' U' R U R'
(4,7,9)                 => U R U R' U R U2 R' U R' U' R U' R' U2 R U' U' R U' R' U2 R U' U' R' U'
(4,7)(5,9)              => U R U R' U R U2 R' U2 R' U2 R U R' U R2 U' R' U2 R U' R' U' R U R' U'
(4,7,5)                 => U' R' U' R U' R' U2 R U'
(4,9,7)                 => U R U R' U R U2 R' U R' U' R U' R' U2 R R U' R' U2 R U' R' U' R U R'
(4,9,5)                 => U R U2 R' U2 R U R'
(4,9)(5,7)              => U R' U2 R U R' U R U R U' R' U2 R U2 R' U'
(4,5,7)                 => U R' U2 R U R' U R U
(4,5,9)                 => R U' R' U2 R U2 R' U'
(4,5)(7,9)              => U2 R U' R' U2 R U' R' U' R U R'
(3,8)(5,9,7)(6,10)      => U' R U R'
(3,8)(5,7,9)(6,10)      => R U' R' U
(3,8)(6,10)             => U R' U2 R U R' U R U' R U' R' U2 R U' R'
(3,8)(4,7)(5,9)(6,10)   => U R' U2 R U R' U R U R U' R' U
(3,8)(4,7,9)(6,10)      => R U' R2 U' R U' R' U2 R U'
(3,8)(4,7,5)(6,10)      => U2 R U' R' U2 R U' R'
(3,8)(4,5,9)(6,10)      => R' U' R U' R' U2 R U' U2 R U' R' U2 R U' R' U' R U' R' U'
(3,8)(4,5)(6,10)(7,9)   => U R U R' U R U2 R' U R' U' R U' R' U2 R U R U R'
(3,8)(4,5,7)(6,10)      => R U R' U2 R U R' U2
(3,8)(4,9,7)(6,10)      => U R' U2 R U R' U R2 U R'
(3,8)(4,9)(5,7)(6,10)   => U R U R' U R U2 R' U2 R' U2 R U R' U R2 U' R' U' U' R U' R' U' R U' R' U'
(3,8)(4,9,5)(6,10)      => U R U R' U R U R' U U R U R' U U2 R' U2 R U R' U R
(3,10,8,6)(7,9)         => R U R' U R U2 R' U R U' R' U' R U2 R' U' R U R'
(3,10,8,6)(5,7)         => R U2 R' U R U R' U' R U2 R' U' R U' R'
(3,10,8,6)(5,9)         => U R U R' U R U2 R' U R' U' R U' R' U' U' R U' R U R' U'
(3,10,8,6)(4,7,5,9)     => U' R U2 R' U' R U' R' U R U' R' U' R U' U' R' U' R U' R' U'
(3,10,8,6)(4,7,9,5)     => U R' U2 R U R' U R U2 R U R' U'
(3,10,8,6)(4,7)         => R U' R' U2 R U' R' U'
(3,10,8,6)(4,9)         => U R U R' U2 R' U' R U' R' U2 R U'
(3,10,8,6)(4,9,7,5)     => U R U R' U R U' U2 R' U' R U2 R' U' R U R'
(3,10,8,6)(4,9,5,7)     => U R U R' U'
(3,10,8,6)(4,5,7,9)     => R U R' U R U R' U' R' U' R U' R' U2 R U2 R U2 R' U' R U' R' U'
(3,10,8,6)(4,5,9,7)     => U' R U2 R' U' R U' R2 U2 R U R' U R2 U' R' U' R U2 R' U' R U R'
(3,10,8,6)(4,5)         => R U2 R' U R U' R' U' R U' R' U'
(3,6,8,10)(4,7,5,9)     => U R U' R' U'
(3,6,8,10)(4,7)         => U R U R' U2 R U R'
(3,6,8,10)(4,7,9,5)     => R U' R' U R U2 R' U R U R2 U' R U' R' U2 R2 U R' U R U2 R' U
(3,6,8,10)(7,9)         => R U' R' U R U2 R' U R U R' U' R U2 R' U' R U' R'
(3,6,8,10)(5,9)         => U R U' R' U R' U U R U R' U R U' R U2 R' U' R U' R' U'
(3,6,8,10)(5,7)         => R U R' U R U2 R' U R U' R' U' R U2 R'
(3,6,8,10)(4,5)         => U R U R' U R U R' U' R U2 R'
(3,6,8,10)(4,5,9,7)     => U R U' R' U2 R' U' R U' R' U2 R U'
(3,6,8,10)(4,5,7,9)     => R U' R' U R U2 R' U R U2 U R' U' R U' R' U'
(3,6,8,10)(4,9)         => U R' U2 R U R' U R U2 R U' R' U'
(3,6,8,10)(4,9,7,5)     => U R U R' U R U2 R' U2 R' U2 R U R' U R U R U' R' U' R U' R'
(3,6,8,10)(4,9,5,7)     => U' R U2 R' U' R U' R' U R U' R' U' R U2 R' U' R U R' U'
(2,5,9)                 => R U R' U R U2 R' U R U' R' U2 R U2 R'
(2,5)(7,9)              => U' R U2 R' U' R U' R' U2 U' R U' R' U2 R U' R' U' R U R'
(2,5,7)                 => R U R' U R U2 R' U2
(2,5,9,7,4)             => U' R U2 R' U' R U' R' U' R' U' R U' R' U' U' R2 U' R' U2 R U' R' U' R U R'
(2,5,4)                 => U R U R' U R U2 R' U
(2,5,7,9,4)             => U' R U2 R' U' R U' R' U' R' U' R U' R' U2 R U' U' R U' R' U2 R U' U' R' U'
(2,5,9,4,7)             => U R U' R' U R U R' U2 R U R2 U' R U' R' U2 R U'
(2,5,4,7,9)             => U R U R' U R U R' U2 R U2 R'
(2,5)(4,7)              => U' R U2 R' U' R U' R2 U2 R U R' U R U
(2,5,7,4,9)             => U' R U2 R' U' R U' R2 U2 R U R' U R2 U' R' U2 R U2 R'
(2,5)(4,9)              => U' R U2 R' U' R U' R' U' R U' R' U2 R U2 R' U'
(2,5,4,9,7)             => U R U2 R' U2 R U R' U2 R' U2 R U R' U R
(2,5,7)(3,8)(6,10)      => R U R' U2 R U R' U U2 R U R' U R U2 R' U
(2,5)(3,8)(6,10)(7,9)   => R' U' R U' R' U2 R U R U R'
(2,5,9)(3,8)(6,10)      => U' R U R' U U R' U U R U R' U R
(2,5)(3,8)(4,9)(6,10)   => U' R U2 R' U' R U' R' U' R' U' R U' R' U' U' R U' U2 R U' R' U2 R U' R' U' R U' R' U'
(2,5,7,4,9)(3,8)(6,10)  => U R U R' U R U R' U2 R U R2 U' R U' R' U2 R U'
(2,5,4,9,7)(3,8)(6,10)  => U R U R' U R U2 R' U R U R' U R U2 R' U R U R'
(2,5,9,7,4)(3,8)(6,10)  => U2 U R U R' U R U R' U R U2 R' U
(2,5,7,9,4)(3,8)(6,10)  => R U' R' U2 R U R' U R U2 R' U
(2,5,4)(3,8)(6,10)      => R U R' U2 R U R' U R' U' R U' R' U2 R2 U R' U R U2 R' U
(2,5)(3,8)(4,7)(6,10)   => R' U' R U' R' U2 R R U' R' U2 R U' R'
(2,5,9,4,7)(3,8)(6,10)  => U' R U2 R' U' R U' R' U' U' R U' R' U' U' R U' R' U' R U' R' U'
(2,5,4,7,9)(3,8)(6,10)  => R U' R2 U' R U' R' U2 R2 U R' U R U2 R' U
(2,5,9,7)(3,10,8,6)     => R' U' R U' R' U2 R U' U2 R U' R' U' R U2 R' U' R U R'
(2,5,7,9)(3,10,8,6)     => R U R' U R U R' U' R' U' R U' R' U2 R U'
(2,5)(3,10,8,6)         => R U2 R' U R U R' U
(2,5,9)(3,10,8,6)(4,7)  => U' R U2 R' U' R U' R' U R U' R'
(2,5,4,7)(3,10,8,6)     => R U R' U R U' U' R' U2 R U' R' U2 R U' R' U'
(2,5)(3,10,8,6)(4,7,9)  => R U R' U R U R' U U R' U U R U R' U R U R U R' U R U2 R' U
(2,5,9,4)(3,10,8,6)     => R' U' R U' R' U2 R2 U' R' U' R U' U' R' U' R U' R' U'
(2,5,4)(3,10,8,6)(7,9)  => R U R' U R U R' U U R U2 R' U' R U' R'
(2,5,7,4)(3,10,8,6)     => U R U R' U R U2 R' U R U' R' U2 R U' R' U'
(2,5,7)(3,10,8,6)(4,9)  => U R U2 R' U R U2 R' U
(2,5)(3,10,8,6)(4,9,7)  => U R U R' U R' U2 R U R' U R
(2,5,4,9)(3,10,8,6)     => U' R U2 R' U' R U' R' U' R' U' R U' R' U' U' R2 U' R'
(2,5,7,4)(3,6,8,10)     => U R' U2 R U R' U R2 U' R' U' R U2 R'
(2,5,4)(3,6,8,10)(7,9)  => U' R U2 R' U' R U' R' U' R U R' U R U2 R' U' U' R U' R' U' R U' R'
(2,5,9,4)(3,6,8,10)     => U R U' R' U R' U U R U R' U R
(2,5,7)(3,6,8,10)(4,9)  => U R U R' U R U2 R' U R U R' U R U2 R' U' R U' R' U'
(2,5)(3,6,8,10)(4,9,7)  => U' R U2 R' U' R U' R' U' R' U' R U' R' U' U' R U' U' R U' R' U' R U' R'
(2,5,4,9)(3,6,8,10)     => R U R' U R U R' U' R U R'
(2,5,7,9)(3,6,8,10)     => R U' R' U R U2 R' U R U R' U
(2,5)(3,6,8,10)         => U' R U' R' U' R U2 R'
(2,5,9,7)(3,6,8,10)     => U' R U2 R' U' R U' R' U' R U' R' U' R U' R'
(2,5,9)(3,6,8,10)(4,7)  => U2 R U2 R' U
(2,5)(3,6,8,10)(4,7,9)  => R' U' R U' R' U' U' R U' R U' R' U'
(2,5,4,7)(3,6,8,10)     => U R U R' U U R U R' U R U R' U R U2 R' U
(2,9,7)(3,8)(6,10)      => R U R' U R U2 R' U R U R'
(2,9,5)(3,8)(6,10)      => R' U' R U' R' U2 R U2 R U' R' U
(2,9)(3,8)(5,7)(6,10)   => R' U' R U' R' U2 R U2 R U' R' U' R U' U' R' U' R U' R'
(2,9,4)(3,8)(6,10)      => R U R' U R U U R' U R U R' U2 R U2 R' U' R U' R' U R U R' U R U2 R' U
(2,9,7,5,4)(3,8)(6,10)  => U R U R' U R U' R'
(2,9,5,7,4)(3,8)(6,10)  => U R U R' U R U2 R' U2 R' U2 R U R' U R U R U' R' U
(2,9)(3,8)(4,7)(6,10)   => U R U R' U R U2 R' U2 R' U2 R U R' U R U R U' R' U' R U' U' R' U' R U' R'
(2,9,5,4,7)(3,8)(6,10)  => R U R' U R U U R' U R U R' U' R' U' R U' R' U2 R U'
(2,9,4,7,5)(3,8)(6,10)  => U R' U2 R U R' U R2 U' R' U' U' R U' R' U' R U' R' U'
(2,9,7,4,5)(3,8)(6,10)  => U' R U2 R' U' R U' R2 U2 R U R' U R2 U R'
(2,9,4,5,7)(3,8)(6,10)  => U' R U' R' U' U' R U' R' U' R U' R' U'
(2,9)(3,8)(4,5)(6,10)   => U R U R' U R U2 R' U R U R' U R U2 R' U2 R U' R' U' R U' U' R' U' R U' R'
(2,9,5,7)(3,10,8,6)     => U' R U2 R' U' R U' R' U' R U R' U R U2 R' U' R U R' U'
(2,9,7,5)(3,10,8,6)     => U' R U' R' U' R U2 R' U' R U R'
(2,9)(3,10,8,6)         => U R U R' U R U2 R' U R' U' R U' R' U2 R2 U' R'
(2,9)(3,10,8,6)(4,5,7)  => U2 R U' R'
(2,9,4,5)(3,10,8,6)     => R U' R' U R U' R' U' R U' R'
(2,9,7)(3,10,8,6)(4,5)  => R U' R' U R U R' U R' U' R U' R' U2 R U'
(2,9,4)(3,10,8,6)(5,7)  => U2 R U' R' U' R U' U' R' U' R U' R' U'
(2,9,7,4)(3,10,8,6)     => U R' U2 R U R' U R2 U' R' U' R U2 R' U' R U R'
(2,9,5,4)(3,10,8,6)     => U' R U2 R' U' R U' R' U' R' U' R U' R' U' U' R U' R U R' U'
(2,9,4,7)(3,10,8,6)     => R U' R' U R U R' U2
(2,9,5)(3,10,8,6)(4,7)  => U' R U2 R' U2
(2,9)(3,10,8,6)(4,7,5)  => U R' U2 R U R' U R U' R U' R'
(2,9,5)                 => R U2 R' U2 R U R' U' R U2 R' U' R U' R'
(2,9)(5,7)              => R' U' R U' R' U2 R U2 U' R U' R' U2 R U2 R'
(2,9,7)                 => R U2 R' U2 R U R' U
(2,9,4,5,7)             => R U R' U R U' U' R' U2 R U' R' U2 R U2 R' U'
(2,9,7,4,5)             => R U2 R' U2 R U' R' U' R U' R' U'
(2,9)(4,5)              => U R U R' U R U2 R' U R U R' U R U2 R' U R U' R' U2 R U2 R'
(2,9)(4,7)              => U R U R' U R U2 R' U2 R' U2 R U R' U R2 U' R' U2 R U2 R'
(2,9,4,7,5)             => R U2 R' U2 R U R2 U' R U' R' U2 R2 U R' U R U2 R' U
(2,9,5,4,7)             => R U2 R' U2 R U R2 U' R U' R' U2 R U'
(2,9,5,7,4)             => U' R U2 R' U' R U' R2 U2 R U R' U R2 U' R' U2 R U' R' U' R U R' U'
(2,9,4)                 => U R U R' U R U2 R' U R U' R' U2 R U2 R' U'
(2,9,7,5,4)             => R U U R' U2 R U R' U2 R U R' U R U2 R' U
(2,9,4)(3,6,8,10)(5,7)  => U R U R' U R U2 R' U2 R U' R' U'
(2,9,5,4)(3,6,8,10)     => R U R2 U2 R U R' U R
(2,9,7,4)(3,6,8,10)     => R U' R' U' R U' R' U' R U2 R' U' R U' R' U'
(2,9)(3,6,8,10)         => R U R2 U2 R U R' U R U' R U2 R' U' R U' R' U'
(2,9,5,7)(3,6,8,10)     => R U R' U R' U' R U' R' U2 R2 U R' U R U2 R' U
(2,9,7,5)(3,6,8,10)     => U R' U2 R U R' U R U R U' R' U' R U' R'
(2,9,7)(3,6,8,10)(4,5)  => R U' R' U' R U' R'
(2,9)(3,6,8,10)(4,5,7)  => R U R' U R' U' R U' R' U2 R U'
(2,9,4,5)(3,6,8,10)     => R U R2 U U R U R' U R U R U R' U R U2 R' U
(2,9,4,7)(3,6,8,10)     => R U R' U R U2 R' U' R U' R' U'
(2,9,5)(3,6,8,10)(4,7)  => R U R' U' R U R' U R U2 R' U
(2,9)(3,6,8,10)(4,7,5)  => R U R' U2
(2,7)(3,8)(5,9)(6,10)   => R U R' U R U2 R' U2 R U' R' U
(2,7,5)(3,8)(6,10)      => U' R U2 R' U' R U' R' U2 U' R U' R' U2 R U' R'
(2,7,9)(3,8)(6,10)      => R U' R' U' R U' U' R' U' R U' R'
(2,7,4)(3,8)(6,10)      => R U R' U2 R U' R' U' R U' R'
(2,7,9,5,4)(3,8)(6,10)  => U R U R' U R U2 R' U R U' R' U
(2,7,5,9,4)(3,8)(6,10)  => U' R U R' U2 R U2 R' U' R U' R' U R U R' U R U2 R' U
(2,7,4,5,9)(3,8)(6,10)  => U R' U2 R U R' U R U R U' R' U' R U' U' R' U' R U' R'
(2,7)(3,8)(4,5)(6,10)   => U' R U2 R' U' R U' R' U' R U R' U R U R' U2 R U' R'
(2,7,9,4,5)(3,8)(6,10)  => R U R' U R U2 R' U R U' R' U' U' R U' R' U' R U' R' U'
(2,7,4,9,5)(3,8)(6,10)  => U' R U2 R' U' R U' R2 U2 R U R' U R U R U' R' U
(2,7)(3,8)(4,9)(6,10)   => U R U R' U R U R' U' U' R U' R' U' R U' R' U'
(2,7,5,4,9)(3,8)(6,10)  => U R U R' U R U R' U U R U R' U
(2,7)(3,10,8,6)         => R U2 R' U R U R' U2 U R' U2 R U R' U R
(2,7,9,5)(3,10,8,6)     => R U R' U R U R' U R U R' U R U2 R' U
(2,7,5,9)(3,10,8,6)     => U' R U2 R' U' R U' R2 U2 R U R' U R U' R U' R'
(2,7,4)(3,10,8,6)(5,9)  => U R U R' U R U2 R' U2 R U R' U'
(2,7,5,4)(3,10,8,6)     => U' R U2 R' U' R U' R' U' R' U' R U' R' U2 R U' U' R U' R' U2 R U' R' U'
(2,7,9,4)(3,10,8,6)     => R U R' U R U R' U' R U2 R' U' R U' R' U'
(2,7,4,9)(3,10,8,6)     => U R U R' U R U2 R' U' R U' R'
(2,7)(3,10,8,6)(4,9,5)  => R U R' U R U2 R' U' R U R' U'
(2,7,5)(3,10,8,6)(4,9)  => U R U R' U R U2 R' U' R U' R' U' R U2 R' U' R U' R' U'
(2,7)(3,10,8,6)(4,5,9)  => U R U' R' U R U2 R' U R U R' U R' U' R U' R' U2 R U'
(2,7,4,5)(3,10,8,6)     => U' R U2 R' U' R U' R' U' R U' R' U' U' R U' R' U'
(2,7,9)(3,10,8,6)(4,5)  => R U R' U R U R'
(2,7,9)                 => U' R U' R' U2 R U2 R'
(2,7,5)                 => R' U' R U' R' U2 R U2
(2,7)(5,9)              => U' R U' R' U' U' R U' R' U' R U R' U'
(2,7,4)                 => U R U R' U R U2 R' U2 R' U2 R U R' U R U
(2,7,5,9,4)             => U R U' R' U R U R' U U R U R' U U R U R' U R U2 R' U
(2,7,9,5,4)             => R U' R' U R U R' U2 R U' R' U' R U' R'
(2,7)(4,9)              => U R U R' U R U2 R' U R U R' U R U2 R' U2 R U' R' U2 R U2 R' U'
(2,7,5,4,9)             => U R U U R' U2 R U R' U2 R U2 R' U' R U' R'
(2,7,4,9,5)             => U R' U2 R U R' U R2 U' R' U2 R U' R' U' R U R' U'
(2,7,4,5,9)             => U R' U2 R U R' U R2 U' R' U2 R U2 R'
(2,7,9,4,5)             => R' U' R U' R' U2 R U' U' R U' R' U2 R U' U' R' U'
(2,7)(4,5)              => U R U R' U R U2 R' U R U R' U R U2 R' U2
(2,7,9,4)(3,6,8,10)     => U' R U2 R' U' R U' R' U' R' U' R U' R' U' U' R U' R U' R' U'
(2,7,4)(3,6,8,10)(5,9)  => U2 R U' R' U' R U2 R' U' R U R' U'
(2,7,5,4)(3,6,8,10)     => U R U R' U R U2 R' U R U R' U R U2 R' U R U' R' U' R U2 R'
(2,7,9)(3,6,8,10)(4,5)  => U R' U2 R U R' U R U' R U' R' U' R U R'
(2,7)(3,6,8,10)(4,5,9)  => U R U' R' U R U2 R' U' R U' R'
(2,7,4,5)(3,6,8,10)     => U R U R' U U R U R' U U R U2 R' U' R U' R'
(2,7,5)(3,6,8,10)(4,9)  => U' R U2 R' U' R U2 R' U'
(2,7,4,9)(3,6,8,10)     => U2 R U' R' U' R U R'
(2,7)(3,6,8,10)(4,9,5)  => U R' U2 R U R' U R U' R U' R' U' R U2 R' U' R U R' U'
(2,7,9,5)(3,6,8,10)     => R U' R' U R U2 R' U R U R' U2 U R' U2 R U R' U R
(2,7)(3,6,8,10)         => R' U' R U' R' U2 R U' U2 R U' R' U' R U2 R'
(2,7,5,9)(3,6,8,10)     => U R U' R' U R U2 R' U' R U' R' U R U R' U R U2 R' U
(2,4,7,9,5)             => R U' R' U R U R' U2 R U R' R' U2 R U R' U R U R U R' U R U2 R' U
(2,4,7)                 => U' R U2 R' U' R U' R' U' R U R' U R U2 R' U2
(2,4,7,5,9)             => U' R U2 R' U' R U' R' U' R' U' R U' R' U2 R U2 U' R U' R' U2 R U2 R'
(2,4,5)                 => U' R U2 R' U' R U' R' U'
(2,4,5,7,9)             => U' R U2 R' U' R U' R' U' U' R U' R' U' U' R U2 R'
(2,4,5,9,7)             => R U R' U R U R' U2 R U' R' U' R U R'
(2,4,9,7,5)             => U' R U2 R' U' R U' R2 U2 R U R' U R U' R U' R' U' U' R U' R' U' R U R'
(2,4,9,5,7)             => U' R U2 R' U' R U' R' U' U' R U' R' U' U' R U' R' U' R U R' U'
(2,4,9)                 => U R U2 R' U2 R U R' U' R U2 R' U' R U' R' U'
(2,4)(7,9)              => U R U R' U R U2 R' U' R U' R' U' U' R U' R' U' R U R'
(2,4)(5,9)              => U' R U2 R' U' R U' R' U' R U R' U R U2 R' U R U' R' U2 R U' R' U' R U R' U'
(2,4)(5,7)              => U' R U2 R' U' R U' R' U' R' U' R U' R' U' U' R U2
(2,4,7,5)(3,6,8,10)     => U R U R' U2 R U R' U' R U2 R' U' R U' R' U'
(2,4,7)(3,6,8,10)(5,9)  => U R U' R' U2 R U2 R' U' R U' R' U'
(2,4,7,9)(3,6,8,10)     => R U' R' U R U2 R' U R U R2 U' R U' R' U2 R U'
(2,4,9,5)(3,6,8,10)     => U R U R' U R U U R' U R U R2 U2 R U R' U R
(2,4,9)(3,6,8,10)(5,7)  => U R U R' U R U U R' U R U R' U2
(2,4,9,7)(3,6,8,10)     => U R U R' U R U2 R' U R U' R' U' R U' R'
(2,4,5)(3,6,8,10)(7,9)  => R U R' U R U2 R' U' U' R U' R' U' R U' R'
(2,4,5,7)(3,6,8,10)     => U' R U2 R' U' R U' R' U' R' U' R U' R' U' U' R U R U' R' U' R U2 R'
(2,4,5,9)(3,6,8,10)     => U R U' R' U R' U U R U R' U R U R U R' U R U2 R' U
(2,4)(3,6,8,10)         => U' R U2 R' U' R U' R' U' U' R U' R' U' R U2 R'
(2,4)(3,6,8,10)(5,9,7)  => U' R U2 R' U' R U' R2 U2 R U R' U R U R U' R' U' R U' R'
(2,4)(3,6,8,10)(5,7,9)  => R' U' R U' R' U2 R2 U' R' U' R U2 R' U' R U R' U'
(2,4,7,9)(3,10,8,6)     => U R U R' U R U2 R' U R U R' U R U R'
(2,4,7)(3,10,8,6)(5,9)  => U R U' R' U R U2 R' U R U R' U2
(2,4,7,5)(3,10,8,6)     => R U2 R' U R U R2 U' R U' R' U2 R U'
(2,4)(3,10,8,6)(5,9,7)  => U R U' R' U R U2 R' U R U R2 U2 R U R' U R
(2,4)(3,10,8,6)         => R U2 R' U R U R' U U R U R' U R U2 R' U
(2,4)(3,10,8,6)(5,7,9)  => U R U R' U R U2 R' U2 R' U2 R U R' U R U2 R U R' U'
(2,4,9,5)(3,10,8,6)     => R' U' R U' R' U' U' R U' R U R' U'
(2,4,9,7)(3,10,8,6)     => U R U R' U R' U U R U R' U R U R U R' U R U2 R' U
(2,4,9)(3,10,8,6)(5,7)  => U R U R' U2 R U2 R' U' R U' R' U'
(2,4,5,9)(3,10,8,6)     => R' U' R U' R' U2 R2 U' R'
(2,4,5)(3,10,8,6)(7,9)  => R U R' U R U R' U U R U2 R' U' R U' R' U R U R' U R U2 R' U
(2,4,5,7)(3,10,8,6)     => R U2 R' U R U R' U' R U2 R' U' R U' R' U' R U2 R' U' R U' R' U'
(2,4,5,9,7)(3,8)(6,10)  => U' R U R' U' R U2 R' U' R U' R' U'
(2,4,5,7,9)(3,8)(6,10)  => R U R' U' R U' R' U'
(2,4,5)(3,8)(6,10)      => U' R U2 R' U' R U' R2 U2 R U R' U R U' R U' R' U2 R U' R'
(2,4,7,9,5)(3,8)(6,10)  => U' R U2 R' U' R U' R' U' R U' R' U
(2,4,7,5,9)(3,8)(6,10)  => U' R U R' U' R' U' R U' R' U2 R U2 R U2 R' U' R U' R' U'
(2,4,7)(3,8)(6,10)      => R U R' U R U R' U2 R U' R'
(2,4)(3,8)(5,7)(6,10)   => U R U R' U R U2 R' U' R U' R' U2 R U' R'
(2,4)(3,8)(5,9)(6,10)   => U' R U2 R' U' R U' R' U' R' U' R U' R' U' U' R U' U' R U' R' U
(2,4)(3,8)(6,10)(7,9)   => U' R U2 R' U' R U' R' U' R' U' R U' R' U' U' R U R U R'
(2,4,9,7,5)(3,8)(6,10)  => U' R U2 R' U' R U' R' U2 R U R'
(2,4,9)(3,8)(6,10)      => U' R U2 R' U' R U' R' U' R U R' U R U2 R' U2 R U' R' U' R U' U' R' U' R U' R'
(2,4,9,5,7)(3,8)(6,10)  => U' R U2 R' U' R U' R' U' R U R' U R U2 R' U2 R U' R' U
(1,6,8,3)(2,4,7,5)      => U'
(1,6,8,3)(2,4,7,9)      => U R' U2 R U R' U R U' R U' R' U2 R U2 R'
(1,6,8,3)(2,4,7)(5,9)   => U R' U2 R U R' U R U' R U' R' U' U' R U' R' U' R U R' U'
(1,6,8,3)(2,4,5)(7,9)   => R U' R' U R U R' U U R U R' U U2 R' U2 R U R' U R
(1,6,8,3)(2,4,5,9)      => U R U' R' U R U R' U2 R U R' U' R' U' R U' R' U2 R U'
(1,6,8,3)(2,4,5,7)      => U R U2 R' U' R U' R'
(1,6,8,3)(2,4,9,5)      => U R U U R' U2 R U R' U R' U2 R U R' U R
(1,6,8,3)(2,4,9)(5,7)   => U2 R U' R' U2 R U2 R'
(1,6,8,3)(2,4,9,7)      => U R U2 R' U2 R U R' U R U2 R' U' R U' R'
(1,6,8,3)(2,4)          => U R' U2 R U R' U R
(1,6,8,3)(2,4)(5,9,7)   => U R U R' U R U2 R' U R U R' U R U2 R' U' R U' R' U' U' R U' R' U' R U R'
(1,6,8,3)(2,4)(5,7,9)   => R U' R' U R U R' U U R U R' U
(1,6,10,8)(2,4,7)(5,9)  => U' R U R' U'
(1,6,10,8)(2,4,7,9)     => R U' R'
(1,6,10,8)(2,4,7,5)     => R U R' U2 R U R' U' R U2 R' U' R U' R'
(1,6,10,8)(2,4,5,9)     => U R' U2 R U R' U R U R U' R'
(1,6,10,8)(2,4,5)(7,9)  => R U' R' U2 R U2 R' U' R U' R'
(1,6,10,8)(2,4,5,7)     => U2 R U' R' U2 R U' R' U'
(1,6,10,8)(2,4)(5,9,7)  => U' R U R' U R' U2 R U R' U R
(1,6,10,8)(2,4)(5,7,9)  => R U' R' U2 R' U2 R U R' U R
(1,6,10,8)(2,4)         => R U R' U2 R U R' U
(1,6,10,8)(2,4,9,5)     => U R' U2 R U R' U R2 U R' U'
(1,6,10,8)(2,4,9,7)     => U R U R' U R U R' U2 R U R' U' R' U' R U' R' U2 R U'
(1,6,10,8)(2,4,9)(5,7)  => U R U R' U R U2 R' U R' U' R U' R' U2 R U2 R U' R'
(1,6)(2,4,7,9,5)(3,10)  => R U R' U R U2 R' U R U' R' U' R U2 R' U' R U R' U'
(1,6)(2,4,7)(3,10)      => R U2 R' U R U R' U' R U2 R' U' R U' R' U'
(1,6)(2,4,7,5,9)(3,10)  => R U R' U R U2 R' U R U' R' U' R U R'
(1,6)(2,4,5,9,7)(3,10)  => U R U R' U R U2 R' U R' U' R U' R' U2 R U' R U' R' U' R U' R'
(1,6)(2,4,5,7,9)(3,10)  => R U R' U R U2 R' U R U2 R' U
(1,6)(2,4,5)(3,10)      => R' U' R U' R' U2 R U2 R U' R' U' R U2 R'
(1,6)(2,4,9,7,5)(3,10)  => U R U' R' U' R U' R'
(1,6)(2,4,9,5,7)(3,10)  => U R U R2 U2 R U R' U R
(1,6)(2,4,9)(3,10)      => U R U R' U2
(1,6)(2,4)(3,10)(7,9)   => U R' U2 R U R' U R U' U' R U' R' U' R U' R'
(1,6)(2,4)(3,10)(5,9)   => U' R U2 R' U' R U' R2 U2 R U R' U R2 U' R' U' R U2 R' U' R U R' U'
(1,6)(2,4)(3,10)(5,7)   => U R U R' U R U2 R' U2 R' U2 R U R' U R U R U' R' U' R U2 R'
(1,6,3,8,10)(2,4,5,9,7) => U R U' R' U2
(1,6,3,8,10)(2,4,5)     => U R U R' U2 R U R' U'
(1,6,3,8,10)(2,4,5,7,9) => U R' U2 R U R' U R U R U' R' U' U' R U' R' U' R U' R'
(1,6,3,8,10)(2,4,7,9,5) => R U' R' U R U2 R' U R U R' U' R U2 R' U' R U' R' U'
(1,6,3,8,10)(2,4,7,5,9) => U R U' R2 U2 R U R' U R
(1,6,3,8,10)(2,4,7)     => R U R' U R U2 R' U R U' R' U' R U2 R' U'
(1,6,3,8,10)(2,4)(5,7)  => U R U R' U R U R' U' R U2 R' U'
(1,6,3,8,10)(2,4)(5,9)  => U R U R' U' R U' R'
(1,6,3,8,10)(2,4)(7,9)  => U R U R' U R U2 R' U R' U' R U' R' U' U' R U' R U' R' U2
(1,6,3,8,10)(2,4,9,7,5) => U R' U2 R U R' U R U2 R U' R' U2
(1,6,3,8,10)(2,4,9,5,7) => U R U R' U R U2 R' U2 R' U2 R U R' U R U R U' R' U' R U' R' U'
(1,6,3,8,10)(2,4,9)     => R U' R' U' U' R U' R' U' R U' R'
(1,6,8,3)(4,7,5,9)      => R U R' U R U2 R' U R U' R' U2 R U2 R' U'
(1,6,8,3)(4,7,9,5)      => U' R U2 R' U' R U' R' U2 U' R U' R' U2 R U' R' U' R U R' U'
(1,6,8,3)(4,7)          => R U R' U R U2 R' U
(1,6,8,3)(5,9)          => U' R U2 R' U' R U' R' U' R' U' R U' R' U' U' R2 U' R' U2 R U' R' U' R U R' U'
(1,6,8,3)(5,7)          => U R U R' U R U2 R'
(1,6,8,3)(7,9)          => U' R U2 R' U' R U' R2 U2 R U R' U R U2 R U' R' U2 R U' R' U' R U R'
(1,6,8,3)(4,5,9,7)      => U R U R' U R U2 R' U2 R U' R' U2 R U' R' U' R U R'
(1,6,8,3)(4,5,7,9)      => U R U R' U R U R' U2 R U2 R' U'
(1,6,8,3)(4,5)          => U' R U2 R' U' R U' R2 U2 R U R' U R
(1,6,8,3)(4,9)          => U' R U2 R' U' R U' R2 U2 R U R' U R2 U' R' U2 R U2 R' U'
(1,6,8,3)(4,9,7,5)      => R U R' U R U2 R' U' R U' R' U' U' R U' R' U' R U R'
(1,6,8,3)(4,9,5,7)      => U R U2 R' U U R U2 R' U R U2 R' U
(1,6,10,8)(4,7)         => U R U R' U R U2 R' U R U R' U R U R' U2 R U' R' U'
(1,6,10,8)(4,7,9,5)     => R U' R' U R U R' U R U2 R' U
(1,6,10,8)(4,7,5,9)     => U' R U2 R' U R U2 R' U
(1,6,10,8)(4,9,7,5)     => U' R U2 R' U' R U' R' U' R U R' U R U' U' R' U' R U' R' U' R U2 R' U' R U R'
(1,6,10,8)(4,9)         => U R U R' U R U R' U U R U R' U U R U2 R' U' R U' R'
(1,6,10,8)(4,9,5,7)     => U R U R' U R U2 R' U R U R' U R U2 R' U R U R' U'
(1,6,10,8)(5,9)         => U R U R' U R U2 R' U2 R' U2 R U R' U R2 U R' U'
(1,6,10,8)(7,9)         => U' R U2 R' U' R U2 R' U' R U2 R' U' R U R'
(1,6,10,8)(5,7)         => U R U R' U R U2 R' U2 R' U2 R U R' U R U' R U' R' U' U' R U' R' U'
(1,6,10,8)(4,5)         => R' U' R U' R' U2 R R U' R' U2 R U' R' U'
(1,6,10,8)(4,5,9,7)     => U' R U R' U R' U U R U R' U R U R U R' U R U2 R' U
(1,6,10,8)(4,5,7,9)     => U R U R' U R U2 R' U R U' R' U' R U' U' R' U' R U' R' U'
(1,6)(3,10)(4,7)(5,9)   => R' U' R U' R' U2 R U' U2 R U' R' U' R U2 R' U' R U R' U'
(1,6)(3,10)(4,7,9)      => R U R' U R U R' U R U2 R' U' R U' R'
(1,6)(3,10)(4,7,5)      => R U2 R' U R U R'
(1,6)(3,10)(4,5,9)      => U' R U2 R' U' R U' R' U R U' R' U'
(1,6)(3,10)(4,5,7)      => R U' R' U' R U2 R'
(1,6)(3,10)(4,5)(7,9)   => U' R U2 R' U' R U' R2 U2 R U R' U R U' U' R U' R' U' R U' R'
(1,6)(3,10)(5,9,7)      => U R U R' U R U2 R' U2 R U' R' U' R U' R'
(1,6)(3,10)(5,7,9)      => R U R' U R U R' U2 R U2 R' U' R U' R' U'
(1,6)(3,10)             => U R U R' U R U2 R' U R' U' R U' R' U2 R U2 R U' R' U' R U2 R'
(1,6)(3,10)(4,9,7)      => R U R' U R U' U' R' U' R U' R' U' R U' R'
(1,6)(3,10)(4,9,5)      => U R U R' U' R U R' U R U2 R' U
(1,6)(3,10)(4,9)(5,7)   => U' R U2 R' U' R U' R' U' R' U' R U' R' U' U' R2 U' R' U'
(1,6,3,8,10)            => U R U R' U2 R U2 R' U R U2 R' U
(1,6,3,8,10)(5,7,9)     => U' R U2 R' U' R U' R' U' R U R' U R U2 R' U' U' R U' R' U' R U' R' U'
(1,6,3,8,10)(5,9,7)     => U R U' R' U' R U R' U R U2 R' U
(1,6,3,8,10)(4,9,7)     => U R U R' U R U2 R' U R U R' U R U2 R' U' R U' R' U2
(1,6,3,8,10)(4,9,5)     => U' R U2 R' U' R U' R' U' R' U' R U' R' U' U' R U' U' R U' R' U' R U' R' U'
(1,6,3,8,10)(4,9)(5,7)  => R U R' U R U R' U' R U R' U'
(1,6,3,8,10)(4,7,9)     => R U' R' U R U2 R' U R U R'
(1,6,3,8,10)(4,7,5)     => U' R U' R' U' R U2 R' U'
(1,6,3,8,10)(4,7)(5,9)  => U' R U2 R' U' R U' R' U' R U' R' U' R U' R' U'
(1,6,3,8,10)(4,5,9)     => U R U R' U' R U' R' U R U R' U R U2 R' U
(1,6,3,8,10)(4,5)(7,9)  => R' U' R U' R' U' U' R U' R U' R' U2
(1,6,3,8,10)(4,5,7)     => U R U R' U U R U R' U R U2 R' U' R U' R' U R U R' U R U2 R' U
(1,6,10,8)(2,9,5)(4,7)  => R U R' U R U2 R' U R U R' U'
(1,6,10,8)(2,9)(4,7,5)  => R' U' R U' R' U2 R U2 R U' R'
(1,6,10,8)(2,9,4,7)     => R U R' U R U U R' U R U U R' U R U2 R' U
(1,6,10,8)(2,9,7,5)     => U R U R' U R U2 R' U R U R' U R U2 R' U' R U' R' U' R U2 R' U' R U R'
(1,6,10,8)(2,9,5,7)     => U R U R' U R U' R' U'
(1,6,10,8)(2,9)         => U R U R' U R U2 R' U2 R' U2 R U R' U R U R U' R'
(1,6,10,8)(2,9,4,5)     => R U R' U R U U R' U R U R' U2 R' U' R U' R' U2 R U'
(1,6,10,8)(2,9)(4,5,7)  => R U R' U R U U R' U R U R' U R U2 R' U' R U' R'
(1,6,10,8)(2,9,7)(4,5)  => R U R' U R U U R' U R U R' U R' U U R U R' U R U R U R' U R U2 R' U
(1,6,10,8)(2,9,5,4)     => U' R U2 R' U' R U' R2 U2 R U R' U R2 U R' U'
(1,6,10,8)(2,9,7,4)     => R' U' R U' R' U' U' R U' R U' R' U' R U2 R' U' R U R'
(1,6,10,8)(2,9,4)(5,7)  => R U R' U R U U R' U R U R' U R U2 R' U' R U' R' U' R U2 R' U' R U' R' U'
(1,6)(2,9)(3,10)(4,7)   => R' U' R U' R' U2 R U' U2 R U' R' U' R U R'
(1,6)(2,9,5,4,7)(3,10)  => U' R U' R' U' R U2 R' U' R U R' U'
(1,6)(2,9,4,7,5)(3,10)  => U R U R' U R U2 R' U R' U' R U' R' U2 R2 U' R' U'
(1,6)(2,9,4)(3,10)      => U2 R U' R' U'
(1,6)(2,9,7,5,4)(3,10)  => U' R U2 R' U' R U2 R' U' R U' R'
(1,6)(2,9,5,7,4)(3,10)  => R U' R' U R U R' U' R U2 R' U' R U' R'
(1,6)(2,9,7)(3,10)      => R U' R' U R U R' U U R U R' U R U2 R' U
(1,6)(2,9,5)(3,10)      => R U' R' U R U R2 U' R U' R' U2 R U'
(1,6)(2,9)(3,10)(5,7)   => U R U R' U R U2 R' U R U R' U R U2 R' U R U' R' U' R U R'
(1,6)(2,9,7,4,5)(3,10)  => R U' R' U R U R' U
(1,6)(2,9)(3,10)(4,5)   => U R U R' U R U2 R' U2 R' U2 R U R' U R2 U' R' U' R U R'
(1,6)(2,9,4,5,7)(3,10)  => U R' U2 R U R' U R U' R U' R' U'
(1,6,8,3)(2,9)(4,7,5)   => R U2 R' U2 R U R' U' R U2 R' U' R U' R' U'
(1,6,8,3)(2,9,4,7)      => R U2 R' U U R U R' U R U R' U R U2 R' U
(1,6,8,3)(2,9,5)(4,7)   => R U2 R' U2 R U R'
(1,6,8,3)(2,9,7,4)      => U' R U2 R' U' R U2 R' U2 R U' R' U' R U R'
(1,6,8,3)(2,9,5,4)      => R' U' R U' R' U2 R R U' R' U2 R U' R' U' R U R' U'
(1,6,8,3)(2,9,4)(5,7)   => U R U R' U R U2 R' U R U R' U R U2 R' U R U' R' U2 R U2 R' U'
(1,6,8,3)(2,9,4,5)      => R U2 R' U2 R U R' U' R' U' R U' R' U2 R U'
(1,6,8,3)(2,9,7)(4,5)   => R U2 R' U2 R U R' U2 R' U2 R U R' U R U R U R' U R U2 R' U
(1,6,8,3)(2,9)(4,5,7)   => R U U R' U2 R U R' U2 R U2 R' U' R U' R'
(1,6,8,3)(2,9)          => U' R U2 R' U' R U' R' U' R' U' R U' R' U' U' R2 U' R' U2 R U2 R'
(1,6,8,3)(2,9,7,5)      => R U2 R' U2 R U R' U2 R' U2 R U R' U R U' R U2 R' U' R U' R' U'
(1,6,8,3)(2,9,5,7)      => R U U R' U2 R U R' U2 R U2 R' U' R U' R' U R U R' U R U2 R' U
(1,6,3,8,10)(2,9,7)     => R U R2 U' R U' R' U2 R U'
(1,6,3,8,10)(2,9)(5,7)  => R U R' U2 R U R' U R U2 R' U
(1,6,3,8,10)(2,9,5)     => R U R' U' R U2 R' U' R U' R' U' R U2 R' U' R U' R' U'
(1,6,3,8,10)(2,9,4,7,5) => R U R' U2 U R' U2 R U R' U R
(1,6,3,8,10)(2,9)(4,7)  => R U R' U' R' U U R U R' U R U R U R' U R U2 R' U
(1,6,3,8,10)(2,9,5,4,7) => U R' U2 R U R' U R U R U' R' U' R U' R' U'
(1,6,3,8,10)(2,9,5,7,4) => R U' R' U' R U' R' U'
(1,6,3,8,10)(2,9,4)     => R U R' U' R U2 R' U' R U' R'
(1,6,3,8,10)(2,9,7,5,4) => R U R2 U' R U' R' U2 R2 U R' U R U2 R' U
(1,6,3,8,10)(2,9,7,4,5) => R U R' U R U2 R' U' R U' R' U2
(1,6,3,8,10)(2,9)(4,5)  => U' R U2 R' U' R U' R' U' R U' R' U' U' R U' R' U' R U' R'
(1,6,3,8,10)(2,9,4,5,7) => R U R' U
(1,6,10,8)(2,5,9)(4,7)  => R U R' U R U2 R' U2 R U' R'
(1,6,10,8)(2,5,4,7)     => U' R U2 R' U' R U' R' U2 U' R U' R' U2 R U' R' U'
(1,6,10,8)(2,5)(4,7,9)  => R U' R' U' R U' U' R' U' R U' R' U'
(1,6,10,8)(2,5)         => R U R' U2 R U' R' U' R U' R' U'
(1,6,10,8)(2,5,7,9)     => U R U R' U R U2 R' U R U' R'
(1,6,10,8)(2,5,9,7)     => U R' U2 R U R' U R U2 R U' R' U' R U2 R' U' R U R'
(1,6,10,8)(2,5,9,4)     => U R' U2 R U R' U R U R U' R' U' R U' U' R' U' R U' R' U'
(1,6,10,8)(2,5,7,4)     => U' R U2 R' U' R U' R' U' R U R' U R U R' U2 R U' R' U'
(1,6,10,8)(2,5,4)(7,9)  => U R U' R' U' R U2 R' U' R U R'
(1,6,10,8)(2,5,4,9)     => U' R U2 R' U' R U' R2 U2 R U R' U R U R U' R'
(1,6,10,8)(2,5)(4,9,7)  => U R U R' U R U2 R' U R' U' R U' R' U' U' R U' R U' R' U' R U2 R' U' R U R'
(1,6,10,8)(2,5,7)(4,9)  => U R U R' U R U R' U2 R U R'
(1,6)(2,5)(3,10)(4,7)   => U' R U2 R' U' R U' R' U' R U' R' U' R U' U' R'
(1,6)(2,5,4,7,9)(3,10)  => U' R U' R' U' R U R'
(1,6)(2,5,9,4,7)(3,10)  => U' R U2 R' U' R U' R2 U2 R U R' U R U' R U' R' U'
(1,6)(2,5,9)(3,10)      => U R' U2 R U R' U R2 U' R' U' R U R'
(1,6)(2,5,7)(3,10)      => R U2 R' U R U R' U' R' U' R U' R' U2 R2 U R' U R U2 R' U
(1,6)(2,5)(3,10)(7,9)   => U R U R' U R U2 R' U2 R' U2 R U R' U R U' U' R U' R' U' R U' R'
(1,6)(2,5)(3,10)(4,9)   => U R U R' U R U2 R' U' R U' R' U'
(1,6)(2,5,7,4,9)(3,10)  => U R U R2 U2 R U R' U R U' R U2 R' U' R U' R' U'
(1,6)(2,5,4,9,7)(3,10)  => R' U' R U' R' U2 R U' R U' R' U' R U' R'
(1,6)(2,5,9,7,4)(3,10)  => U R U' R' U R U2 R' U R U R' U' R U2 R' U' R U' R'
(1,6)(2,5,4)(3,10)      => R U2 R' U R U R' U U R' U U R U R' U R
(1,6)(2,5,7,9,4)(3,10)  => R U R' U R U R' U'
(1,6,8,3)(2,5)(4,7,9)   => U' R U' R' U2 R U2 R' U'
(1,6,8,3)(2,5,4,7)      => R' U' R U' R' U2 R U
(1,6,8,3)(2,5,9)(4,7)   => U R U' R' U R U R' U2 R U R'
(1,6,8,3)(2,5)          => U R U R' U R U2 R' U2 R' U2 R U R' U R
(1,6,8,3)(2,5,9,7)      => U R U R' U R U2 R' U R' U' R U' R' U2 R U' R U' R' U2 R U' R' U' R U R'
(1,6,8,3)(2,5,7,9)      => R U' R' U R U R' U2 R U' R' U' R U' R' U'
(1,6,8,3)(2,5)(4,9,7)   => U R U' R' U2 R U' R' U' R U R'
(1,6,8,3)(2,5,7)(4,9)   => U R U2 R' U2 R U R' U2 R U2 R' U' R U' R' U'
(1,6,8,3)(2,5,4,9)      => R' U' R U' R' U2 R R U' R' U2 R U2 R'
(1,6,8,3)(2,5,9,4)      => U R' U2 R U R' U R2 U' R' U2 R U2 R' U'
(1,6,8,3)(2,5,4)(7,9)   => U R' U2 R U R' U R U2 R U' R' U2 R U' R' U' R U R'
(1,6,8,3)(2,5,7,4)      => U R U R' U R U2 R' U R U R' U R U2 R' U
(1,6,3,8,10)(2,5)(7,9)  => U' R U2 R' U' R U' R' U' R' U' R U' R' U' U' R U' R U' R' U2
(1,6,3,8,10)(2,5,9)     => U R U R' U' R U' R' U' R U2 R' U' R U' R' U'
(1,6,3,8,10)(2,5,7)     => U R U R' U R U2 R' U R U R' U R U2 R' U R U' R' U' R U2 R' U'
(1,6,3,8,10)(2,5,7,9,4) => U R' U2 R U R' U R U' R U' R' U' R U R' U'
(1,6,3,8,10)(2,5,9,7,4) => U R U' R' U R U2 R' U' R U' R' U'
(1,6,3,8,10)(2,5,4)     => U R U R' U2 R U R' U2 R U2 R' U' R U' R' U'
(1,6,3,8,10)(2,5,4,9,7) => U' R U2 R' U' R U2 R' U2
(1,6,3,8,10)(2,5)(4,9)  => U2 R U' R' U' R U R' U'
(1,6,3,8,10)(2,5,7,4,9) => R U R' U R U' U' R' U2 R U' R' U2 R U' R' U' R U' R'
(1,6,3,8,10)(2,5,4,7,9) => R U' R' U R U U R' U R U R' U R U R' U R U2 R' U
(1,6,3,8,10)(2,5)(4,7)  => R' U' R U' R' U2 R U' U2 R U' R' U' R U2 R' U'
(1,6,3,8,10)(2,5,9,4,7) => U R U' R2 U2 R U R' U R U' R U2 R' U' R U' R' U'
(1,6,8,3)(2,7,9)(4,5)   => U' R U2 R' U' R U' R2 U2 R U R' U R U' R U' R' U2 R U2 R'
(1,6,8,3)(2,7,4,5)      => U2 R' U' R U' R' U2 R U'
(1,6,8,3)(2,7)(4,5,9)   => U' R U2 R' U' R U' R' U' R' U' R U' R' U2 R U2 U' R U' R' U2 R U2 R' U'
(1,6,8,3)(2,7,5,4)      => U' R U2 R' U' R U' R' U2
(1,6,8,3)(2,7,9,4)      => U' R U2 R' U' R U' R' U' U' R U' R' U' U' R U2 R' U'
(1,6,8,3)(2,7,4)(5,9)   => R U R' U R U R' U2 R U' R' U' R U R' U'
(1,6,8,3)(2,7)(4,9,5)   => U R U2 R' U2 R U R' U2 R' U' R U' R' U2 R2 U R' U R U2 R' U
(1,6,8,3)(2,7,4,9)      => R U R' U R U R' U2 R U2 R'
(1,6,8,3)(2,7,5)(4,9)   => U' R U2 R' U' R U' R' U' R U R' U R U2 R' U R U' R' U2 R U2 R' U'
(1,6,8,3)(2,7,9,5)      => U R U R' U R U2 R' U' R U' R' U' U' R U' R' U' R U R' U'
(1,6,8,3)(2,7,5,9)      => U R U R' U R U2 R' U' R U' R' U2 R U2 R'
(1,6,8,3)(2,7)          => U2 R' U' R U' R' U2 R2 U R' U R U2 R' U
(1,6,3,8,10)(2,7)(4,5)  => U' R U2 R' U' R U' R' U' R U R' U R U2 R' U R U' R' U' R U2 R' U'
(1,6,3,8,10)(2,7,4,5,9) => U R U' R' U R' U' R U' R' U2 R U2 R U2 R' U' R U' R' U'
(1,6,3,8,10)(2,7,9,4,5) => R U' R' U R U2 R' U R U R' U2 R U2 R' U' R U' R'
(1,6,3,8,10)(2,7,5,4,9) => R' U' R U' R' U2 R U' U' R U' R' U2 R U' R' U' R U' R'
(1,6,3,8,10)(2,7)(4,9)  => U R U R' U R U U R' U R U R' U
(1,6,3,8,10)(2,7,4,9,5) => U R U R' U R U2 R' U R U' R' U' R U' R' U'
(1,6,3,8,10)(2,7,9,5,4) => R U R' U R U2 R' U' U' R U' R' U' R U' R' U'
(1,6,3,8,10)(2,7,4)     => U R U R' U U R U R' U U R' U' R U' R' U2 R2 U R' U R U2 R' U
(1,6,3,8,10)(2,7,5,9,4) => U R U' R' U R' U' R U' R' U2 R2 U R' U R U2 R' U
(1,6,3,8,10)(2,7,5)     => U' R U2 R' U' R U' R' U' U' R U' R' U' R U2 R' U'
(1,6,3,8,10)(2,7)(5,9)  => U R U' R' U R' U' R U' R' U2 R U'
(1,6,3,8,10)(2,7,9)     => U R U R' U R U2 R' U2 R' U2 R U R' U R U R U' R' U' U' R U' R' U' R U' R'
(1,6)(2,7,9,4,5)(3,10)  => R U R' U R U R' U R' U2 R U R' U R
(1,6)(2,7,4,5,9)(3,10)  => U R U' R' U R U2 R' U R U R' U
(1,6)(2,7)(3,10)(4,5)   => R U R' U R U2 R' U2 R U' R' U' R U2 R'
(1,6)(2,7)(3,10)(5,9)   => U' R U2 R' U' R U' R' U' U' R U' R' U' R U2 R' U' R U R' U'
(1,6)(2,7,5)(3,10)      => U' R U2 R' U' R U' R2 U2 R U R' U R U R U' R' U' R U2 R'
(1,6)(2,7,9)(3,10)      => U' R U2 R' U' R U' R' U' U' R U' R' U' R U R'
(1,6)(2,7,5,4,9)(3,10)  => U R U R' U R' U' R U' R' U2 R U'
(1,6)(2,7,4,9,5)(3,10)  => U R U R' U R' U' R U' R' U2 R2 U R' U R U2 R' U
(1,6)(2,7)(3,10)(4,9)   => U R U R' U R U2 R' U2 R' U2 R U R' U R U' R U' R' U'
(1,6)(2,7,5,9,4)(3,10)  => R' U' R U' R' U2 R2 U' R' U'
(1,6)(2,7,9,5,4)(3,10)  => R U R' U R U R' U R' U2 R U R' U R U' R U2 R' U' R U' R' U'
(1,6)(2,7,4)(3,10)      => U R U R' U R U2 R' U R U' R' U' R U2 R'
(1,6,10,8)(2,7,4)(5,9)  => U' R U2 R' U' R U' R' U' R U R' U R U2 R' U R U R' U'
(1,6,10,8)(2,7,9,4)     => U' R U2 R' U' R U' R' U' R U' R' U' R U' U' R' U' R U' R' U'
(1,6,10,8)(2,7,5,4)     => R U R' U2 R U R2 U' R U' R' U2 R U'
(1,6,10,8)(2,7,9)(4,5)  => U' R U2 R' U' R U' R' U' R U' R'
(1,6,10,8)(2,7)(4,5,9)  => U' R U R' U2 R' U' R U' R' U2 R U'
(1,6,10,8)(2,7,4,5)     => R U R' U R U R' U2 R U' R' U'
(1,6,10,8)(2,7)         => U R U R' U R U2 R' U' R U' R' U' U' R U' R' U'
(1,6,10,8)(2,7,5,9)     => U' R U2 R' U' R U' R' U' R' U' R U' R' U' U' R U' U' R U' R'
(1,6,10,8)(2,7,9,5)     => R U' R' U' R' U' R U' R' U2 R2 U R' U R U2 R' U
(1,6,10,8)(2,7)(4,9,5)  => U' R U2 R' U' R U' R' U2 R U R' U'
(1,6,10,8)(2,7,5)(4,9)  => U R U R' U R U R' U2 R U R' U U R' U2 R U R' U R
(1,6,10,8)(2,7,4,9)     => U' R U2 R' U' R U' R' U' R U R' U R U2 R' U2 R U' R'
(1,8)(2,7)(3,6)(4,5)    => U2
(1,8)(2,7,9,4,5)(3,6)   => U R' U2 R U R' U R U' R U' R' U2 R U2 R' U'
(1,8)(2,7,4,5,9)(3,6)   => R' U' R U' R' U2 R U' R U' R' U2 R U2 R'
(1,8)(2,7,9,5,4)(3,6)   => R U' R' U R U R' U U R U R' U R U R' U R U2 R' U
(1,8)(2,7,5,9,4)(3,6)   => U R U' R' U R U R' U U R U R' U R U2 R' U' R U' R'
(1,8)(2,7,4)(3,6)       => U R U2 R' U' R U' R' U'
(1,8)(2,7,5,4,9)(3,6)   => U R U2 R' U2 R U R' U U2 R U R' U R U2 R' U
(1,8)(2,7)(3,6)(4,9)    => U2 R U' R' U2 R U2 R' U'
(1,8)(2,7,4,9,5)(3,6)   => U R U2 R' U2 R U R' U R U2 R' U' R U' R' U'
(1,8)(2,7,5)(3,6)       => U R' U2 R U R' U R U'
(1,8)(2,7)(3,6)(5,9)    => U R U R' U R U2 R' U R U R' U R U2 R' U' R U' R' U' U' R U' R' U' R U R' U'
(1,8)(2,7,9)(3,6)       => R U' R' U R U R' U2 R U R'
(1,8,6,10,3)(2,7,4,5,9) => U' R U R' U2
(1,8,6,10,3)(2,7,9,4,5) => R U' R' U'
(1,8,6,10,3)(2,7)(4,5)  => R U R' U2 R U R' U' R U2 R' U' R U' R' U'
(1,8,6,10,3)(2,7,5,9,4) => U R' U2 R U R' U R U R U' R' U'
(1,8,6,10,3)(2,7,9,5,4) => R U' R' U2 R U2 R' U' R U' R' U'
(1,8,6,10,3)(2,7,4)     => R U R' U U R U R' U R U R' U R U2 R' U
(1,8,6,10,3)(2,7)(5,9)  => U' R U R' U' R U R' U R U2 R' U
(1,8,6,10,3)(2,7,9)     => U R U2 R' U
(1,8,6,10,3)(2,7,5)     => R U R' U2 R U R'
(1,8,6,10,3)(2,7,5,4,9) => U R U R' U R U2 R' U2 R U' R' U' R U R'
(1,8,6,10,3)(2,7,4,9,5) => U R U R' U R U R' U U R U R' U R U2 R' U' R U' R'
(1,8,6,10,3)(2,7)(4,9)  => U R U R' U R U2 R' U R' U' R U' R' U2 R U2 R U' R' U'
(1,8,3,10)(2,7,9)(4,5)  => U R U R' U R U2 R' U2 R U' R' U' U' R U' R' U' R U' R'
(1,8,3,10)(2,7,4,5)     => U R U R' U R U2 R' U R U R' U R U2 R' U2 R U' R' U' R U2 R' U'
(1,8,3,10)(2,7)(4,5,9)  => R U R' U R U2 R' U R U' R' U' R U R' U'
(1,8,3,10)(2,7,4)(5,9)  => U R U R' U R U2 R' U R' U' R U' R' U2 R U' R U' R' U' R U' R' U'
(1,8,3,10)(2,7,9,4)     => U R U R' U R U R' U' R U R' U'
(1,8,3,10)(2,7,5,4)     => R' U' R U' R' U2 R U2 R U' R' U' R U2 R' U'
(1,8,3,10)(2,7)(4,9,5)  => U R U' R' U' R U' R' U'
(1,8,3,10)(2,7,4,9)     => U R U R' U U R U R' U R U2 R' U
(1,8,3,10)(2,7,5)(4,9)  => U R U R' U
(1,8,3,10)(2,7,9,5)     => R U R' U R U' R' U' R U' R'
(1,8,3,10)(2,7,5,9)     => R U R' U R U2 R' U' R U' R' U' U' R U' R' U' R U' R'
(1,8,3,10)(2,7)         => R U2 R' U R U R' U2 R' U' R U' R' U2 R U'
(1,8,10,6)(2,7,4)(5,9)  => U R U' R' U
(1,8,10,6)(2,7,5,4)     => U R U R' U U R U R' U U
(1,8,10,6)(2,7,9,4)     => U R' U2 R U R' U R U R U' R' U' U' R U' R' U' R U' R' U'
(1,8,10,6)(2,7,9)(4,5)  => U' R U2 R' U' R U' R' U' R' U' R U' R' U' U' R U' R U' R' U' R U' U' R' U' R U' R'
(1,8,10,6)(2,7)(4,5,9)  => U R U' R' U2 R U R' U R U2 R' U
(1,8,10,6)(2,7,4,5)     => U R U R' U2 R U R' U U2 R U R' U R U2 R' U
(1,8,10,6)(2,7)         => U R U R' U U R U R' U R U2 R' U' R U' R' U'
(1,8,10,6)(2,7,5,9)     => U R U R' U' R U' R' U'
(1,8,10,6)(2,7,9,5)     => R U' R' U R U2 R' U R U R' U2 R' U' R U' R' U2 R U'
(1,8,10,6)(2,7)(4,9,5)  => U R' U2 R U R' U R U2 R U' R' U
(1,8,10,6)(2,7,4,9)     => U' R U2 R' U' R U2 R' U' R U2 R' U' R U' R'
(1,8,10,6)(2,7,5)(4,9)  => R U' R' U' U' R U' R' U' R U' R' U'
(1,8)(2,4,5,9,7)(3,6)   => U' R U2 R' U' R U' R' U' R U' R' U' U' R U' R' U' R U R'
(1,8)(2,4,5,7,9)(3,6)   => R U R' U R U2 R' U' R U' R' U2 R U2 R'
(1,8)(2,4,5)(3,6)       => R U R' U R U2 R'
(1,8)(2,4,7,5,9)(3,6)   => U' R U2 R' U' R U' R2 U2 R U R' U R U2 R U' R' U2 R U2 R'
(1,8)(2,4,7)(3,6)       => U R U R' U R U2 R' U'
(1,8)(2,4,7,9,5)(3,6)   => R U' R' U R U R' U2 R U R' U' R' U' R U' R' U2 R2 U R' U R U2 R' U
(1,8)(2,4)(3,6)(5,9)    => U R U R' U R U2 R' U2 R U' R' U2 R U' R' U' R U R' U'
(1,8)(2,4)(3,6)(7,9)    => U' R U2 R' U' R U' R' U' R U R' U R U' U' R' U2 R U' R' U2 R U' R' U' R U R'
(1,8)(2,4)(3,6)(5,7)    => U' R U2 R' U' R U' R2 U2 R U R' U R U'
(1,8)(2,4,9,7,5)(3,6)   => U R U2 R' U2 R U R' U R' U' R U' R' U2 R2 U R' U R U2 R' U
(1,8)(2,4,9,5,7)(3,6)   => R U R' U R U2 R' U' R U' R' U' U' R U' R' U' R U R' U'
(1,8)(2,4,9)(3,6)       => U R U R' U R U2 R' U2 R U' R' U2 R U2 R'
(1,8,6,10,3)(2,4,5)     => U R' U2 R U R' U R U' R U' R' U' R U2 R'
(1,8,6,10,3)(2,4,5,7,9) => R U' R' U R U2 R' U' R U' R' U R U R' U R U2 R' U
(1,8,6,10,3)(2,4,5,9,7) => U' R U' R' U' R U' R' U R U R' U R U2 R' U
(1,8,6,10,3)(2,4,9,5,7) => U' R U2 R' U' R U' R' U' R U R' U R U' U' R' U' R U' R' U' R U2 R' U' R U R' U'
(1,8,6,10,3)(2,4,9,7,5) => U R U R' U R U R' U2 R U R' U2 R U2 R' U' R U' R' U'
(1,8,6,10,3)(2,4,9)     => U' R U2 R' U' R U' R' U' R' U' R U' R' U' U' R U' R U' R' U' R U R'
(1,8,6,10,3)(2,4,7,5,9) => U' R U2 R' U' R U2 R' U' R U2 U' R'
(1,8,6,10,3)(2,4,7,9,5) => U' R U2 R' U' R U2 R' U' R U2 R' U' R U R' U'
(1,8,6,10,3)(2,4,7)     => U2 R U' R' U' R U2 R'
(1,8,6,10,3)(2,4)(5,7)  => U R U R' U R U2 R' U R' U' R U' R' U2 R2 U' R' U' R U2 R'
(1,8,6,10,3)(2,4)(5,9)  => U' R U R' U R' U' R U' R' U2 R2 U R' U R U2 R' U
(1,8,6,10,3)(2,4)(7,9)  => R' U' R U' R' U2 R U' U2 R U' R' U' R U' R'
(1,8,3,10)(2,4,5,9)     => U R U' R' U R U U R' U R U R' U R U R' U R U2 R' U
(1,8,3,10)(2,4,5)(7,9)  => R U R' U R U R' U R U2 R' U' R U' R' U'
(1,8,3,10)(2,4,5,7)     => R U2 R' U R U R' U'
(1,8,3,10)(2,4)(5,9,7)  => U' R U2 R' U' R U' R' U2 U' R U' R' U2
(1,8,3,10)(2,4)         => R U' R' U' R U2 R' U'
(1,8,3,10)(2,4)(5,7,9)  => R U R' U R U R2 U U R U R' U R U R U R' U R U2 R' U
(1,8,3,10)(2,4,7)(5,9)  => U R U R' U R U2 R' U2 R U' R' U' R U' R' U'
(1,8,3,10)(2,4,7,9)     => U' R U2 R' U' R U2 R' U' U' R U' R' U' R U' R'
(1,8,3,10)(2,4,7,5)     => R U2 R' U R U R' U R' U2 R U R' U R
(1,8,3,10)(2,4,9,5)     => R U R' U R U' U' R' U' R U' R' U' R U' R' U'
(1,8,3,10)(2,4,9)(5,7)  => U R U R' U' R U2 R' U' R U' R' U R U R' U R U2 R' U
(1,8,3,10)(2,4,9,7)     => U R U R2 U' R U' R' U2 R2 U R' U R U2 R' U
(1,8,10,6)(2,4,7,5)     => U R U R' U2 R U' R' U' R U' R' U R U R' U R U2 R' U
(1,8,10,6)(2,4,7,9)     => R' U' R U' R' U' U' R U' R U' R' U' R U' U' R' U' R U' R'
(1,8,10,6)(2,4,7)(5,9)  => U R U' R' U' R U2 R' U' R U' R' U R U R' U R U2 R' U
(1,8,10,6)(2,4,9,5)     => U R U R' U R U U R' U R U R' U' R' U' R U' R' U2 R U'
(1,8,10,6)(2,4,9)(5,7)  => U R U R' U R U2 R' U R U R' U R U2 R' U' R U' R' U' R U' U' R' U' R U' R'
(1,8,10,6)(2,4,9,7)     => U R U R' U R U2 R' U2 R' U2 R U R' U R U R U R'
(1,8,10,6)(2,4,5)(7,9)  => R U' R' U R U2 R' U R U R' U'
(1,8,10,6)(2,4,5,7)     => U R' U2 R U R' U R2 U' R' U2 R U' R'
(1,8,10,6)(2,4,5,9)     => U R U' R2 U' R U' R' U2 R2 U R' U R U2 R' U
(1,8,10,6)(2,4)(5,9,7)  => R' U' R U' R' U2 R U2 R U R'
(1,8,10,6)(2,4)(5,7,9)  => R' U' R U' R' U' U' R U' R U' R' U
(1,8,10,6)(2,4)         => U' R U' R' U2 R U' R'
(1,8,6,10,3)(2,9)(4,5)  => R U R' U R U U R' U R U R' U2
(1,8,6,10,3)(2,9,4,5,7) => R' U' R U' R' U2 R U2 R U' R' U'
(1,8,6,10,3)(2,9,7,4,5) => U R U R' U R U R' U' R U' R'
(1,8,6,10,3)(2,9,5,4,7) => R U R' U R U U R' U R U R2 U2 R U R' U R
(1,8,6,10,3)(2,9)(4,7)  => U R' U2 R U R' U R U2 R U' R' U' R U R'
(1,8,6,10,3)(2,9,4,7,5) => U R U R' U R U2 R' U2 R' U2 R U R' U R U R U' R' U'
(1,8,6,10,3)(2,9,7,5,4) => R U R' U R U2 R' U R U' R' U' R U' R'
(1,8,6,10,3)(2,9,4)     => R U R' U R U U R' U R U R' U R U2 R' U' R U' R' U'
(1,8,6,10,3)(2,9,5,7,4) => R U R' U R U U R' U R U R' U R' U' R U' R' U2 R2 U R' U R U2 R' U
(1,8,6,10,3)(2,9)(5,7)  => U R U' R' U' R U R'
(1,8,6,10,3)(2,9,5)     => R' U' R U' R' U' U' R U' R U' R' U' R U2 R' U' R U R' U'
(1,8,6,10,3)(2,9,7)     => U' R U2 R' U' R U' R2 U2 R U R' U R2 U' R' U' R U' R'
(1,8,3,10)(2,9,4,5)     => R U2 U R' U R U R' U R U R' U R U2 R' U
(1,8,3,10)(2,9)(4,5,7)  => R U' R' U R U R' U' R' U' R U' R' U2 R2 U R' U R U2 R' U
(1,8,3,10)(2,9,7)(4,5)  => R U' R' U R U R' U U R' U U R U R' U R
(1,8,3,10)(2,9,7,5)     => U2 R U' R' U2
(1,8,3,10)(2,9,5,7)     => U' R U2 R' U' R U2 R' U' R U' R' U'
(1,8,3,10)(2,9)         => R U' R' U R U R' U' R U2 R' U' R U' R' U'
(1,8,3,10)(2,9,5)(4,7)  => U' R U2 R' U' R U' R' U' R' U' R U' R' U' U' R U' R U' R' U' R U' R' U'
(1,8,3,10)(2,9)(4,7,5)  => R U' R' U R U R' U2 R U2 R' U' R U' R'
(1,8,3,10)(2,9,4,7)     => U R U R' U R U2 R' U R U R' U R U2 R' U R U' R' U' R U R' U'
(1,8,3,10)(2,9,5,4)     => R U' R' U R U R'
(1,8,3,10)(2,9,4)(5,7)  => R U' R' U R U R' U' R' U' R U' R' U2 R U'
(1,8,3,10)(2,9,7,4)     => U R' U2 R U R' U R U' R U' R' U2
(1,8)(2,9,4,5,7)(3,6)   => U' R U2 R' U' R U' R' U2 U' R U' R' U2 R U2 R' U'
(1,8)(2,9,7,4,5)(3,6)   => U R' U2 R U R' U R U R U' R' U2 R U' R' U' R U R'
(1,8)(2,9)(3,6)(4,5)    => U R U' R' U2 R U2 R'
(1,8)(2,9,5)(3,6)       => R U2 R' U2 R U2 R' U R U2 R' U
(1,8)(2,9)(3,6)(5,7)    => U R' U2 R U R' U R U2 R U' R' U2 R U2 R'
(1,8)(2,9,7)(3,6)       => R U' R' U2 R U' R' U' R U R'
(1,8)(2,9,7,5,4)(3,6)   => R U2 R' U2 R U R' U R U2 R' U' R U' R'
(1,8)(2,9,5,7,4)(3,6)   => R U2 R' U2 R U R' U2 R' U' R U' R' U2 R2 U R' U R U2 R' U
(1,8)(2,9,4)(3,6)       => R U2 R' U2 R U R' U2 R U2 R' U' R U' R' U'
(1,8)(2,9,4,7,5)(3,6)   => U' R U2 R' U' R U' R' U' R' U' R U' R' U' U' R2 U' R' U2 R U2 R' U'
(1,8)(2,9,5,4,7)(3,6)   => R U U R' U2 R U R' U R' U2 R U R' U R
(1,8)(2,9)(3,6)(4,7)    => U R U R' U R U2 R' U R' U' R U' R' U2 R U' R U' R' U2 R U2 R'
(1,8,10,6)(2,9,5)(4,7)  => R U R' U2 R U2 R' U' R U' R'
(1,8,10,6)(2,9,4,7)     => R U R' U2 R U2 R' U' R U' R' U R U R' U R U2 R' U
(1,8,10,6)(2,9)(4,7,5)  => R U R' U R U2 R' U' R U' R' U' R U' U' R' U' R U' R'
(1,8,10,6)(2,9,7)(4,5)  => U R' U2 R U R' U R U R U R'
(1,8,10,6)(2,9,4,5)     => R U R' U' R' U' R U' R' U2 R2 U R' U R U2 R' U
(1,8,10,6)(2,9)(4,5,7)  => R U R' U U R' U U R U R' U R
(1,8,10,6)(2,9)         => R U R' U' R' U' R U' R' U2 R U2 R U2 R' U' R U' R' U'
(1,8,10,6)(2,9,7,5)     => R U R' U' R U2 R' U' R U' R' U'
(1,8,10,6)(2,9,5,7)     => R U R' U U R' U U R U R' U R U R U R' U R U2 R' U
(1,8,10,6)(2,9,5,4)     => R U R' U' R' U' R U' R' U2 R U'
(1,8,10,6)(2,9,4)(5,7)  => U' R U2 R' (U' R U' R' (U' R U' R' U')2
(1,8,10,6)(2,9,7,4)     => R U R'
(1,8,6,10,3)(4,5,9)     => R U R' U R U2 R' U2 R U' R' U'
(1,8,6,10,3)(4,5,7)     => U R U R' U R U2 R' U R U R' U R U R' U' R U2 R'
(1,8,6,10,3)(4,5)(7,9)  => R U' R' U2 R' U' R U' R' U2 R U2 R U2 R' U' R U' R' U'
(1,8,6,10,3)(4,7,5)     => R' U' R U' R' U2 R2 U' R' U' R U2 R'
(1,8,6,10,3)(4,7,9)     => R U' R' U R' U U R U R' U R
(1,8,6,10,3)(4,7)(5,9)  => U' R U R2 U2 R U R' U R
(1,8,6,10,3)(5,9,7)     => U' R U' R' U' R U' R' U' R U2 R' U' R U' R' U'
(1,8,6,10,3)            => R U R' U2 R U R' U U R' U2 R U R' U R
(1,8,6,10,3)(5,7,9)     => U R U' R' U' R U2 R' U' R U R' U'
(1,8,6,10,3)(4,9)(5,7)  => U' R U2 R' U' R U' R2 U2 R U R' U R U R U' R' U'
(1,8,6,10,3)(4,9,5)     => U R U R' U R U R' U U R U R' U U R' U' R U' R' U2 R U'
(1,8,6,10,3)(4,9,7)     => U R U R' U R U R' U2 R U R' U'
(1,8,3,10)(4,5)         => U' R U2 R' U' R U' R' U' R U' R' U' R U' U' R' U'
(1,8,3,10)(4,5,7,9)     => U' R U' R' U' R U R' U'
(1,8,3,10)(4,5,9,7)     => U' R U2 R' U' R U' R2 U2 R U R' U R U' R U' R' U2
(1,8,3,10)(4,7,5,9)     => U R' U2 R U R' U R2 U' R' U' R U R' U'
(1,8,3,10)(4,7)         => R U2 R' U R U R' U R' U U R U R' U R U R U R' U R U2 R' U
(1,8,3,10)(4,7,9,5)     => R U R' U R U R' U R' U' R U' R' U2 R U'
(1,8,3,10)(4,9,7,5)     => U R U R' U R U2 R' U' R U' R' U2
(1,8,3,10)(4,9)         => U R U R' U2 U R' U2 R U R' U R
(1,8,3,10)(4,9,5,7)     => R' U' R U' R' U2 R U' R U' R' U' R U' R' U'
(1,8,3,10)(5,9)         => U R U' R' U R U2 R' U R U R' U' R U2 R' U' R U' R' U'
(1,8,3,10)(5,7)         => R U2 R' U R U2 R' U R U2 R' U
(1,8,3,10)(7,9)         => R U R' U R U R' U U
(1,8)(3,6)(4,5)(7,9)    => U R U R' U R U2 R' U R U R' U R U2 R' U2 R U' R' U2 R U' R' U' R U R'
(1,8)(3,6)(4,5,7)       => R' U' R U' R' U2 R
(1,8)(3,6)(4,5,9)       => U R U' R' U R U R' U2 R U R' U'
(1,8)(3,6)(4,7,5)       => R' U2 R U R' U R
(1,8)(3,6)(4,7)(5,9)    => U R U R' U R U2 R' U R' U' R U' R' U2 R U' R U' R' U2 R U' R' U' R U R' U'
(1,8)(3,6)(4,7,9)       => U R U R' U R U2 R' U2 R' U2 R U R' U R U' R U' R' U2 R U2 R' U'
(1,8)(3,6)(4,9,5)       => U R U' R' U2 R U' R' U' R U R' U'
(1,8)(3,6)(4,9,7)       => U R U2 R' U2 R U R' U R' U' R U' R' U2 R U2 R U2 R' U' R U' R' U'
(1,8)(3,6)(4,9)(5,7)    => R' U' R U' R' U2 R R U' R' U2 R U2 R' U'
(1,8)(3,6)(5,9,7)       => R' U' R U' R' U2 R U' U' R U' R' U2 R U' R' U' R U R'
(1,8)(3,6)(5,7,9)       => R U' R' U R U R' U2 R U R' U U R' U2 R U R' U R
(1,8)(3,6)              => U R U R' U R U2 R' U R U R' U R U2 R'
(1,8,10,6)(4,7,9,5)     => U' R U2 R' U' R U' R' U' R' U' R U' R' U' U' R U' R U' R' U
(1,8,10,6)(4,7,5,9)     => U R U R' U R U2 R' U R U' R' U' U' R U' R' U' R U' R' U'
(1,8,10,6)(4,7)         => U R U R' U2 R U' R' U' R U' R' U' R U2 R' U' R U' R' U'
(1,8,10,6)(7,9)         => R U' R' U R U2 R' U R U2 R' U R U2 R' U
(1,8,10,6)(5,9)         => U R U' R2 U' R U' R' U2 R U2 R U2 R' U' R U' R' U'
(1,8,10,6)(5,7)         => U' R U2 R' U' R U' R' U' R' U' R U' R' U' U' R U' U2 R U' R' U2 R U' R'
(1,8,10,6)(4,9,5,7)     => U' R U2 R' U' R U2 R' U
(1,8,10,6)(4,9,7,5)     => U' R U2 R' U' R U' R' U' R' U' R U' R' U' U' R U2 R U R'
(1,8,10,6)(4,9)         => R U R' U R U' U' R' U2 R U' R' U2 R U' R' U' R U' R' U'
(1,8,10,6)(4,5,7,9)     => U' R U2 R' U' R U' R2 U2 R U R' U R U R U' R' U' U' R U' R' U' R U' R' U'
(1,8,10,6)(4,5)         => U R U R' U2 R U R' R' U2 R U R' U R
(1,8,10,6)(4,5,9,7)     => U' R U2 R' U' R U' R' U' R U R'
(1,8)(2,5,7,9,4)(3,6)   => U' R U2 R' U' R U' R2 U2 R U R' U R U' R U' R' U2 R U2 R' U'
(1,8)(2,5,4)(3,6)       => R U2 R' U' R U' R'
(1,8)(2,5,9,7,4)(3,6)   => U' R U2 R' U' R U' R2 U2 R U R' U R U R U' R' U2 R U' R' U' R U R'
(1,8)(2,5,7)(3,6)       => U R' U' R U' R' U2 R U'
(1,8)(2,5)(3,6)(7,9)    => R U R' U R U' U' R' U2 R U' R' U2 R U' R' U' R U R'
(1,8)(2,5,9)(3,6)       => U' R U2 R' U' R U2 R' U2 R U2 R'
(1,8)(2,5,7,4,9)(3,6)   => U' R U2 R' U' R U' R' U' R' U' R U' R' U2 R U' R U' R' U2 R U2 R'
(1,8)(2,5)(3,6)(4,9)    => R U R' U R U R' U2 R U2 R' U'
(1,8)(2,5,4,9,7)(3,6)   => U R U2 R' U2 R U R' U R' U' R U' R' U2 R U'
(1,8)(2,5,4,7,9)(3,6)   => R U' R' U R U R' U2 R U R' U' R' U' R U' R' U2 R U'
(1,8)(2,5,9,4,7)(3,6)   => U R U R' U R U2 R' U' R U' R' U2 R U2 R' U'
(1,8)(2,5)(3,6)(4,7)    => U' R U2 R' U' R U' R' U' R' U' R U' R' U' U' R
(1,8,10,6)(2,5,7,4)     => R U R' U R U2 R' U R U' R' U2 R U' R'
(1,8,10,6)(2,5,9,4)     => U R U' R2 U' R U' R' U2 R U'
(1,8,10,6)(2,5,4)(7,9)  => R U R' U R U2 R' U2 R U R'
(1,8,10,6)(2,5,7)(4,9)  => R' U' R U' R' U2 R U' U' R U' R' U2 R U' R' U' R U' R' U'
(1,8,10,6)(2,5)(4,9,7)  => U R U R' U R U2 R' U R U R'
(1,8,10,6)(2,5,4,9)     => U R' U2 R U R' U R U2 R U' R' U' R U' U' R' U' R U' R'
(1,8,10,6)(2,5,7,9)     => U R U R' U R U2 R' U R' U' R U' R' U' U' R U' R U' R' U' R U' U' R' U' R U' R'
(1,8,10,6)(2,5)         => U R U R' U R U R' U2 R U' R'
(1,8,10,6)(2,5,9,7)     => U' R U2 R' U' R U' R2 U2 R U R' U R U R U R'
(1,8,10,6)(2,5,4,7)     => U R U R' U2 R U' R' U' R U' R'
(1,8,10,6)(2,5,9)(4,7)  => U R U' R' U' R U' U' R' U' R U' R'
(1,8,10,6)(2,5)(4,7,9)  => R U' R' U R U2 R' U R U R' U R' U2 R U R' U R U' R U2 R' U' R U' R' U'
(1,8,3,10)(2,5,4)(7,9)  => R U R' U R U R' U U2 R U R' U R U2 R' U
(1,8,3,10)(2,5,9,4)     => U R U' R' U R U2 R' U R U R'
(1,8,3,10)(2,5,7,4)     => R U R' U R U2 R' U2 R U' R' U' R U2 R' U'
(1,8,3,10)(2,5,9)(4,7)  => U R' U2 R U R' U R U2 R U' R' U2 R U' R' U' R U' R'
(1,8,3,10)(2,5,4,7)     => U' R U2 R' U' R U' R2 U2 R U R' U R U R U' R' U' R U2 R' U'
(1,8,3,10)(2,5)(4,7,9)  => U' R U2 R' U' R U' R' U' U' R U' R' U' R U R' U'
(1,8,3,10)(2,5,7)(4,9)  => U R U R' U' R U2 R' U' R U' R'
(1,8,3,10)(2,5,4,9)     => U R U R' U' R' U U R U R' U R U R U R' U R U2 R' U
(1,8,3,10)(2,5)(4,9,7)  => U R U R2 U' R U' R' U2 R U'
(1,8,3,10)(2,5,9,7)     => R' U' R U' R' U2 R2 U' R' U2
(1,8,3,10)(2,5,7,9)     => U R U' R' U' U' R U' R' U' R U' R'
(1,8,3,10)(2,5)         => U R U R' U R U2 R' U R U' R' U' R U2 R' U'
(1,8,6,10,3)(2,5,9)     => U' R U R' U R' U' R U' R' U2 R U'
(1,8,6,10,3)(2,5)(7,9)  => R U' R' U2 R' U' R U' R' U2 R U'
(1,8,6,10,3)(2,5,7)     => U R U R' U R U' U' R' U' R U' R' U' R U2 R'
(1,8,6,10,3)(2,5,7,9,4) => R U' R' U R U2 R' U' R U' R'
(1,8,6,10,3)(2,5,9,7,4) => U' R U' R' U' R U' R'
(1,8,6,10,3)(2,5,4)     => U' R U2 R' U' R U' R2 U2 R U R' U R U' R U' R' U' R U2 R'
(1,8,6,10,3)(2,5)(4,7)  => R U R' U R U R' U' R U2 R'
(1,8,6,10,3)(2,5,9,4,7) => U' R U2 R' U' R U' R' U' R' U' R U' R' U' U' R U' U' R U' R' U'
(1,8,6,10,3)(2,5,4,7,9) => R U' R' U R' U U R U R' U R U R U R' U R U2 R' U
(1,8,6,10,3)(2,5,7,4,9) => U R U R' U R U R' U2 R U R' U R' U2 R U R' U R
(1,8,6,10,3)(2,5,4,9,7) => U R' U2 R U R' U R2 U' R' U' R U' R'
(1,8,6,10,3)(2,5)(4,9)  => U' R U2 R' U' R U' R' U' R U R' U R U2 R' U2 R U' R' U'
(1,3,8,6)(2,5,7,4)      => U
(1,3,8,6)(2,5,4)(7,9)   => R' U' R U' R' U2 R U' U2 R U' R' U2 R U' R' U' R U R'
(1,3,8,6)(2,5,9,4)      => R' U' R U' R' U2 R U' R U' R' U2 R U2 R' U'
(1,3,8,6)(2,5,7,9)      => U R U R' U R U2 R' U R' U' R U' R' U2 R U' U' R U' R' U2 R U' U' R'
(1,3,8,6)(2,5,9,7)      => U R U' R' U R U R' U U R U R' U R U2 R' U' R U' R' U'
(1,3,8,6)(2,5)          => U R U R' U R U2 R' U R' U' R U' R' U2 R U'
(1,3,8,6)(2,5,7)(4,9)   => U R U2 R' U2 R U R' U' R U2 R' U' R U' R' U R U R' U R U2 R' U
(1,3,8,6)(2,5)(4,9,7)   => U R U2 R' U2 R U R' U
(1,3,8,6)(2,5,4,9)      => U R' U2 R U R' U R U R U' R' U2 R U2 R'
(1,3,8,6)(2,5,4,7)      => U R' U2 R U R' U R U2
(1,3,8,6)(2,5,9)(4,7)   => R U' R' U2 R U2 R'
(1,3,8,6)(2,5)(4,7,9)   => R U' R' U R U R' U2 R U R' U'
(1,3,6,10)(2,5,9,4)     => U' R U R' U
(1,3,6,10)(2,5,4)(7,9)  => R U' R' U2
(1,3,6,10)(2,5,7,4)     => U' R U2 R' U' R U' R' U R U' R' U' R U2 R' U'
(1,3,6,10)(2,5,9,7)     => U R' U2 R U R' U R U R U' R' U2
(1,3,6,10)(2,5,7,9)     => R U' R' U R' U' R U' R' U2 R U2 R U2 R' U' R U' R' U'
(1,3,6,10)(2,5)         => U' R U2 R' U' R U' R' U' R U R' U R U R' U' R U2 R' U'
(1,3,6,10)(2,5,9)(4,7)  => R' U' R U' R' U2 R U' U2 R U' R' U2 R U' R' U' R U' R'
(1,3,6,10)(2,5)(4,7,9)  => R U R' U' R U' R' U R U R' U R U2 R' U
(1,3,6,10)(2,5,4,7)     => R U R' U2 R U R' U'
(1,3,6,10)(2,5,7)(4,9)  => U R U R' U R U2 R' U2 R U' R' U' R U R' U'
(1,3,6,10)(2,5,4,9)     => U R U R' U R U R' U U R U R' U R U2 R' U' R U' R' U'
(1,3,6,10)(2,5)(4,9,7)  => U R U R' U R U2 R' U R' U' R U' R' U2 R U2 R U' R' U2
(1,3,10,6,8)(2,5,7,9,4) => U R U R' U R U2 R' U2 R U' R' U' U' R U' R' U' R U' R' U'
(1,3,10,6,8)(2,5,4)     => R U2 R' U R U R' U R' U' R U' R' U2 R U'
(1,3,10,6,8)(2,5,9,7,4) => U R U' R' U R U2 R' U R U2 R' U R U2 R' U
(1,3,10,6,8)(2,5,9)     => U R U' R' U R U2 R' U R U R' U R' U2 R U R' U R
(1,3,10,6,8)(2,5)(7,9)  => U R' U2 R U R' U R U2 R U R'
(1,3,10,6,8)(2,5,7)     => R U' R' U2 R U' R'
(1,3,10,6,8)(2,5,7,4,9) => U R U R' U' R' U' R U' R' U2 R U2 R U2 R' U' R U' R' U'
(1,3,10,6,8)(2,5)(4,9)  => U R U R' U2 R U2 R' U' R U' R' U R U R' U R U2 R' U
(1,3,10,6,8)(2,5,4,9,7) => U R U R'
(1,3,10,6,8)(2,5,4,7,9) => R U R' U R U' R' U' R U' R' U'
(1,3,10,6,8)(2,5,9,4,7) => R U R' U R U2 R' U' R U' R' U' U' R U' R' U' R U' R' U'
(1,3,10,6,8)(2,5)(4,7)  => R U2 R' U R U' R' U' R U' R'
(1,3)(2,5,9)(8,10)      => U R U' R'
(1,3)(2,5,7)(8,10)      => U R U R' U U R U R' U
(1,3)(2,5)(7,9)(8,10)   => U' R U2 R' U' R U' R' U' R' U' R U' R' U' U' R2 U' R' U' R U2 R' U' R U R'
(1,3)(2,5,7,9,4)(8,10)  => R U' R' U R U2 R' U R U R' U R' U' R U' R' U2 R U'
(1,3)(2,5,9,7,4)(8,10)  => U R U' R' U2 R U2 R' U' R U' R' U R U R' U R U2 R' U
(1,3)(2,5,4)(8,10)      => U R U R' U R U2 R' U R U R' U R U2 R' U R U' R' U2 R U' R' U'
(1,3)(2,5)(4,7)(8,10)   => U R U R' U R U2 R' U2 R' U2 R U R' U R2 U' R' U2 R U' R' U'
(1,3)(2,5,9,4,7)(8,10)  => U R U' R' U' R' U' R U' R' U2 R U2 R U2 R' U' R U' R' U'
(1,3)(2,5,4,7,9)(8,10)  => R U' R' U R U2 R' U R U2 U R' U' R U' R'
(1,3)(2,5,7,4,9)(8,10)  => U R' U2 R U R' U R U2 R U' R'
(1,3)(2,5)(4,9)(8,10)   => U' R U2 R' U' R U2 R' U' R U2 R' U' R U' R' U'
(1,3)(2,5,4,9,7)(8,10)  => U R U R' U R U U R' U R U R' U R' U U R U R' U R
(1,3,8,6)(2,7,4)(5,9)   => U' R U2 R' U' R U' R' U' R U' R' U' U' R U' R' U' R U R' U'
(1,3,8,6)(2,7,9,4)      => R U R' U R U2 R' U' R U' R' U2 R U2 R' U'
(1,3,8,6)(2,7,5,4)      => R U R' U R U2 R' U'
(1,3,8,6)(2,7)(4,5,9)   => U' R U2 R' U' R U' R2 U2 R U R' U R U2 R U' R' U2 R U2 R' U'
(1,3,8,6)(2,7,4,5)      => U R U R' U R U2 R' U2
(1,3,8,6)(2,7,9)(4,5)   => U' R U2 R' U' R U' R' U' R' U' R U' R' U2 R U' U' R U' R' U2 R U' U' R'
(1,3,8,6)(2,7,5,9)      => U' R U2 R' U' R U' R' U' R U R' U R U' U' R' U2 R U' R' U2 R U2 R'
(1,3,8,6)(2,7,9,5)      => R U' R' U R U R' U2 R U R' U R' U2 R U R' U R U' R U2 R' U' R U' R' U'
(1,3,8,6)(2,7)          => U' R U2 R' U' R U' R2 U2 R U R' U R U2
(1,3,8,6)(2,7)(4,9,5)   => U R U2 R' U2 R U R' U U2 R' U2 R U R' U R U R U R' U R U2 R' U
(1,3,8,6)(2,7,4,9)      => U' R U2 R' U' R U' R' U' R U' R' U2 R U2 R'
(1,3,8,6)(2,7,5)(4,9)   => U R U R' U R U2 R' U2 R U' R' U2 R U2 R' U'
(1,3,6,10)(2,7,5,4)     => R U R' U2 R U R' U R' U2 R U R' U R
(1,3,6,10)(2,7,9,4)     => R U' R2 U2 R U R' U R U' R U2 R' U' R U' R' U'
(1,3,6,10)(2,7,4)(5,9)  => U R U R' U R U2 R' U2 R' U2 R U R' U R R U' R' U' R U' R' U'
(1,3,6,10)(2,7,4,9)     => U R U R' U R U R' U U R U R' U R' U' R U' R' U2 R2 U R' U R U2 R' U
(1,3,6,10)(2,7)(4,9,5)  => U R U R' U R U2 R' U R U R' U R U2 R' U R U' R' U' R U' R' U'
(1,3,6,10)(2,7,5)(4,9)  => U R U R' U R U R' U U R U R' U R' U' R U' R' U2 R U'
(1,3,6,10)(2,7)(4,5,9)  => U' R U2 R' U' R U2 R' U' R U2 U' R' U'
(1,3,6,10)(2,7,9)(4,5)  => R U' R2 U2 R U R' U R
(1,3,6,10)(2,7,4,5)     => U2 R U' R' U' R U2 R' U'
(1,3,6,10)(2,7)         => U R U R' U R U2 R' U R' U' R U' R' U2 R2 U' R' U' R U2 R' U'
(1,3,6,10)(2,7,5,9)     => U' R U2 R' U' R U' R' U' U' R U' R' U' U' R U' R' U' R U' R'
(1,3,6,10)(2,7,9,5)     => R' U' R U' R' U2 R U' U2 R U' R' U' R U' R' U'
(1,3,10,6,8)(2,7,5,9,4) => U' R U2 R' U' R U' R' U' R' U' R U' R' U2 R U' R U' R' U2 R U' R' U' R U' R' U'
(1,3,10,6,8)(2,7,9,5,4) => U' R U2 R' U' R U' R' U' R U R' U R U R' U
(1,3,10,6,8)(2,7,4)     => R U2 R' U R U R' U2
(1,3,10,6,8)(2,7)(5,9)  => U' R U2 R' U' R U' R' U2 U' R U' R' U2 U'
(1,3,10,6,8)(2,7,5)     => R U R' U R U' U' R' U2 R U' R' U2 R U' R'
(1,3,10,6,8)(2,7,9)     => R U R' U R U R2 U' R U' R' U2 R2 U R' U R U2 R' U
(1,3,10,6,8)(2,7,4,5,9) => R' U' R U' R' U2 R2 U' R' U' R U' U' R' U' R U' R'
(1,3,10,6,8)(2,7,9,4,5) => R U R' U R U R2 U' R U' R' U2 R U'
(1,3,10,6,8)(2,7)(4,5)  => U R U R' U R U2 R' U R U' R' U2 R U' R'
(1,3,10,6,8)(2,7,5,4,9) => U R U R' U U R' U U R U R' U R
(1,3,10,6,8)(2,7)(4,9)  => U R U R' U U R' U U R U R' U R U' R U2 R' U' R U' R' U'
(1,3,10,6,8)(2,7,4,9,5) => U' R U2 R' U' R U' R' U' R' U' R U' R' U' U' R2 U' R' U
(1,3)(2,7)(4,5)(8,10)   => U R U R' U R U2 R' U R' U' R U' R' U2 R U' U2 R U' R' U2 R U' R' U'
(1,3)(2,7,9,4,5)(8,10)  => R' U' R U' R' U' U' R U' R U' R' U' R U' U' R' U' R U' R' U'
(1,3)(2,7,4,5,9)(8,10)  => U R U R' U R U2 R' U2 R' U2 R U R' U R U2 R U' R'
(1,3)(2,7,5,4,9)(8,10)  => U R U R' U R U2 R' U R U R' U R U2 R' U' R U' R'
(1,3)(2,7)(4,9)(8,10)   => U R U R' U R U2 R' U R U R' U R U2 R' U' R U' R' U' R U' U' R' U' R U' R' U'
(1,3)(2,7,4,9,5)(8,10)  => U R U R' U R U2 R' U2 R' U2 R U R' U R U R U R' U'
(1,3)(2,7,9,5,4)(8,10)  => R U' R' U R U2 R' U R U R' U2
(1,3)(2,7,4)(8,10)      => U R' U2 R U R' U R2 U' R' U2 R U' R' U'
(1,3)(2,7,5,9,4)(8,10)  => U R U' R' U2 R' U U R U R' U R U R U R' U R U2 R' U
(1,3)(2,7)(5,9)(8,10)   => R' U' R U' R' U2 R U2 R U R' U'
(1,3)(2,7,9)(8,10)      => R' U' R U' R' U' U' R U' R U' R'
(1,3)(2,7,5)(8,10)      => U' R U' R' U' U' R U' R' U'
(1,3,6,10)(2,9,4)(5,7)  => R U R' U R U U R' U R U R' U
(1,3,6,10)(2,9,7,4)     => R' U' R U' R' U2 R U2 R U' R' U2
(1,3,6,10)(2,9,5,4)     => U R U R' U R U R' U' R U' R' U'
(1,3,6,10)(2,9)(4,5,7)  => R U R' U R U U R' U R U R' U2 R U R' U R U2 R' U
(1,3,6,10)(2,9,4,5)     => U R' U2 R U R' U R U2 R U' R' U' R U R' U'
(1,3,6,10)(2,9,7)(4,5)  => U R U R' U R U2 R' U2 R' U2 R U R' U R U R U' R' U2
(1,3,6,10)(2,9,5,7)     => R U R' U R U2 R' U R U' R' U' R U' R' U'
(1,3,6,10)(2,9,7,5)     => U R U R' U R U2 R' U R U R' U R U2 R' U2 R U' R' U2
(1,3,6,10)(2,9)         => U R' U2 R U R' U R2 U' R' U' U' R U' R' U' R U' R'
(1,3,6,10)(2,9,4,7)     => U R U' R' U' R U R' U'
(1,3,6,10)(2,9)(4,7,5)  => U' R U' R' U' U' R U' R' U' R U' R'
(1,3,6,10)(2,9,5)(4,7)  => U' R U2 R' U' R U' R2 U2 R U R' U R R U' R' U' R U' R' U'
(1,3,10,6,8)(2,9,7,5,4) => U' R U2 R' U' R U' R' U' R U R' U R U2 R' U' R U R'
(1,3,10,6,8)(2,9,4)     => R U' R' U R U R' U R' U U R U R' U R U R U R' U R U2 R' U
(1,3,10,6,8)(2,9,5,7,4) => R U U2 R' U R U2 R' U R U2 R' U
(1,3,10,6,8)(2,9,5,4,7) => U2 R U' R' U
(1,3,10,6,8)(2,9)(4,7)  => R U' R' U R U R' U2 R' U' R U' R' U2 R U'
(1,3,10,6,8)(2,9,4,7,5) => R' U' R U' R' U2 R U' R U' R' U2 R U' R' U' R U' R' U'
(1,3,10,6,8)(2,9)(4,5)  => U2 R U' R' U' R U' U' R' U' R U' R'
(1,3,10,6,8)(2,9,4,5,7) => R U' R' U R U R' U2 R U2 R' U' R U' R' U'
(1,3,10,6,8)(2,9,7,4,5) => U' R U2 R' U' R U' R' U' R' U' R U' R' U' U' R U' R U R'
(1,3,10,6,8)(2,9)(5,7)  => R U' R' U R U R' U'
(1,3,10,6,8)(2,9,7)     => U' R U2 R' U'
(1,3,10,6,8)(2,9,5)     => U R' U2 R U R' U R U' R U' R' U
(1,3,8,6)(2,9,7,4)      => R U2 R' U2 R U R' U R' U' R U' R' U2 R U'
(1,3,8,6)(2,9,5,4)      => U R' U2 R U R' U R U R U' R' U2 R U' R' U' R U R' U'
(1,3,8,6)(2,9,4)(5,7)   => U R U' R' U2 R U2 R' U'
(1,3,8,6)(2,9)(4,7,5)   => R U R' U R U' U' R' U2 R U' R' U2 R U2 R'
(1,3,8,6)(2,9,4,7)      => R U2 R' U2 R U' R' U' R U' R'
(1,3,8,6)(2,9,5)(4,7)   => R U' R' U2 R U' R' U' R U R' U'
(1,3,8,6)(2,9,5,7)      => R U2 R' U2 R U R' U R U2 R' U' R U' R' U'
(1,3,8,6)(2,9)          => U' R U2 R' U' R U' R2 U2 R U R' U R U R U' R' U2 R U2 R'
(1,3,8,6)(2,9,7,5)      => U R U R' U R U R' U2 R U' R' U' R U R'
(1,3,8,6)(2,9,7)(4,5)   => R U2 R' U2 R U R' U R' U' R U' R' U2 R2 U R' U R U2 R' U
(1,3,8,6)(2,9)(4,5,7)   => U R U R' U R U2 R' U R U' R' U2 R U2 R'
(1,3,8,6)(2,9,4,5)      => R U2 R' U2 R U R' R' U2 R U R' U R
(1,3)(2,9)(4,5)(8,10)   => U R U R' U R U2 R' U2 R U' R'
(1,3)(2,9,7,4,5)(8,10)  => R U R' U R U' U2 R' U' R U2 R' U' R U R'
(1,3)(2,9,4,5,7)(8,10)  => R U R' U R U2 R' U' R U' R' U' R U2 R' U' R U' R' U'
(1,3)(2,9,5,7,4)(8,10)  => U R' U2 R U R' U R U R U R' U'
(1,3)(2,9,7,5,4)(8,10)  => R U R' U R' U U R U R' U R U R U R' U R U2 R' U
(1,3)(2,9,4)(8,10)      => R U2 R' U R U2 R' U
(1,3)(2,9,4,7,5)(8,10)  => R U R' U2 R' U' R U' R' U2 R U'
(1,3)(2,9,5,4,7)(8,10)  => U R U R' U R U2 R' U R' U' R U' R' U2 R U2 R U R' U'
(1,3)(2,9)(4,7)(8,10)   => U' R U2 R' U' R U' R2 U2 R U R' U R U2 R U' R'
(1,3)(2,9)(5,7)(8,10)   => R U R' U R U2 R' U' R U' R'
(1,3)(2,9,7)(8,10)      => R U R' U R' U2 R U R' U R
(1,3)(2,9,5)(8,10)      => R U R' U'
(1,3,6,10)(2,4)(5,9,7)  => R U R' U R U2 R' U2 R U' R' U2
(1,3,6,10)(2,4)         => U R U R' U R U2 R' U R U R' U R U R' U' R U2 R' U'
(1,3,6,10)(2,4)(5,7,9)  => R U' R' U R' U' R U' R' U2 R U'
(1,3,6,10)(2,4,5,7)     => R' U' R U' R' U2 R2 U' R' U' R U2 R' U'
(1,3,6,10)(2,4,5)(7,9)  => U R U R' U R U2 R' U R U' R' U2
(1,3,6,10)(2,4,5,9)     => U U2 R U R' U2 R U R' U R U2 R' U
(1,3,6,10)(2,4,7)(5,9)  => U' R U R' U' R U2 R' U' R U' R' U' R U2 R' U' R U' R' U'
(1,3,6,10)(2,4,7,5)     => R U R' U2 R U2 R' U R U2 R' U
(1,3,6,10)(2,4,7,9)     => R U R' U' R U' R' U' R U2 R' U' R U' R' U'
(1,3,6,10)(2,4,9,7)     => U R U R' U R U R' U2 R U R' R' U2 R U R' U R
(1,3,6,10)(2,4,9)(5,7)  => U R U R' U R U R' U' U' R U' R' U' R U' R'
(1,3,6,10)(2,4,9,5)     => U R U R' U R U R' U U R U R' U U
(1,3,10,6,8)(2,4)(5,7)  => R U2 R' U R U R2 U2 R U R' U R U' R U2 R' U' R U' R' U'
(1,3,10,6,8)(2,4)(7,9)  => R U R' U R U R' U U2 R' U2 R U R' U R
(1,3,10,6,8)(2,4)(5,9)  => U' R U2 R' U' R U' R2 U2 R U R' U R U' R U' R' U
(1,3,10,6,8)(2,4,5,9,7) => U R U R' U R U2 R' U2 R U R'
(1,3,10,6,8)(2,4,5)     => R U2 R' U R U R' U R' U' R U' R' U2 R2 U R' U R U2 R' U
(1,3,10,6,8)(2,4,5,7,9) => R U R' U R U R' U' R U2 R' U' R U' R'
(1,3,10,6,8)(2,4,9,5,7) => U R U R' U' R' U' R U' R' U2 R U'
(1,3,10,6,8)(2,4,9,7,5) => R U R' U R U2 R' U' R U R'
(1,3,10,6,8)(2,4,9)     => U R U R' U R U2 R' U' R U' R' U' R U' U' R' U' R U' R'
(1,3,10,6,8)(2,4,7,5,9) => U' R U2 R' U' R U' R2 U2 R U R' U R U' R U' R' U' R U' U' R' U' R U' R'
(1,3,10,6,8)(2,4,7)     => U' R U2 R' U' R U' R' U' R U' R' U2 R U' R'
(1,3,10,6,8)(2,4,7,9,5) => R U R' U R U R' U
(1,3,8,6)(2,4)(5,7,9)   => R U' R' U R U R' U U R U R' U R U2 R' U' R U' R' U' R U2 R' U' R U' R' U'
(1,3,8,6)(2,4)          => R' U' R U' R' U2 R U'
(1,3,8,6)(2,4)(5,9,7)   => U' R U' R' U' U' R U' R' U' R U R'
(1,3,8,6)(2,4,5,7)      => U2 R U R' U R U2 R' U
(1,3,8,6)(2,4,5,9)      => U R U' R' U R U R' U2 R U R' R' U2 R U R' U R
(1,3,8,6)(2,4,5)(7,9)   => R U' R' U R U R' U U R U R' U U R' U' R U' R' U2 R U'
(1,3,8,6)(2,4,9)(5,7)   => U R U R' U R U2 R' U R U R' U R U2 R' U2 R U' R' U2 R U2 R'
(1,3,8,6)(2,4,9,5)      => U R U2 R' U2 R U R2 U' R U' R' U2 R U'
(1,3,8,6)(2,4,9,7)      => U R' U2 R U R' U R2 U' R' U2 R U' R' U' R U R'
(1,3,8,6)(2,4,7)(5,9)   => U R U' R' U R U R' U2 R U' R' U' R U' R'
(1,3,8,6)(2,4,7,9)      => R' U' R U' R' U2 R U' U' R U' R' U2 R U' U' R'
(1,3,8,6)(2,4,7,5)      => U R U R' U R U2 R' U R U R' U R U2 R' U'
(1,3)(2,4,5,7,9)(8,10)  => U' R U2 R' U' R U' R' U' R' U' R U' R' U' U' R U' R U' R'
(1,3)(2,4,5,9,7)(8,10)  => U2 R U' R' U' R U2 R' U' R U R'
(1,3)(2,4,5)(8,10)      => U' R U2 R' U' R U' R' U' R U R' U R U2 R' U R U' R' U2 R U' R' U'
(1,3)(2,4,7,9,5)(8,10)  => U' R U2 R' U' R U' R' U' R U R' U R U2 R' U2 R U R' U'
(1,3)(2,4,7,5,9)(8,10)  => U R U' R' U' R' U' R U' R' U2 R U'
(1,3)(2,4,7)(8,10)      => U R U R' U2 R U R2 U' R U' R' U2 R U'
(1,3)(2,4,9)(8,10)      => U' R U2 R' U' R U2 R'
(1,3)(2,4,9,5,7)(8,10)  => U' R U2 R' U' R U' R' U' R' U' R U' R' U' U' R U2 R U R' U'
(1,3)(2,4,9,7,5)(8,10)  => U R' U2 R U R' U R U' R U' R' U' R U2 R' U' R U R'
(1,3)(2,4)(7,9)(8,10)   => U R U R' U R U2 R' U R' U' R U' R' U2 R2 U' R' U' R U2 R' U' R U R'
(1,3)(2,4)(5,7)(8,10)   => U' R U2 R' U' R U' R' U' U' R U' R' U' U' R U' R' U'
(1,3)(2,4)(5,9)(8,10)   => U' R U2 R' U' R U' R' U' R U R' U'
(1,3,8,6)(7,9)          => R U' R' U R U R' U U R U R' U U R' U' R U' R' U2 R2 U R' U R U2 R' U
(1,3,8,6)(5,7)          => R U2 R' U' R U' R' U'
(1,3,8,6)(5,9)          => U' R U2 R' U' R U' R2 U2 R U R' U R U R U' R' U2 R U' R' U' R U R' U'
(1,3,8,6)(4,7)          => U' R U2 R' U' R U' R'
(1,3,8,6)(4,7,9,5)      => R U R' U R U' U' R' U2 R U' R' U2 R U' R' U' R U R' U'
(1,3,8,6)(4,7,5,9)      => U' R U2 R' U' R U2 R' U' U' R U2 R' U'
(1,3,8,6)(4,9)          => U R U2 R' U2 R U R2 U' R U' R' U2 R2 U R' U R U2 R' U
(1,3,8,6)(4,9,7,5)      => U R U2 R' U2 R U' R' U' R U' R' U'
(1,3,8,6)(4,9,5,7)      => U R U2 R' U2 R U R' U' R U2 R' U' R U' R'
(1,3,8,6)(4,5,7,9)      => R U' R' U R U R' U U R U R' U R U2 R' U' R U' R'
(1,3,8,6)(4,5,9,7)      => U R U' R' U R U R' U2 R U R' U U2 R U R' U R U2 R' U
(1,3,8,6)(4,5)          => R' U' R U' R' U2 R2 U R' U R U2 R' U
(1,3)(8,10)             => R U R' U R U2 R' U R U' R' U2 R U' R' U'
(1,3)(5,9,7)(8,10)      => U R U' R' U2 R U2 R' U' R U' R'
(1,3)(5,7,9)(8,10)      => R U R' U R U2 R' U2 R U R' U'
(1,3)(4,9,7)(8,10)      => U R U R' U R U2 R' U R U R' U R U' U2 R' U' R U2 R' U' R U R'
(1,3)(4,9,5)(8,10)      => U R U R' U R U2 R' U R U R' U'
(1,3)(4,9)(5,7)(8,10)   => U R' U2 R U R' U R U2 R U' R' U' R U' U' R' U' R U' R' U'
(1,3)(4,7,9)(8,10)      => R U' R' U R U2 R' U R U2 U R' U' R U' R' U' R U2 R' U' R U' R' U'
(1,3)(4,7,5)(8,10)      => U R U R' U R U R' U2 R U' R' U'
(1,3)(4,7)(5,9)(8,10)   => U' R U2 R' U' R U' R2 U2 R U R' U R U R U R' U'
(1,3)(4,5,7)(8,10)      => U R U R' U2 R U' R' U' R U' R' U'
(1,3)(4,5,9)(8,10)      => U R U' R' U' R U' U' R' U' R U' R' U'
(1,3)(4,5)(7,9)(8,10)   => R' U' R U' R' U2 R2 U' R' U' R U2 R' U' R U R'
(1,3,10,6,8)(5,7,9)     => U R U R' U R U2 R' U R U R' U R U R' U
(1,3,10,6,8)(5,9,7)     => U R U' R' U R U2 R' U R U R' U'
(1,3,10,6,8)            => R' U' R U' R' U2 R U' U' R U' R' U2 R U' R'
(1,3,10,6,8)(4,5,9)     => U R' U2 R U R' U R U2 R U' R' U2 R U' R' U' R U' R' U'
(1,3,10,6,8)(4,5,7)     => R U2 R' U R U R2 U2 R U R' U R
(1,3,10,6,8)(4,5)(7,9)  => U R U R' U R U2 R' U2 R' U2 R U R' U R U2 R U R'
(1,3,10,6,8)(4,9,7)     => R' U' R U' R' U' U' R U' R U R'
(1,3,10,6,8)(4,9)(5,7)  => U R U R' U' R' U' R U' R' U2 R2 U R' U R U2 R' U
(1,3,10,6,8)(4,9,5)     => U R U R' U2 R U2 R' U' R U' R'
(1,3,10,6,8)(4,7)(5,9)  => R' U' R U' R' U2 R2 U' R' U
(1,3,10,6,8)(4,7,9)     => U R U' R' U' U' R U' R' U' R U' R' U'
(1,3,10,6,8)(4,7,5)     => R U2 R' U R U' R' U' R U' R' U' R U2 R' U' R U' R' U'
(1,3,6,10)(4,7,5,9)     => U' R U R' U' R U2 R' U' R U' R'
(1,3,6,10)(4,7,9,5)     => R U R' U' R U' R'
(1,3,6,10)(4,7)         => U R U R' U R U' U' R' U' R U' R' U' R U2 R' U'
(1,3,6,10)(7,9)         => R U' R' U R U2 R' U' R U' R' U'
(1,3,6,10)(5,9)         => U' R U' R' U' R U' R' U'
(1,3,6,10)(5,7)         => U' R U2 R' U' R U' R2 U2 R U R' U R U' R U' R' U' R U2 R' U'
(1,3,6,10)(4,5)         => R U R' U R U R' U' R U2 R' U'
(1,3,6,10)(4,5,9,7)     => U' R U R2 U' R U' R' U2 R2 U R' U R U2 R' U
(1,3,6,10)(4,5,7,9)     => R U' R' U R' U' R U' R' U2 R2 U R' U R U2 R' U
(1,3,6,10)(4,9)         => U R U R' U R U R' U2 R U R' U U2 R U R' U R U2 R' U
(1,3,6,10)(4,9,5,7)     => U R' U2 R U R' U R R U' R' U' R U' R' U'
(1,3,6,10)(4,9,7,5)     => U' R U2 R' U' R U' R' U' R U R' U R U2 R' U2 R U' R' U2
(1,10,8,3,6)(2,7,5,4,9) => U' R U' R'
(1,10,8,3,6)(2,7,4,9,5) => U R U R' U R U2 R' U R' U' R U' R' U2 R2 U R' U'
(1,10,8,3,6)(2,7)(4,9)  => U' R U' R' U' R U' U' R' U' R U' R' U'
(1,10,8,3,6)(2,7,9,5,4) => U2 R U R' U'
(1,10,8,3,6)(2,7,4)     => R' U' R U' R' U2 R U' R U' R' U2 R U' R' U'
(1,10,8,3,6)(2,7,5,9,4) => U R U R' U R U R' U' R' U' R U' R' U2 R U2 R U2 R' U' R U' R' U'
(1,10,8,3,6)(2,7)(4,5)  => U R U2 R' U R U R' U' R U2 R' U' R U' R' U R U R' U R U2 R' U
(1,10,8,3,6)(2,7,4,5,9) => U R U R' U R U R' U' R' U' R U' R' U2 R U'
(1,10,8,3,6)(2,7,9,4,5) => U2 R U2 R' U R U2 R' U
(1,10,8,3,6)(2,7,9)     => U R' U2 R U R' U R2 U' R'
(1,10,8,3,6)(2,7,5)     => U R U R' U R U2 R' U R U R' U R U2 R' U' R U' R' U2 R U' R' U'
(1,10,8,3,6)(2,7)(5,9)  => U R' U2 R U R' U R U' R U R' U'
(1,10,6,3)(2,7,4,9)     => U R U' R' U R U R' U'
(1,10,6,3)(2,7,5)(4,9)  => U R U' R' U R U R' U2 R U2 R' U' R U' R' U'
(1,10,6,3)(2,7)(4,9,5)  => R' U' R U' R' U2 R U' U2 R U' R' U
(1,10,6,3)(2,7,5,4)     => U R U2 R' U R U R2 U2 R U R' U R
(1,10,6,3)(2,7,4)(5,9)  => U R U R' U R U2 R' U R U R' U R U2 R' U R U' R' U
(1,10,6,3)(2,7,9,4)     => R' U' R U' R' U2 R R U' R' U2 R U' R' U' R U' R' U'
(1,10,6,3)(2,7)         => U R U R' U R U2 R' U R' U' R U' R' U2 R U' R U' R' U2 R U' R'
(1,10,6,3)(2,7,5,9)     => U R U R' U R U R' U' R U2 R' U' R U' R'
(1,10,6,3)(2,7,9,5)     => U2 R U R' U' R' U' R U' R' U2 R U'
(1,10,6,3)(2,7,4,5)     => U R U' R' U2 R U' R'
(1,10,6,3)(2,7,9)(4,5)  => U2 R U R' U' R' U' R U' R' U2 R U2 R U2 R' U' R U' R' U'
(1,10,6,3)(2,7)(4,5,9)  => U R U R' U R U R' U' R U2 R' U' R U' R' U' R U2 R' U' R U' R' U'
(1,10)(2,7)(4,9)(6,8)   => U R' U2 R U R' U R U R U' R' U' R U R' U'
(1,10)(2,7,4,9,5)(6,8)  => U' R U2 R' U' R U' R' U' R U R' U R U R' U' R U' R' U'
(1,10)(2,7,5,4,9)(6,8)  => U R' U2 R U R' U R U' R U' R' U' U' R U' R' U' R U' R'
(1,10)(2,7,4)(6,8)      => U R U2 R' U R U2 R' U R U2 R' U
(1,10)(2,7,9,5,4)(6,8)  => U' R U2 R' U' R U' R' U2 U' R U' R' U' R U' R' U'
(1,10)(2,7,5,9,4)(6,8)  => R U' R' U' R U R' U'
(1,10)(2,7,9)(6,8)      => U2 R U R' U' R U2 R' U' R U' R' U R U R' U R U2 R' U
(1,10)(2,7)(5,9)(6,8)   => U' R U2 R' U' R U' R' U' R' U' R U' R' U' U' R R U' R' U' R U' R' U'
(1,10)(2,7,5)(6,8)      => U R U2 R' U R U R' U'
(1,10)(2,7,9,4,5)(6,8)  => U2 R U R' U' R U2 R' U' R U' R'
(1,10)(2,7)(4,5)(6,8)   => U R U R' U R U2 R' U2 R U' R' U' R U2 R' U'
(1,10)(2,7,4,5,9)(6,8)  => U2 R U' R' U2 R U' R' U' R U' R'
(1,10,3,8)(2,7,5,4)     => U R U' R' U' R U2 R'
(1,10,3,8)(2,7,9,4)     => U' R U2 R' U' R U' R2 U2 R U R' U R2 U' R' U'
(1,10,3,8)(2,7,4)(5,9)  => U R U R' U R U R' U2 R U2 R' U' R U' R' U'
(1,10,3,8)(2,7)(4,5,9)  => U R U R' U R U R' U'
(1,10,3,8)(2,7,4,5)     => U R U R' U R U2 R' U R' U' R U' R' U' U' R U' R U' R' U' R U2 R'
(1,10,3,8)(2,7,9)(4,5)  => R' U' R U' R' U2 R U2 R U' R' U' R U R'
(1,10,3,8)(2,7)(4,9,5)  => U R U' R' U R U R' U' R U2 R' U' R U' R'
(1,10,3,8)(2,7,5)(4,9)  => R U R' U R U2 R' U R U' R' U'
(1,10,3,8)(2,7,4,9)     => U R U R' U R U2 R' U R U R' U R U2 R' U2 R U' R' U' R U R'
(1,10,3,8)(2,7,5,9)     => U R U R' U R U2 R' U R U2 R' U
(1,10,3,8)(2,7)         => U R' U2 R U R' U R U2 R U' R' U' R U2 R'
(1,10,3,8)(2,7,9,5)     => U2 R U R2 U2 R U R' U R
(1,10,8,3,6)(2,4,9)     => R U R' U R U2 R' U R U' R'
(1,10,8,3,6)(2,4,9,5,7) => U' R U2 R' U' R U' R2 U2 R U R' U R U' R U R' U'
(1,10,8,3,6)(2,4,9,7,5) => U R U' R' U R U R' U R' U' R U' R' U2 R U'
(1,10,8,3,6)(2,4,7)     => U' R U2 R' U' R U' R2 U2 R U R' U R U2 R U' R' U2 R U' R' U'
(1,10,8,3,6)(2,4,7,5,9) => U R U R' U R U R'
(1,10,8,3,6)(2,4,7,9,5) => U R U R' U R U2 R' U' R U R' U'
(1,10,8,3,6)(2,4)(7,9)  => U2 R U R' U R' U2 R U R' U R U' R U2 R' U' R U' R' U'
(1,10,8,3,6)(2,4)(5,9)  => R U R' U R U' R' U'
(1,10,8,3,6)(2,4)(5,7)  => U R U2 R' U R U' R' U' R U' R' U'
(1,10,8,3,6)(2,4,5,7,9) => U' R U2 R' U' R U' R2 U2 R U R' U R2 U' R'
(1,10,8,3,6)(2,4,5)     => U R U R' U R U2 R' U2 R U' R' U2 R U' R' U'
(1,10,8,3,6)(2,4,5,9,7) => U R U R' U R U R' U2 R U2 R' U' R U' R'
(1,10,6,3)(2,4,9,5)     => U' R U' R' U
(1,10,6,3)(2,4,9)(5,7)  => U' R U' R' U' R U' U' R' U' R U' R'
(1,10,6,3)(2,4,9,7)     => U R U R' U R U2 R' U R' U' R U' R' U2 R2 U R'
(1,10,6,3)(2,4,5)(7,9)  => U2 R U R'
(1,10,6,3)(2,4,5,7)     => R' U' R U' R' U2 R U' R U' R' U2 R U' R'
(1,10,6,3)(2,4,5,9)     => U R U R' U R U' R' U' R U' R' U'
(1,10,6,3)(2,4,7,5)     => U R U2 R' U R U R' U' R U R' U R U2 R' U
(1,10,6,3)(2,4,7,9)     => U2 R U R' U U R' U U R U R' U R
(1,10,6,3)(2,4,7)(5,9)  => U R U R' U R U2 R' U R' U' R U' R' U2 R U' U2 R U' R' U
(1,10,6,3)(2,4)         => U R U2 R' U R U' R' U' R U' R' U' R U2 R' U' R U' R' U'
(1,10,6,3)(2,4)(5,7,9)  => U R' U2 R U R' U R2 U' R' U
(1,10,6,3)(2,4)(5,9,7)  => U R' U2 R U R' U R U' R U R'
(1,10)(2,4,9,5,7)(6,8)  => U R U' R' U R U R'
(1,10)(2,4,9,7,5)(6,8)  => R' U' R U' R' U2 R U' U2 R U' R' U2
(1,10)(2,4,9)(6,8)      => U R U' R' U R U R' U2 R U2 R' U' R U' R'
(1,10)(2,4,5)(6,8)      => U' R U2 R' U' R U' R' U' R' U' R U' R' U' U' R U' R U' R' U' R U2 R' U'
(1,10)(2,4,5,7,9)(6,8)  => R' U' R U' R' U2 R R U' R' U2 R U' R' U' R U' R'
(1,10)(2,4,5,9,7)(6,8)  => U R U R' U R U R' U' R U R' U R U2 R' U
(1,10)(2,4)(6,8)(7,9)   => U R U R' U R U2 R' U2 R' U2 R U R' U R2 U' R' U2
(1,10)(2,4)(5,7)(6,8)   => U' R U2 R' U' R U' R' U' R U R' U R U' U' R' U' R U' R' U' R U2 R' U'
(1,10)(2,4)(5,9)(6,8)   => U R' U2 R U R' U R U' R U' R' U' R U' R' U'
(1,10)(2,4,7,9,5)(6,8)  => U' U' R U' R' U' R U' R' U'
(1,10)(2,4,7)(6,8)      => U' R U2 R' U' R U2 R' U' R U2 R' U'
(1,10)(2,4,7,5,9)(6,8)  => U R U R' U R U' R' U' R U' R' U' R U2 R' U' R U' R' U'
(1,10,3,8)(2,4,7,5)     => U R U R' U R U2 R' U2 R U' R' U' R U2 R'
(1,10,3,8)(2,4,7)(5,9)  => U R U R' U R U R' U R' U2 R U R' U R U' R U2 R' U' R U' R' U'
(1,10,3,8)(2,4,7,9)     => U2 R U R' U R' U' R U' R' U2 R U'
(1,10,3,8)(2,4,9,7)     => U R U' R' U R U' R' U' R U' R' U'
(1,10,3,8)(2,4,9,5)     => R U' R' U' R U2 R' U' R U R' U'
(1,10,3,8)(2,4,9)(5,7)  => U R' U2 R U R' U R U R U' R' U' R U R'
(1,10,3,8)(2,4,5,9)     => R U' R' U' R U R'
(1,10,3,8)(2,4,5)(7,9)  => U' R U2 R' U' R U' R' U2 U' R U' R' U' R U' R'
(1,10,3,8)(2,4,5,7)     => U R U2 R' U R U R' U U R' U U R U R' U R
(1,10,3,8)(2,4)         => U R U2 R' U R U R'
(1,10,3,8)(2,4)(5,7,9)  => U2 R U R' U U2 R U R' U R U2 R' U
(1,10,3,8)(2,4)(5,9,7)  => U' R U2 R' U' R U' R' U' R' U' R U' R' U' U' R2 U' R' U' R U' R'
(1,10,8,3,6)(2,5,7,4,9) => R' U' R U' R' U2 R U' U2 R U' R'
(1,10,8,3,6)(2,5)(4,9)  => U R U' R' U R U R' U2
(1,10,8,3,6)(2,5,4,9,7) => R U R' U R U2 R' U2 R U' R' U' R U2 R' U' R U R'
(1,10,8,3,6)(2,5,7)     => U R' U2 R U R' U R U2 R U' R' U2 R U' R' U'
(1,10,8,3,6)(2,5)(7,9)  => U2 R U R' U R' U U R U R' U R U R U R' U R U2 R' U
(1,10,8,3,6)(2,5,9)     => U R U R' U R U2 R' U R U R' U R U2 R' U R U' R'
(1,10,8,3,6)(2,5,7,9,4) => U2 R U R' U2 R' U' R U' R' U2 R U'
(1,10,8,3,6)(2,5,4)     => U R U' R' U2 R U' R' U'
(1,10,8,3,6)(2,5,9,7,4) => U R U R' U R U2 R' U R U' R' U' R U2 R' U' R U R'
(1,10,8,3,6)(2,5,4,7,9) => U2 R U R' U R U2 R' U' R U' R'
(1,10,8,3,6)(2,5)(4,7)  => U R U2 R' U R U R' U2 U R' U2 R U R' U R
(1,10,8,3,6)(2,5,9,4,7) => U R U R' U R U R' U' R U2 R' U' R U' R' U'
(1,10,6,3)(2,5,4,9)     => U R U' R' U R U R' U2 R' U' R U' R' U2 R U'
(1,10,6,3)(2,5,7)(4,9)  => U R' U2 R U R' U R U' R U' R' U' U' R U' R' U' R U' R' U'
(1,10,6,3)(2,5)(4,9,7)  => U' R U2 R' U' R U' R' U' R U R' U R U' R'
(1,10,6,3)(2,5,4,7)     => U R U2 R' U R U R' U2
(1,10,6,3)(2,5,9)(4,7)  => U R U R' U R U R' R' U' R U' R' U2 R2 U R' U R U2 R' U
(1,10,6,3)(2,5)(4,7,9)  => U2 R U R' U U R' U U R U R' U R U' R U2 R' U' R U' R' U'
(1,10,6,3)(2,5,4)(7,9)  => U' R U2 R' U' R U' R' U R U R'
(1,10,6,3)(2,5,9,4)     => U2 R U' R' U2 R U' R' U' R U' R' U'
(1,10,6,3)(2,5,7,4)     => U' R U2 R' U' R U2 R' U2 R U' R'
(1,10,6,3)(2,5)         => U R U2 R' U R U' R' U' R U' R' U R U R' U R U2 R' U
(1,10,6,3)(2,5,7,9)     => U2 R U R' U2 R U2 R' U' R U' R' U' R U2 R' U' R U' R' U'
(1,10,6,3)(2,5,9,7)     => U R U R' U R U R' U' R' U2 R U R' U R
(1,10)(2,5,4,9,7)(6,8)  => R U R' U R U2 R' U R U' R' U2
(1,10)(2,5)(4,9)(6,8)   => U R U R' U R U2 R' U R U R' U R U2 R' U2 R U' R' U' R U R' U'
(1,10)(2,5,7,4,9)(6,8)  => U R U' R' U R U R' U' R U2 R' U' R U' R' U'
(1,10)(2,5,4)(6,8)      => U R U R' U R U2 R' U R' U' R U' R' U' U' R U' R U' R' U' R U2 R' U'
(1,10)(2,5,9,7,4)(6,8)  => U R U R' U R U R' U2
(1,10)(2,5,7,9,4)(6,8)  => U2 R U R' U2 U R' U2 R U R' U R
(1,10)(2,5,4,7,9)(6,8)  => U2 R U R' U2 R U R' U R U2 R' U
(1,10)(2,5,9,4,7)(6,8)  => U R U R' U R U' R' U' R U' R' U R U R' U R U2 R' U
(1,10)(2,5)(4,7)(6,8)   => U R' U2 R U R' U R U2 R U' R' U' R U2 R' U'
(1,10)(2,5)(6,8)(7,9)   => U' R U2 R' U' R U' R2 U2 R U R' U R2 U' R' U2
(1,10)(2,5,7)(6,8)      => U R U' R' U' R U2 R' U'
(1,10)(2,5,9)(6,8)      => U' R U2 R' U' R U' R' U' R U R' U R U R' U' U' R U' R' U' R U' R'
(1,10,3,8)(2,5,9,7)     => R U R' U R U R' U' R U' R'
(1,10,3,8)(2,5)         => U R U2 R' U R U R' U' R U2 R' U' R U' R' U'
(1,10,3,8)(2,5,7,9)     => U2 R U R' U2
(1,10,3,8)(2,5,7,4)     => R' U' R U' R' U' U' R U' R U' R' U' R U2 R'
(1,10,3,8)(2,5,4)(7,9)  => U R U R' U R U' U' R' U' R U' R' U' R U' R'
(1,10,3,8)(2,5,9,4)     => U R U R' U R U R' U R U2 R' U' R U' R'
(1,10,3,8)(2,5,7)(4,9)  => U' R U' R' U'
(1,10,3,8)(2,5,4,9)     => U' R U2 R' U' R U' R' U' R U' R' U' R U' U2 R'
(1,10,3,8)(2,5)(4,9,7)  => U R U' R' U R U R' U U R U R' U R U2 R' U
(1,10,3,8)(2,5,9)(4,7)  => U R U R' U R U R' U R' U U R U R' U R U R U R' U R U2 R' U
(1,10,3,8)(2,5,4,7)     => U R U R' U R U2 R' U2 R' U2 R U R' U R U2 R U' R' U' R U2 R'
(1,10,3,8)(2,5)(4,7,9)  => U R' U2 R U R' U R2 U' R' U'
(1,10,6,3)(4,9)         => U' R U2 R' U' R U' R' U2 U' R U' R' U2 R U' R' U' R U' R' U'
(1,10,6,3)(4,9,5,7)     => R U R' U R U2 R' U R U' R' U
(1,10,6,3)(4,9,7,5)     => U' R U2 R' U' R U' R2 U2 R U R' U R U' R U R'
(1,10,6,3)(4,7)         => U R U R' U R U2 R' U2 R U' R' U2 R U' R'
(1,10,6,3)(4,7,9,5)     => U' R U2 R' U' R U' R2 U2 R U R' U R2 U' R' U
(1,10,6,3)(4,7,5,9)     => U R U R' U R U R' R' U' R U' R' U2 R U'
(1,10,6,3)(7,9)         => U R U R' U R U2 R' U' R U R'
(1,10,6,3)(5,9)         => U R U R' U R U R' U
(1,10,6,3)(5,7)         => U' R U2 R' U' R U' R2 U2 R U R' U R U2 R U' R' U2 R U' R'
(1,10,6,3)(4,5)         => U R U2 R' U R U' R' U' R U' R'
(1,10,6,3)(4,5,7,9)     => U2 R U R' U2 R U2 R' U' R U' R' U R U R' U R U2 R' U
(1,10,6,3)(4,5,9,7)     => R U R' U R U' R'
(1,10)(4,9,7)(6,8)      => U' R U' R' U2
(1,10)(4,9)(5,7)(6,8)   => U' R U2 R' U' R U' R' U' R U' R' U' R U' U2 R' U'
(1,10)(4,9,5)(6,8)      => U' R U2 R' U' R U' R2 U2 R U R' U R U' R U' R' U' R U' R' U'
(1,10)(4,7,5)(6,8)      => U R U R' U R U2 R' U R U R' U R U2 R' U' R U' R' U' R U2 R' U'
(1,10)(4,7)(5,9)(6,8)   => R U R' U R U R' U' R U' R' U'
(1,10)(4,7,9)(6,8)      => U2 R U R' U
(1,10)(6,8)             => R' U' R U' R' U' U' R U' R U' R' U' R U2 R' U'
(1,10)(5,9,7)(6,8)      => U R U R' U R U R' U R U2 R' U' R U' R' U'
(1,10)(5,7,9)(6,8)      => U R U R' U R U' U' R' U' R U' R' U' R U' R' U'
(1,10)(4,5)(6,8)(7,9)   => U R' U2 R U R' U R2 U' R' U2
(1,10)(4,5,7)(6,8)      => U R U2 R' U R U R' U R U2 R' U' R U' R' U' R U2 R' U' R U' R' U'
(1,10)(4,5,9)(6,8)      => U R U R' U R U R' U R' U' R U' R' U2 R2 U R' U R U2 R' U
(1,10,8,3,6)(4,9,5)     => U' R U2 R' U' R U' R' U' R U R' U R U' R' U'
(1,10,8,3,6)(4,9)(5,7)  => U R U' R' U R U' R' U' R U' R'
(1,10,8,3,6)(4,9,7)     => R U' R' U' R U2 R' U' R U R'
(1,10,8,3,6)(4,7,5)     => U' R U2 R' U' R U' R' U' R U R' U R U2 R' U' R U' R' U' U' R U' R' U'
(1,10,8,3,6)(4,7,9)     => U2 R U R' U R U2 R' U' R U' R' U' R U2 R' U' R U' R' U'
(1,10,8,3,6)(4,7)(5,9)  => U R U R' U R U R' U R U R' U R U2 R' U
(1,10,8,3,6)(4,5)(7,9)  => U2 R U R' U R' U2 R U R' U R
(1,10,8,3,6)(4,5,9)     => U R U R' U R U R' U2 R' U U R U R' U R U R U R' U R U2 R' U
(1,10,8,3,6)(4,5,7)     => U R U2 R' U R U R' U
(1,10,8,3,6)(5,7,9)     => U' R U2 R' U' R U' R' U R U R' U'
(1,10,8,3,6)            => U' R U2 R' U' R U2 R' U2 R U' R' U'
(1,10,8,3,6)(5,9,7)     => U R U R' U R U R' U2 R U2 R' U' R U' R' U R U R' U R U2 R' U
(1,10,3,8)(4,7)         => U' R U2 R' U' R U' R' U' R' U' R U' R' U' U' R U' R U' R' U' R U2 R'
(1,10,3,8)(4,7,9,5)     => U2 R U R' U R' U' R U' R' U2 R2 U R' U R U2 R' U
(1,10,3,8)(4,7,5,9)     => U R U R' U R U R' U R' U2 R U R' U R
(1,10,3,8)(5,9)         => U R U R' U R U2 R' U R U' R' U' R U2 R' U' R U R' U'
(1,10,3,8)(5,7)         => U' R U2 R' U' R U2 R' U' R U2 R'
(1,10,3,8)(7,9)         => U' U' R U' R' U' R U' R'
(1,10,3,8)(4,9)         => R' U' R U' R' U2 R U' U2 R U' R' U'
(1,10,3,8)(4,9,5,7)     => U R U' R' U R U R2 U' R U' R' U2 R U'
(1,10,3,8)(4,9,7,5)     => U R U' R' U R U R' U
(1,10,3,8)(4,5,9,7)     => U R' U2 R U R' U R U' R U' R' U' R U' R'
(1,10,3,8)(4,5)         => U R U U R' U R U R' U R U R' U R U2 R' U
(1,10,3,8)(4,5,7,9)     => U2 R U R' U R U2 R' U' R U' R' U'
(1,10,8,3,6)(2,9,5,7,4) => R' U' R U' R' U2 R2 U R' U'
(1,10,8,3,6)(2,9,4)     => R U R' U R U R' U U R U R'
(1,10,8,3,6)(2,9,7,5,4) => R U R' U R U R' U U R U R' U' R' U' R U' R' U2 R U'
(1,10,8,3,6)(2,9)(5,7)  => U' R U2 R' U' R U' R' U2 R U' R'
(1,10,8,3,6)(2,9,7)     => U' R U2 R' U' R U' R' U' R U R' U R U2 R' U2 R U' R' U' R U2 R' U' R U R'
(1,10,8,3,6)(2,9,5)     => U R U R' U R U2 R' U R U R' U R U' R' U'
(1,10,8,3,6)(2,9,4,5,7) => R U R' U R U R' U2 R U R' U U R' U2 R U R' U R
(1,10,8,3,6)(2,9)(4,5)  => U' R U2 R' U' R U' R' U' R U R' U R U2 R' U R U' R'
(1,10,8,3,6)(2,9,7,4,5) => U' R U2 R' U' R U' R' U' R U' R' U' R U' U' R' U' R U R'
(1,10,8,3,6)(2,9,5,4,7) => U R U R' U R U2 R' U2 R' U2 R U R' U R U' R U R' U'
(1,10,8,3,6)(2,9)(4,7)  => U' R U2 R' U' R U' R' U' R' U' R U' R' U' U' R U R U' R'
(1,10,8,3,6)(2,9,4,7,5) => R U R' U R U R' U U R U R' U U R U2 R' U' R U' R'
(1,10)(2,9,7,5,4)(6,8)  => R U R' U R U R' U2 R U R' R' U2 R U R' U R
(1,10)(2,9,5,7,4)(6,8)  => U R U R' U R U2 R' U R U R' U R U R' U' R U' R' U'
(1,10)(2,9,4)(6,8)      => R U R' U R U2 R' U2 R U' R' U' R U R' U'
(1,10)(2,9,5,4,7)(6,8)  => R U R' U R U R' U U R U R' U U
(1,10)(2,9,4,7,5)(6,8)  => U R U R' U R U2 R' U R U' R' U' R U R' U'
(1,10)(2,9)(4,7)(6,8)   => U R U R' U R U2 R' U' R U' R' U' U' R U' R' U' R U' R'
(1,10)(2,9)(4,5)(6,8)   => R U R' U R U R' U' U' R U' R' U' R U' R'
(1,10)(2,9,7,4,5)(6,8)  => U' R U2 R' U' R U' R' U' U' R U' R' U' U'
(1,10)(2,9,4,5,7)(6,8)  => R U R' U R U R' U U R U R' U R' U' R U' R' U2 R U'
(1,10)(2,9,7)(6,8)      => U' R U2 R' U' R U' R' U' R U R' U R U2 R' U R U' R' U2
(1,10)(2,9)(5,7)(6,8)   => U' R U2 R' U' R U' R2 U2 R U R' U R U' R U' R' U' U' R U' R' U' R U' R'
(1,10)(2,9,5)(6,8)      => U R U R' U R U2 R' U2 R' U2 R U R' U R U' R U' R' U' R U' R' U'
(1,10,3,8)(2,9,7,4)     => R U R' U R U R' U U R U2 R' U R U2 R' U
(1,10,3,8)(2,9,4)(5,7)  => U' R U2 R' U' R U' R' U' R U R' U R U2 R' U R U' R' U'
(1,10,3,8)(2,9,5,4)     => U' R U2 R' U' R U' R' U' R U' R' U' R U' U' R' U' R U R' U'
(1,10,3,8)(2,9,5,7)     => R U R' U R U R' U U R U R' U R U2 R' U' R U' R'
(1,10,3,8)(2,9)         => U R U R' U R U2 R' U R U' R' U' R U R'
(1,10,3,8)(2,9,7,5)     => R U R' U R U R' U U R U R' U'
(1,10,3,8)(2,9)(4,7,5)  => U' R U2 R' U' R U' R2 U2 R U R' U R U R U' R' U' R U R'
(1,10,3,8)(2,9,4,7)     => U' R U2 R' U' R U' R' U' U' R U' R' U'
(1,10,3,8)(2,9,5)(4,7)  => R U R' U R U R' U U R U R' U U R' U' R U' R' U2 R U'
(1,10,3,8)(2,9)(4,5,7)  => R U R' U R U2 R' U2 R U' R' U' R U R'
(1,10,3,8)(2,9,7)(4,5)  => U R U R' U R U2 R' U R U R' U R U R' U' R U' R'
(1,10,3,8)(2,9,4,5)     => U' R U2 R' U' R U' R' U' R' U' R U' R' U' U' R U R U' R' U'
(1,10,6,3)(2,9,7,5)     => U R U R' U R U2 R' U2 R' U2 R U R' U R U' R U R'
(1,10,6,3)(2,9)         => R U R' U R U R' U U R U R2 U' R U' R' U2 R U'
(1,10,6,3)(2,9,5,7)     => R U R' U R U R' U U R U R' U U R U R' U R U2 R' U
(1,10,6,3)(2,9)(4,5,7)  => R U R' U R U R' U U R U R' U
(1,10,6,3)(2,9,7)(4,5)  => R' U' R U' R' U2 R2 U R'
(1,10,6,3)(2,9,4,5)     => U R U R' U R U2 R' U' R U' R' U' U' R U' R' U' R U' R' U'
(1,10,6,3)(2,9,4)(5,7)  => R U R' U R U R' U' U' R U' R' U' R U' R' U'
(1,10,6,3)(2,9,5,4)     => U' R U2 R' U' R U' R' U' U' R U' R' U' U2
(1,10,6,3)(2,9,7,4)     => U R U R' U R U2 R' U R U R' U R U' R'
(1,10,6,3)(2,9,5)(4,7)  => R U R' U R U R' U U R U R' U U2 R' U2 R U R' U R
(1,10,6,3)(2,9)(4,7,5)  => U' R U2 R' U' R U' R' U' U' R U' R' U' R U2 R' U' R U' R'
(1,10,6,3)(2,9,4,7)     => U' R U2 R' U' R U' R2 U2 R U R' U R U' R U' R' U' U' R U' R' U' R U' R' U'

文章同时发表于:利用数论来研究魔方 - 大海Online的博客 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1015038.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

MySQL数据库upsert使用

本文翻译自&#xff1a;MySQL UPSERT - javatpoint&#xff0c;并附带自己的一些理解和使用经验. MySQL UPSERT UPSERT是数据库管理系统管理数据库的基本功能之一&#xff0c;它允许数据库操作语言在表中插入一条新的数据或更新已有的数据。UPSERT是一个原子操作&#xff0c;…

手刻 Deep Learning -第壹章-PyTorch入门教学-基础概念与再探线性回归

一、前言 本章会需要 微分、线性回归与矩阵的基本观念 这次我们要来做 PyTorch 的简单教学&#xff0c;我们先从简单的计算与自动导数&#xff08; auto grad / 微分 &#xff09;开始&#xff0c;使用优化器与误差计算&#xff0c;然后使用 PyTorch 做线性回归&#xff0c;还有…

office mac苹果办公软件安装包安装教程详解

软件下载 软件&#xff1a;mac office版本&#xff1a;2021语言&#xff1a;简体中文大小&#xff1a;4.27G安装环境&#xff1a;mac硬件要求&#xff1a;CPU2.0GHz 内存4G(或更高&#xff09;下载通道 百度网盘 https://pan.baidu.com/s/1WGSB-icELUxweFkI8iIbzA 首先&#…

恒源云GPU使用tensorboard || 以OpenMMLab系列为例 || 定时复制可视化日志

序言 在训练过程中使用可视化工具向来是很有效的。相比于shell中的输出&#xff0c;可视化能够更好地向我们展现在训练过程中各项指标的变化。 但是&#xff0c;由于深度学习所需要的设备性能要求较高&#xff0c;我们常常使用云GPU进行训练。但是一些云平台的可视化工具让人摸…

2023国赛B题:多波束测线问题 评阅要点完整分析

本文所有分析仅代表个人观点&#xff0c;不代表官方&#xff0c;仅供参考 制作人&#xff1a;川川徒弟 demoo CSDN&#xff1a;川川菜鸟公众号&#xff1a;川川带你学AI 全文采用非编程做法  需要工具&#xff1a; geogebra、matlab工具箱   注&#xff1a; 本文全文不考虑…

02 java ---- Android 基础app开发

目录 相对布局 显示一个美女 显示两个美女 安卓APP启动过程 安卓布局控件 常用布局之相对布局 常用布局之相对布局 padding和margin 按键美化 常用布局之线性布局 安卓按键响应的几种方式 直接设置按键的onClick绑定的函数 自定义类实现按键监听事件的接口 匿名内…

字节一面:说说var、let、const之间的区别

前言 最近博主在字节面试中遇到这样一个面试题&#xff0c;这个问题也是前端面试的高频问题&#xff0c;作为一名前端开发工程师&#xff0c;熟练掌握js是我们的必备技能&#xff0c;var、let、const之间的区别我们也得熟练掌握&#xff0c;博主在这给大家细细道来。 &#x1f…

Linux驱动中断与时间篇——高精度定时器hrtimer

文章目录 前言相关接口使用示例单次定时循环定时 前言 低分辨率定时器是用jiffies来定时的&#xff0c;所以会受到HZ影响&#xff0c;如果HZ为200&#xff0c;代表每秒种产生200次中断&#xff0c;那一个jiffies就需要5毫秒&#xff0c;所以精度为5毫秒。 如果精度需要达到纳秒…

如何实现一个简单的Promise/A+规范的Promise库?

聚沙成塔每天进步一点点 ⭐ 专栏简介⭐ Promise/A规范的Promise⭐ 写在最后 ⭐ 专栏简介 前端入门之旅&#xff1a;探索Web开发的奇妙世界 记得点击上方或者右侧链接订阅本专栏哦 几何带你启航前端之旅 欢迎来到前端入门之旅&#xff01;这个专栏是为那些对Web开发感兴趣、刚刚…

uni-app:通过ECharts实现数据可视化-如何引入项目

效果 引入文件位置 代码 <template><view id"myChart"></view> </template> <script> import echarts from /static/js/echarts.js // 引入文件 export default {mounted() {// 初始化EChartsconst myChart echarts.init(document…

【JVM 内存结构丨堆】

堆 定义内存分配特点:分代结构对象分配过程Full GC /Major GC 触发条件引用方式堆参数堆内存实例 主页传送门&#xff1a;&#x1f4c0; 传送 定义 JVM&#xff08;Java Virtual Machine&#xff09;堆是Java应用程序运行时内存管理的重要组成部分之一。堆内存用于存储Java对象…

如何区分和选择EML、DML两种激光器

EML&#xff08;External Cavity Laser&#xff09;和DML&#xff08;Distributed Feedback Laser&#xff09;两种激光器在光模块中都扮演着重要的角色&#xff0c;用于光通信和其他光电子应用。本文跟随易天光通信来了解一下它们在光模块中的应用吧&#xff01; 一、什么是E…

excel中的引用与查找函数篇3

1、INDEX(array,row_num,[col_num])&#xff1a;获取指定范围中指定行号和列号对应的数据 index(查询范围,行号,列号) 行号和列号是相对选中查询范围来写的&#xff1a;分别把第二行第三列的数据和第四行第二列的数据查找出来。 数据是单行或单列&#xff0c;后面只需要给一个参…

C【文件操作】

1. 什么是文件 磁盘上的文件是文件。 但是在程序设计中&#xff0c;我们一般谈的文件有两种&#xff1a;程序文件、数据文件&#xff08;从文件功能的角度来分类的&#xff09;。 1.1 程序文件 包括源程序文件&#xff08;后缀为.c&#xff09;,目标文件&#xff08;windows环…

Golang Array 数组使用注意事项和细节

在go数组当中&#xff0c;长度是数据类型的一部分 [3]int *[3]int 数组使用注意事项和细节 1) 数组是多个相同类型数据的组合&#xff0c;一个数组一旦声明/定义了&#xff0c;其长度是固定的&#xff0c;不能动态变化 var a [3]int a[0] 1.1 这样是不行的&#xff0c;必…

“对象创建”模式

通过“对象创建”模式绕开new&#xff0c;来避免对象创建 (new) 过程中所导致的紧耦合(依赖具体类)从而支持对象创建的稳定。它是接口抽象之后的第一步工作。 典型模式 Factory MethodAbstract FactoryPrototypeBuilder Factory Method 动机 (Motivation) 在软件系统中&am…

【数据结构】二叉树的层序遍历(四)

目录 一&#xff0c;层序遍历概念 二&#xff0c;层序遍历的实现 1&#xff0c;层序遍历的实现思路 2&#xff0c;创建队列 Queue.h Queue.c 3&#xff0c;创建二叉树 BTree.h BTree.c 4&#xff0c;层序遍历的实现 一&#xff0c;层序遍历概念 层序遍历&#xff1a;除了先序…

Day981.OAuth 2.0的工作流程与安全问题 -OAuth 2.0

OAuth 2.0的工作流程与安全问题 Hi&#xff0c;我是阿昌&#xff0c;今天学习记录的是关于OAuth 2.0的工作流程与安全问题的内容。 一、OAuth 2.0 工作流程串讲 OAuth 2.0 是一种授权协议&#xff0c;这种协议可以让第三方软件代表用户去执行被允许的操作。 那么&#xff0c;…

HI_NAS linux 记录

dev/root 100% 占用解决记录 通过下面的命令查看各文件夹 大小 sudo du --max-depth1 -h # 统计当前文件夹下各个文件夹的大小显示为M 最终发现Var/log 占用很大空间 发现下面两个 log 占用空间很大&#xff0c;直接 rm-rf 即可 HI NAS python3 记录 # 安装pip3 sudo apt u…

4.后端·新建子模块与开发(传统模式)

文章目录 学习资料新建子模块与各层查询entity的列表entitymapper层service层controller层 测试 学习资料 https://www.bilibili.com/video/BV13g411Y7GS?p8&spm_id_frompageDriver&vd_sourceed09a620bf87401694f763818a31c91e b站的学习视频 新建子模块与各层 在r…